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This document serves as a supplement to the main manuscript. It

mainly contains an illustrative example of functional directional outlying-

ness framework, two figures of real data, and technical proofs for the theo-

retical results.

Functional Directional Oultyingness

Figure S1 presents an example of functional directional outlyingness

with a group of bivariate curves. In the graph on the left, the non-outlying

curves are shown in black and outliers are shown in different colors. In the

middle graph, the grey surface is a quadratic surface satisfying {(a, b, c) :

c = a2 + b2; a, b, c > 0 ∈ R}. Because the non-outlying curves and the two

shifted outliers (blue and red curves) are mutually parallel, their mapped

points, (MOT,FO)T, fall exactly onto the grey quadratic surface. However,

the two points corresponding with the shifted outliers are isolated from the

cluster, making them easy to recognize. The right graph presents a scatter

plot of (MOT,VO)T, from which we can simply distinguish the cyan and

purple points from the others by their VO values. The green point is not
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only isolated from the cluster, but it also has a larger VO, which coincides

with its outlyingness for both scale and shape.

Bivariate Curves
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Figure S1: Left: 100 bivariate non-outlying curves with another five out-

liers; middle: functional directional outlyingness (FO) in relation to the

mean directional outlyingness (MO); right: variation of directional out-

lyingness (VO) in relation to mean directional outlyingness (MO). The

Mahalanobis depth is adopted for the calculation of directional outlying-

ness.
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Phoneme Data

0 50 100 150

0
5

1
0

1
5

2
0

2
5

aa

Frequency

L
o

g
 p

e
ri

o
d

o
g

ra
m

0 50 100 150

0
5

1
0

1
5

2
0

2
5

ao

Frequency

L
o

g
 p

e
ri

o
d

o
g

ra
m

0 50 100 150

0
5

1
0

1
5

2
0

2
5

sh

Frequency

L
o

g
 p

e
ri

o
d

o
g

ra
m

0 50 100 150

0
5

1
0

1
5

2
0

2
5

iy

Frequency

L
o

g
 p

e
ri

o
d

o
g

ra
m

0 50 100 150

0
5

1
0

1
5

2
0

2
5

dcl

Frequency

L
o

g
 p

e
ri

o
d

o
g

ra
m

Figure S2: Ten samples for each of the five phonemes: “aa”, “ao”, “dcl”,

“sh”, and “iy”.

Gesture Data

Figure S3: Gesture vocabulary. The dot denotes the start and the arrow

the end of each of the eight gestures.
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Proofs of Theoretical Results

Proofs of Theorem 1.

(i): Similarly, we decompose the total depth matrix into two parts:

scale depth matrix and shape depth matrix:

FOM(X, FX) =

∫
I
O(X(t), FX(t))O

T(X(t), FX(t))w(t)dt

=

∫
I
{O−MO + MO} {O−MO + MO}Tw(t)dt

= VOM(X, FX) + MO(X, FX)MOT(X, FX).

(ii) The result is straightforward using tr(aaT) = aTa = ‖a‖2 for any vector

a. �

Proof of Theorem 2.

To prove Theorem 2, we first prove the following results for directional

outlyingness of point-wise data:

O(A0X(t) + b, FA0X(t)+b) = A0 ·O(X(t), FX(t)).

Proof: Since d
(
X(t), FX(t)

)
is a valid depth possessing the four popular

properties stated in Definition 2.1 of Zuo and Serfling (2000), the affine in-

variance of d
(
X(t), FX(t)

)
indicates that d

(
AX(t) + b, FAX(t)+b

)
= d

(
X(t), FX(t)

)
.

Consequently, we have

‖O(A0X(t) + b, FA0X(t)+b)‖ = ‖O(X(t), FX(t))‖. (S1)

For the directional part, v, we have

v∗(t) =
A0X(t)−A0Z(t)

‖A0X(t)−A0Z(t)‖

=
A0‖X(t)− Z(t)‖
‖A0X(t)−A0Z(t)‖

· X(t)− Z(t)

‖X(t)− Z(t)‖
= A0 · v(t). (S2)
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In the final step, we use ‖A0X(t) −A0Z(t)‖ = ‖X(t) − Z(t)‖ since A0 is

an orthogonal matrix. Then, based on (S1) and (S2), we get

O(A0X(t) + b, FA0X(t)+b) = A0 ·O(X(t), FX(t)). (S3)

Since g is a one-to-one transformation on the interval I, it is easy to

show

MO
(
T(X), FT(X)

)
= MO

(
T(Xg), FT(Xg)

)
,

FOM
(
T(X), FT(X)

)
= FOM

(
T(Xg), FT(Xg)

)
.

By (S3) and f(t) > 0, O(T(X(t)), FT(X(t))) = A0O(X(t), FX(t)) holds.

Then, we have

MO(T(X), FT(X)) = {λ(I)}−1
∫
I
O(T(X(t)), FT(X(t)))dt

= {λ(I)}−1
∫
I
A0 ·O(X(t), FX(t))dt

= A0 ·MO(X, FX).

Consequently, we have MO(T(Xg), FT(Xg)) = A0 ·MO(X, FX). Similarly,

FOM(T(X), FT(X)) = {λ(I)}−1
∫
I
O(T(X(t)), FT(X(t)))O

T(T(X(t)), FT(X(t)))dt

= A0

{
{λ(I)}−1

∫
I
O(X(t), FX(t))O

T(X(t), FX(t))dt

}
AT

0

= A0FOM(X, FX)AT
0 .

This leads to FOM
(
T(Xg), FT(Xg)

)
= A0FOM(X, FX)AT

0 . Finally,

VOM
(
T(Xg), FT(Xg)

)
= A0

{
FOM(X, FX)−MO(X, FX)MOT(X, FX)

}
AT

0

= A0VOM(X, FX)AT
0

This completes the proof. �


