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Abstract: The Area Under the Receiving Operating Characteristic Curve (AUC) is

frequently used for assessing the overall accuracy of a diagnostic marker. However,

estimation of AUC relies on knowledge of the true outcomes of subjects: diseased

or non-diseased. Because disease verification based on a gold standard is often ex-

pensive and/or invasive, only a limited number of patients are sent to verification

at doctors’ discretion. Estimation of AUC is generally biased if only small verified

samples are used and it is thus necessary to make corrections for such lack of in-

formation. Correction based on the ignorable missingness assumption (or missing

at random) is also biased if the missing mechanism depends on the unknown dis-

ease outcome, which is called nonignorable missing. In this paper, we propose a

propensity-score-adjustment method for estimating the AUC based on the instru-

mental variable assumption when the missingness of disease status is nonignorable.

The new method makes parametric assumptions on the verification probability,

and the probability of being diseased for verified samples rather than for the whole

sample. The proposed parametric assumption on the observed sample is easier to

be verified than the parametric assumption on the full sample. We establish the

asymptotic properties of the proposed estimators. A simulation study was per-

formed to compare the proposed method with existing methods. The proposed

method is applied to an Alzheimer’s disease data collected by National Alzheimer’s

Coordinating Center.

Key words and phrases: Instrumental variable, missing data, not missing at ran-

dom, ROC curve.

1. Introduction

The Receiving Operating Characteristic (ROC) curve is a tool for evaluating

the accuracy of a diagnostic marker. The area under the curve (AUC) is a pop-

ular summary index for evaluating a method’s power of discriminating diseased

from non-diseased subjects; it is the probability that the score of a randomly

chosen diseased individual exceeds that of a randomly chosen non-diseased sub-

jects (Bamber (1975)). Estimation of the AUC relies on knowledge of the true
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status of subjects, which can usually be verified through a gold standard, but

it is expensive, invasive or both. On the other hand, the estimation based on

verified sub-samples only is generally biased (Begg and Greenes (1983)).

A common assumption in adjusting verification bias is that the verification

mechanism is ignorable, also known as missing at random (MAR): the selection of

a subject for verification is independent of the subject’s disease status, conditional

on the score of the marker and other covariates. Approaches based on the MAR

assumption have been proposed by, for example, Begg and Greenes (1983), Zhou

(1996, 1998), Rodenberg and Zhou (2000), Alonzo and Pepe (2005), He, Lyness

and McDermott (2009) and He and McDermott (2011). See Zhou, Obuchowski

and McClish (2011) for a comprehensive overview of these works.

The MAR assumption can be unrealistic when the doctors’ decision to send

a subject to verification is based on his or her detailed information on that sub-

ject, which may depend on some un-measured covariates related to disease status

(Rotnitzky, Faraggi and Schisterman (2006)); such is known as nonignorable ver-

ification bias. The earlier existing works under nonignorable verification bias are

limited to dichotomous or ordinal markers, including Baker (1995), Zhou and

Rodenberg (1998), Kosinski and Barnhart (2003), Zhou and Castelluccio (2003)

and Zhou and Castelluccio (2004). Two methods proposed by Rotnitzky, Faraggi

and Schisterman (2006) and Liu and Zhou (2010) under nonignorable verification

bias can efficiently estimate AUC for markers that are measured in continuous,

ordinal or dichotomous scales. In particular, Rotnitzky, Faraggi and Schisterman

(2006) proposed a doubly robust estimator of AUC, with the validity of the esti-

mator only requiring either the disease model (the probability of being diseased

given covariates) or the verification model (the probability of being verified given

some covariates and the true disease outcome) to be correctly specified. The

nonignorabilty parameter (the coefficient of the disease outcome) in their verifi-

cation model was not identifiable, and thus a sensitivity analysis was suggested.

Liu and Zhou (2010) suggested a parametric model to estimate the nonignor-

ability parameter; they assumed a parametric disease regression model of the

responses for the whole sample and jointly estimated the verification probability

and the disease probability. Such a parametric assumption is hard to be verified

in practice.

In this paper, we consider estimating the nonignorability parameter based

on maximum likelihood method under an identifiability assumption based on an

instrumental variable (Wang, Shao and Kim (2014)). We use a similar idea as
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the propensity-score-adjustment method proposed by Sverchkov (2008) and Rid-

dles, Kim and Im (2016), developed in the context of survey sampling, to correct

nonignorable verification bias in AUC estimators. It is based on a parametric

assumption of the disease model for observed subjects, and a parametric assump-

tion of the verification model. An instrumental variable can be used to construct

a reduced verification model and results in efficient estimation.

The rest of this paper is organized as follows. In Section 2, we present

our proposed estimator. Its asymptotic properties are discussed in Section 3.

Simulation studies and real data analysis are provided in Section 4. We end our

paper with a brief discussion in Section 5.

2. Methods

2.1. Basic setup

Consider a sample of size n, assumed to be a random sample. Suppose

Yi = 1 if the sample i is from diseased group, and Yi = 0 otherwise, and Xi and

VVV i are the marker of interest and the covariates, respectively. Let Ri = 1 if Yi
is observed and Ri = 0 otherwise, i = 1, . . . , n. Based on the result of Bamber

(1975), the AUC of marker X is

AUC =
E{Y1(1− Y2)I12}
E{Y1(1− Y2)}

, (2.1)

where I12 = I(X1 > X2) + 0.5I(X1 = X2) and I(·) is the indicator function. If

there is no missing value, AUC can be estimated by

Â =

∑n
i=1

∑
j 6=i Yi(1− Yj)Iij∑n

i=1

∑
j 6=i Yi(1− Yj)

, (2.2)

where Iij = I(Xi > Xj) + 0.5I(Xi = Xj).

2.2. Estimator of AUC with adjustment of verification bias

Since some Y s in (2.2) are unobserved, we need to model the distribution of

the disease status Y based on the information of X and covariates VVV . Assume

that the covariates can be decomposed into VVV = (VVV 1,VVV 2) and the dimension of VVV 2

is greater than or equal to one. We assume that VVV 2 is conditionally independent

of R given (X,Y,VVV 1). The variable VVV 2 is called a (nonresponse or) instrument

variable (IV) and it helps to make the model identifiable (Wang, Shao and Kim

(2014)). We then define the verification model as

πi = pr(Ri = 1|Xi,VVV i, Yi) = π(Xi,VVV 1i, Yi;φ), (2.3)
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where π(·) is a known function and φ is the unknown parameter. The IV assump-

tion (2.3) is a way of making a reduced model for πi. Roughly speaking, IV can

reduce the number of parameters to be estimated and ensure the identifiability

of the reduced model. In practice, the IV assumption is hard to be verified, but

as confirmed in the simulation study in Section 4, the proposed method shows

reasonable performance even when the IV assumption is weakly violated.

We write φ = (ψ1, ψ2,ψψψ3, β) and assume

π(Xi,VVV 1i, Yi;φ) =
1

1 + exp(ψ1 + ψ2Xi +ψψψ3VVV 1i + βYi)
, (2.4)

a logistic regression model using (X,VVV 1, Y ) as explanatory variables. Parameter

β is the nonignorability parameter; if β = 0, then the response mechanism is

MAR. We have

E{R1π
−1
1 R2π

−1
2 Y1(1− Y2)I12}

E{R1π
−1
1 R2π

−1
2 Y1(1− Y2)}

=
E{Y1(1− Y2)I12}
E{Y1(1− Y2)}

. (2.5)

Thus, if a consistent estimator π̂i of πi is available, we can estimate AUC by

an inverse weighted type of estimator,

Âiv =

∑n
i=1

∑
j 6=iRiπ̂

−1
i Rj π̂

−1
j Yi(1− Yj)Iij∑n

i=1

∑
j 6=iRiπ̂

−1
i Rj π̂

−1
j Yi(1− Yj)

. (2.6)

We estimate πi, or equivalently, to estimate φ in the verification model (2.3).

2.3. Parameter estimation

To estimate φ in the verification model (2.3), the likelihood of φ with full

response is

L =

n∏
i=1

[
π(Xi,VVV 1i, Yi;φ)Ri{1− π(Xi,VVV 1i, Yi;φ)}1−Ri

]
, (2.7)

and under some regularity conditions, the maximum likelihood estimator (MLE)

of φ can be obtained by solving the score equation

SSS(φ) =

n∑
i=1

{Ri − π(Xi, V1i, Yi;φ)}∂logit(πi)
∂φ

≡
n∑
i=1

s(Xi, Ri,VVV 1i, Yi;φ) = 0, (2.8)

where logit(πi) = log(πi/(1− πi)). Since some Yi are missing, the score function

(2.8) is not applicable. Alternatively, the MLE of φ can be obtained by solving
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the mean score equation

S̄̄S̄S(φ) ≡
n∑
i=1

E{s(X,R,VVV 1, Y ;φ)|OOOi}

=

n∑
i=1

[Ris(Xi, 1,VVV 1i, Yi;φ) + (1−Ri)E0{s(Xi, 0,VVV 1i, Y ;φ)|Xi,VVV i}]

= 0, (2.9)

where E0(·|Xi,VVV i) = E(·|Xi,VVV i, Ri = 0) and

OOOi =

{
(Xi, Ri,VVV i, Yi) if Ri = 1,

(Xi, Ri,VVV i) otherwise.

Using the mean score equation for estimating the MLE has been discussed by,

for example, Louis (1982), and Riddles, Kim and Im (2016).

We need to estimate the conditional distribution of unobserved Y given the

marker X and covariant VVV , or equivalently, the second term in (2.9). A simple

choice applies a parametrical disease model for all samples, as in Liu and Zhou

(2010). Instead of using a full parametric model, we consider an approach based

on the Bayes formula

Pr(Yi = 1|Xi,VVV i, Ri = 0) =
Pr(Yi = 1|Xi,VVV i, Ri = 1)O(1, Xi,VVV i)∑1
y=0 Pr(Yi = y|Xi,VVV i, Ri = 1)O(y,Xi,VVV i)

, (2.10)

where

O(Y,X,VVV ) =
Pr(Ri = 0 | Y,X,VVV )

Pr(Ri = 1 | Y,X,VVV )
=

1− π(X,VVV 1, Y ;φ)

π(X,VVV 1, Y ;φ)
.

Thus, in addition to the verification model (2.3), we only need a model for ver-

ified samples Pr(Yi|Xi,VVV i, Ri = 1). Rotnitzky, Faraggi and Schisterman (2006)

also considered (2.10), but did not discuss the estimation of the nonignorability

parameter β. Kim and Yu (2011) used (2.10) to obtain a semiparametric es-

timation of the population mean under nonignorable nonresponse, assuming a

followup sample.

Here we specify a parametric model for Pr(Yi = y|Xi,VVV i, Ri = 1) and derive

Pr(Yi = y|Xi,VVV i, Ri = 0) based on (2.10). Let Pr(Yi = y|Xi,VVV i, Ri = 1) ≡
P1(y,Xi,VVV i;µ), where P1(·) is a known function and µ is an unknown parameter,

and write Pr(Yi = y|Xi,VVV i, Ri = 0) ≡ P0(y,Xi,VVV i;µ, φ), y = 1, 0. Using (2.10),

the conditional distribution of the unobserved Y reduces to

Pr(Yi = 1|Xi,VVV i, Ri = 0) =
P1(1, Xi,VVV i;µ)eβ

1− P1(1, Xi,VVV i;µ)(1− eβ)
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≡ P0(1, Xi,VVV i;φ, µ).

Here, µ0 can be simply estimated by solving

SSS1(µ) =

n∑
i=1

Ri

[
Yi
∂log{P1(Yi, Xi,VVV i;µ)}

∂µ
+ (1− Yi)

∂log{P1(1− Yi, Xi,VVV i;µ)}
∂µ

]

≡
n∑
i=1

Ris1(Xi,VVV i, Yi;µ) = 0. (2.11)

Thus, µ is estimated by maximizing the likelihood among the respondents. Once

we get a ML estimator µ̂ from (2.11), we plug µ̂ into (2.9) to solve for φ. We

write (2.9) as

SSS2(φ, µ)=

n∑
i=1

Ris(Xi,1,V1i,Yi;φ)+(1−Ri)
1∑
y=0

s(Xi,0,V1i,y;φ)P0(y,Xi,VVV i;φ, µ)

=

n∑
i=1

s2(Xi, Ri,Vi, Yi;φ, µ) = 0, (2.12)

where P0(0, Xi,VVV i;φ, µ) = 1− P0(1, Xi,VVV i;φ, µ).

The computation of φ̂ from (2.12) can be implemented by an EM algorithm.

1. Specify the initial value φ̂(0).

2. For each t = 0, 1, 2, . . . , let φ̂(t+1) be the solution of

n∑
i=1

Ris(Xi, 1,VVV 1i, Yi;φ) + (1−Ri)
1∑
y=0

w
(t)
iy s(Xi, 0,VVV 1i, y;φ)

 = 0,

where w
(t)
iy = P0(y,Xi,VVV i; φ̂

(t), µ̂).

3. Set t = t+ 1 and go to step (2) until ||φ̂(t+1)− φ̂(t)||1 < ε, where ε is a small

arbitrary number, say ε = 10−5.

3. Asymptotic Properties

In this section, we establish some asymptotic properties of the proposed

propensity-score-adjustment AUC estimator Âiv. The regularity conditions and

the proofs are shown in the Supplementary Material.

Let

Dij(A, φ) = Riπ
−1
i (φ)Rjπ

−1
j (φ)Yi(1− Yj)(Iij −A),

and let A0 be the true AUC.
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Theorem 1. Suppose the regularity conditions (r1-r10) given in the Supplemen-

tary Material hold. We have
√
n(Âiv −A0)

d→ N(0, σ2), (3.1)

where σ2 = V ar(Qi)/{Pr(Y = 0) Pr(Y = 1)}2, and

Qi = E(Dij +Dji|OOOi)− Γ′E−1
{
∂s2(X,R, V, Y ;φ)

∂φ

}[
s2(Xi, Ri, Vi, Yi;φ, µ)

+E

{
s2(X,R,VVV , Y ;φ, µ)

∂µ

}
E−1

{
∂s1(X,VVV , Y ;µ)

∂µ

}
Ris1(Xi,VVV i, Yi;µ)

]
,

(3.2)

where Γ = ∂E(Dij)/∂φ and s2(·) were defined in (2.12).

A sketched proof of Theorem 1 is given in the Supplementary Material.

Pr(Y = 1), Pr(Y = 0) and V ar(Qi) can be consistently estimated by
∑n

i=1Riπ̂
−1
i

Yi/n,
∑n

i=1Riπ̂
−1
i (1−Yi)/n and ˆV ar(Qi) =

∑n
i=1(Q̂i−Q̄n)2/(n−1), respectively,

with

Q̂i =

n∑
j=1

{Dij(Âiv, φ̂) +Dji(Âiv, φ̂)}
n

− Γ̂′kÊ
−1

{
∂s2(X,R, V, Y ; φ̂, µ̂)

∂φ

}[
s2(Xi, Ri, Vi, Yi; φ̂, µ̂)

+ Ê

{
∂s2(x,R,VVV , Y ; φ̂, µ̂)

∂µ

}
Ê−1

{
∂s1(X,VVV , Y ; µ̂)

∂µ

}
Ris1(Xi,VVV i, Yi; µ̂)

]
,

Q̄n =

n∑
i=1

Q̂i
n
,

Ê−1

{
∂s2(X,R, V, Y ; φ̂, µ̂)

∂φ

}
= n

{
n∑
i=1

∂s2(Xi, Ri, Vi, Yi; φ̂, µ̂)

∂φ

}−1
,

Ê−1
{
∂s1(X,V, Y ; µ̂)

∂µ

}
= n

{
n∑
i=1

∂s1(Xi, Vi, Yi; µ̂)

∂µ

}−1
,

Ê

{
∂s2(X,R, V, Y ; φ̂, µ̂)

∂µ

}
=

n∑
i=1

n−1∂s2(Xi, Ri, Vi, Yi; φ̂, µ̂)

∂µ
,

and Γ̂ = n−2
n∑
i=1

n∑
j=1

∂Dij

∂φ
.

Remark 1. To better understand the asymptotic variances in (3.1), we can
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further decompose V ar(Qi) in (3.2). Denote the first and second terms of the

right side of (3.2) as Qi1 and Qi2, respectively, so that Qi = Qi1 +Qi2. Rewrite

(3.2) as

V ar(Qi) = V ar(Qi1) + V ar(Qi2) + 2Cov(Qi1, Qi2).

Here,

V ar(Qi1) = V ar(Âf ){Pr(Y = 0) Pr(Y = 1)}2+E{g2(Xi, Yi,VVV i)(π
−1
i −1)}, (3.3)

V ar(Qi2) = Γ′T−122 Γ, (3.4)

Cov(Qi1, Qi2) = Γ′T−122 E[(Dij +Dji){s2i + T21T
−1
11 Ris1i}]

= 2Γ′T−122 Cov(Dij , s2i + T21T
−1
11 Ris1i), (3.5)

where Âf is the AUC estimator defined in (2.2) when there are no missing data,

g(Xi, Yi,VVV i) = Yi Pr(Y = 0){F0(Xi)−A0}+(1−Yi) Pr(Y = 1){1−F1(Xi)−A0},
with F0(·) and F1(·) the cumulative distribution function of X conditional on

Y = 0 and Y = 1, respectively. The derivation of variance decomposition (3.3)

and (3.5) are also given in the supplementary document.

In summary, the asymptotic variance of the proposed estimators can be

decomposed as

V ar(Qi) = V ar(Âf ){Pr(Y = 0) Pr(Y = 1)}2 + E{g2(Yi, Xi,VVV i)(π
−1
i − 1)}

+ Γ′T−122 {Γ + 4Cov(Dij , s2i + T21T
−1
11 Ris1i)}. (3.6)

The first term is the variance of Âf , where no missing data is assumed; the

second is due to the fact only partial samples are verified, πi < 1; the third term

Γ′T−122 Γ is the variance generated from estimating φ—the unknown parameter in

the verification model π(·) and the connection between the statistic of interest

(here AUC) and the likelihood of φ and µ. Observe that the second and third

terms are zero when no data are missing. These terms can be treated as variances

produced by the missing mechanism. Here g(Xi, Yi,VVV i) does not depend on Ri
and πi. Compared to the estimator Âf using the full data, the increased variance

of our estimators are due to the estimation of φ and partial verification; a smaller

verification probability leads to a larger variance.

4. Numerical Studies

4.1. Simulation studies

To test our theory, we generated synthetic data similarly as Liu and Zhou

(2010): first generated the marker X ∼ unif(−1, 1) and the covariate V un-

der different scenarios, and then generated the outcome variable Y through the
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disease model on the full sample,

Pr(Yi = 1|Xi, Vi) =
1

1 + exp(µ1 + µ2Xi + µ3Vi)
,

and generated the missing indicator R though

πi = Pr(Ri = 1|Xi, Vi, Yi) =
1

1 + exp(ψ1 + ψ2Xi + ψ3Vi + βYi)
.

Under the above setting, the disease model on verified samples we fitted, is

Pr(Yi = 1|Xi, Vi, Ri = 1) =
1

1 + U(Xi, Vi) exp(µ1 + µ2Xi + µ3Vi)
,

where U(Xi, Vi) = {1 + exp(ψ1 + ψ2Xi + ψ3Vi + β)}/{1 + exp(ψ1 + ψ2Xi +

ψ3Vi)}, which is not equal to 1 when missingness is nonignorable, so Pr(Yi =

1|Xi, Vi, Ri = 1) does not follow a logistic distribution. However, in our simu-

lations, the logistic form is always tapped because of its prevalence in practice.

In this sense, we at least weakly misspecified the disease model on the verified

sample for nonignorable cases.

We took six scenarios:

(I). V ∼ Bernoulli(0.5), (µ1, µ2, µ3) = (2,−2.5,−1), (ψ1, ψ2, ψ3) = (1.2,−1, 0)

and β = −1.5. We fitted the disease model on verified samples in a logistic

form with explanatory variables X and V , while the working verification

model was another logistic model with V as the IV. Under this setting,

the verification model was correctly specified, with Y and V being weakly

correlated (the correlation coefficient between them is 0.16).

(II). Similar to scenario I, but with (µ1, µ2, µ3) = (2,−2.5,−1), (ψ1, ψ2, ψ3) =

(2,−1,−1) and β = 0. Under this setting, the verification model was incor-

rectly specified since ψ3 6= 0, with the correlation coefficient 0.16 between

Y and V , and 0.19 between R and V .

(III). V ∼ N(0, 1), (µ1, µ2, µ3) = (2,−2.5,−1), (ψ1, ψ2, ψ3) = (1,−1, 0) and β =

−1.5. We fitted the model similarly as in Scenario I, except that the working

disease model as sign(V )|V |1/3 instead of V . Under this setting, the working

disease model was incorrectly specified, with Y and V being moderately

correlated (the correlation coefficient between them is 0.28).

(IV). V ∼ N(0, 1), (µ1, µ2, µ3) = (0.5,−2.5,−1.5), (ψ1, ψ2, ψ3) = (2,−1,−0.8)

and β = −2. We fitted the model similarly as in Scenario I. Under this

setting, the working verification model was incorrectly specified, with Y

and V being weakly correlated.
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(V). V ∼ N(0, 1), (µ1, µ2, µ3) = (0.5,−2.5,−1), (ψ1, ψ2, ψ3) = (2,−1, 0.8) and

β = −2. We fitted the model similarly as in Scenario I except that the work-

ing disease model as sign(V )|V |1/3 instead of V . Under this setting, both

the working disease model and the verification model were incorrectly spec-

ified, with Y and V being moderately correlated (the correlation coefficient

between them is 0.32).

(VI). We generated more covariates: V1 ∼ Bernoulli(0.5), V2 ∼ N(0, 1) and V3 ∼
unif(0, 1). (µ1, µ2, µ3, µ4, µ5)=(0.6,−1.5, 0.5,−0.5, 0.5), (ψ1, ψ2, ψ3, ψ4, ψ5)

= (1,−1, 0.5,−0.5, 0.5) and β = −2. We fitted the working verification

model using V3 as IV since it was less correlated with R than other covari-

ates.

Table 1 summarizes some design statistics for each scenario, including whether

the working models are correctly specified, verification proportion, disease preva-

lence and the true AUC.

We considered 200 and 2,000 samples for each scenario and generated 500

data sets for each case. Four additional estimators were compared to the proposed

estimator: Âig, Âf , Âv and Âfp, which stand for the AUC estimators using the

ignorable assumption (β = 0 and without using IV), using full data, using verified

data only and using a full parametric disease model (Liu and Zhou (2010)),

respectively. We calculated Âig and Âfp in the same way as Âiv, therefore, these

estimators differs in the estimation of parameters φ and/or µ.

The estimator Âf was treated as the gold standard. A summary of the

simulation results is presented in Table 2, where the bias (defined as the mean

difference with Âf ), standardized sample variance (Svar) and standardized mean

square error (SMSE) are displayed for the six estimators considered. In Table

2, SVar (SMSE) of an estimator is defined as its variance (MSE) divided by

the variance (MSE) of Âf , and SMSE is also known as relative efficiency. The

median value of the estimated asymptotic variances for the proposed estimators

are compared with the Monte Carlo sample variances in Table 3. The following

conclusions can be made from the simulation results.

1. When the verification model is correctly specified (Scenarios I and III), the

proposed Âiv estimator achieves the best or almost the best performance.

Specifically, for nonignorable cases, Âiv has the smallest bias and smallest

variance. Also, Âiv achieved a closer coverage probability to the nominal

level than Âv, Âig and Âfp.



AUC ESTIMATION UNDER NONIGNORABLE VERIFICATION BIAS 2159

Table 1. Summary statistics for the simulation design. Notation: for working disease
model, W – weak misspecification, i.e., disease model is misspecified as having a logistic
form, IC – incorrect specification, not only disease model is misspecified as having a
logistic form but also the covariates effect misspecified, for working verification model,
C – correct specification, the selected instrument variable (IV) is indeed an IV, IC –
incorrect specification, indicates that the selected IV is not an IV, I – ignorable scenario,
and NI – nonignorable scenario.

Scenario I II III IV V VI
Working disease model W W IC W IC W
Working verification model C IC C IC IC IC
Ignorable/Nonignorable NI I NI NI NI NI
Verification proportion 0.33 0.21 0.37 0.30 0.30 0.33
Prevalence 0.26 0.26 0.21 0.42 0.42 0.29
AUC 0.81 0.81 0.79 0.79 0.79 0.71

2. Âiv is robust to the disease model (Scenario III). In the disease model, the

true covariate’s effect is cubic while we fit a linear covariate’s effect. Âiv is

superior to Âv, Âig and Âfp.

3. When the verification model is incorrectly specified (Scenarios II, IV, V and

VI), in the sense of bias or variance, Âiv does not always outperform other

estimators, but in the sense of MSE and coverage probability, it outperforms

others. Moreover, the proposed estimator generally has similar bias as Âfp
but is more efficient than Âfp.

4. Further extensive simulation is reported in the supplementary document,

including scenarios similar to Scenario III but with different verification

proportion and different disease prevalence. The proposed estimator Âiv is

superior in these studies too.

The asymptotic variance of Âiv is compared with its sample variance in Table

3. When the verification model is correct (scenario I and III), the asymptotic

variance is very close to the sample variance: When the verification model is in-

correctly specified, the asymptotic variance is slightly biased. This indicates that

the variance estimation is slightly sensitive to the specification of the verification

model.

4.2. Example

We used the Alzheimer’s Disease (AD) data set collected by the National

Alzheimer’s Coordinating Center (NACC) to illustrate the proposed method.

Liu and Zhou (2010) have analysed an earlier version of this data; the current
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Table 2. Monte Carlo bias, standardized variance (SVAR), standardized mean squared
error (SMSE) and 95% coverage probability (CP) of AUC estimators in simulation study.
Âf , Âiv, Âig, Âv and Âfp stand for the AUC estimators using full data, using IV method,
using ignorable assumption (missing at random), using verified data only and using a full
parametric disease model (Liu and Zhou (2010)), respectively. SVar and SMSE stand
for the standardized variance, and standardized MSE, respectively. SVar (SMSE) of an
estimator is defined as its variance (MSE) divided by the variance (MSE) of Âf . Note
that SMSE is also known as relative efficiency and CP for each AUC estimator was
calculated using the median of the sample estimators of the corresponding asymptotic
variances.

n = 200 n = 2,000
Scenario Estimators Bias SVar SMSE CP Bias SVar SMSE CP

Âf 0.000 1.000 1.000 0.95 0.000 1.000 1.000 0.95

Âiv −0.006 2.997 3.046 0.93 −0.009 3.167 3.973 0.92

I Âfp −0.064 11.949 15.276 0.74 −0.067 63.574 104.644 0.51

Âig −0.027 5.138 5.712 0.85 −0.018 4.132 6.997 0.80

Âv −0.062 3.449 6.615 0.80 −0.059 3.080 34.647 0.10

Âf 0.000 1.000 1.000 0.95 0.000 1.000 1.000 0.95

Âiv −0.003 4.551 4.557 0.92 −0.017 3.833 6.588 0.88

II Âfp −0.007 8.766 8.811 0.84 −0.010 14.601 15.585 0.82

Âig 0.006 5.748 5.776 0.91 0.001 5.773 5.778 0.91

Âv −0.029 4.632 5.293 0.89 −0.032 4.871 13.968 0.69

Âf 0.000 1.000 1.000 0.95 0.000 1.000 1.000 0.96

Âiv −0.004 2.307 2.317 0.95 −0.009 2.292 2.970 0.93

III Âfp −0.059 9.031 11.478 0.72 −0.058 45.982 71.221 0.80

Âig −0.015 3.589 3.757 0.88 −0.019 3.424 6.148 0.80

Âv −0.062 2.907 5.657 0.79 −0.063 2.525 31.856 0.10

Âf 0.000 1.000 0.95 1.000 0.000 1.000 1.00 0.95

Âiv 0.020 6.065 6.434 0.93 0.035 6.196 18.72 0.72

IV Âfp −0.038 11.557 12.972 0.82 −0.022 32.353 37.08 0.77

Âig −0.044 9.874 11.714 0.82 −0.040 8.482 24.95 0.63

Âv −0.055 5.837 8.788 0.86 −0.056 4.992 36.91 0.34

Âf 0.000 1.000 1.000 0.95 0.000 1.000 1.00 0.95

Âiv 0.016 6.520 6.760 0.91 0.034 7.604 19.44 0.70

V Âfp −0.034 11.368 12.486 0.83 −0.039 47.822 63.30 0.62

Âig −0.041 9.568 11.203 0.83 −0.037 7.928 22.08 0.67

Âv −0.055 5.837 8.788 0.86 −0.056 4.992 36.91 0.37

Âf 0.000 1.000 1.000 0.95 0.000 1.000 1.00 0.96

Âiv −0.049 5.109 6.756 0.89 −0.041 4.875 16.24 0.79

VI Âfp −0.049 6.659 8.313 0.83 −0.044 10.281 23.87 0.75

Âig −0.053 6.777 8.741 0.83 −0.044 5.807 18.93 0.82

Âv −0.079 3.712 8.070 0.83 −0.069 3.671 36.08 0.52

data includes the Uniform Data Set (UDS) data up through the September 2014

freeze. Here we want to study the diagnostic ability of the medical test Mini

Mental State Examination (MMSE) in detecting AD. MMSE ranges from 0 to

30, with lower scores corresponding to larger risks of having cognitive impairment.

The gold standard for AD is based on a primary neuropathological diagnostic test
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Table 3. Variance comparison. SV , AV stand for sample variance and the median of
estimated asymptotic variance for Âiv.

Scenario n 1,000× SV 1,000×AV
I 200 3.7 3.5

2,000 0.4 0.3
II 200 5.6 5.3

2,000 0.4 0.5
III 200 3.2 3.1

2,000 0.3 0.3
IV 200 6.2 5.0

2,000 0.6 0.6
V 200 6.7 5.0

2,000 0.7 0.6
VI 200 7.3 7.9

2,000 0.7 0.9

(NPTH), which requires brain autopsy. Some patients or their family do not wish

a brain autopsy. These are the main reasons for missing disease status, and only

about 10% patients have been verified. Originally, there were several values of

NPTH, for example, “Normal”, “definitely AD”, “probably AD”, “possible AD”,

etc; we define AD as “definitely AD” (Y = 1) and treat others as control sample

(Y = 0). Five covariants, AGE, SEX, marriage status (MRGS), Depression

(DEP) and Parkinson’s disease (PD) were considered; these are known to be

related to AD or the disease verification. After removing missing values in MMSE

and covariants, 52,673 samples remain, in which 5,707 samples were verified by

autopsy. In the verified sample, 55% were AD. We also categorized MRGS into

two groups; coding “never married” as 1 and the others as 0. The boxplots for

MMSE are shown in Figure 1, which shows that lower MMSE scores are more

likely to be associated with AD.

We fitted a logistic regression model as the disease model for verified samples:

Pr(Yi = 1|Xi,VVV i, Ri = 1) =
1

1 + exp(µ1 + µ2Xi +µµµ′3VVV i)
, (4.1)

where VVV represents the vector of covariates (AGE, SEX, MRGS, PD, DEP), R

indicates whether X is observed, and Y and X stand for MMSE and true disease

status, respectively. The verification model is the logistic regression model

πi = Pr(Ri = 1|Xi,VVV i, Yi) =
1

1 + exp(ψ1 + ψ2Xi +ψψψ′3VVV 1i + βYi)
, (4.2)

where V1 are the covariates without the selected IV. For demonstration purposes,

we simply select AGE as the instrument variable, so VVV 1 stands for the reduced
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Table 4. Coefficients, Standard error (SE) and p-values.

Disease model Verification model
coefficient SE P-value coefficient SE P-value

Intercept 1.068 0.244 < 0.001 2.358 0.222 < 0.001
MMSE (X) −0.079 0.003 < 0.001 0.043 0.008 < 0.001
MRGS −0.125 0.068 0.065 0.203 0.054 < 0.001
PD −0.994 0.107 < 0.001 −0.994 0.107 < 0.001
SEX −0.309 0.064 < 0.001 −0.755 0.036 < 0.001
AGE 0.005 0.003 0.085 —
DEP −0.076 0.086 0.375 0.195 0.053 < 0.001
AD (Y) — −3.777 2.306 0.104

covariate vector (MRGS, SEX, PD, DEP). In the Supplementary Material, we

extend our study by using different variables as IV. Most of the studies lead to

nonsignificant β or non-convergence, which indicates that there may be no good

IV in practice.

The estimated parameters, standard errors and their p-values are listed in

Table 4; the p-value was decided by a Wald-statistic and the asymptotic vari-

ances calculated according to Lemma 1.1 in the Supplementary Material. All

parameters except DEP in the diseased model are significant. The nonignorable

parameter β is estimated to be −3.777 (two-side p-value is about 0.10), which in-

dicates that the missing mechanism may be nonignorable. β = −3.777 indicates

that the odds of verification for diseased individuals is about exp(3.78)
.
= 43

units larger than it for non-diseased individuals with the same values of (MRGS,

SEX, PD, DEP).

The AUC value calculated using only verified samples is 0.699 (95% Con-

fidence Interval (CI): 0.686, 0.713), and the proposed estimators Âiv = 0.786

(95% CI: 0.754, 0.818). The 95% CIs were constructed using the normal distri-

bution. There is a significant difference between our AUC estimators and the

AUC calculated only using verified samples (Wald test, p-value < 0.001). The

full parametric model in this example is not convergent and, based on our study,

using AGE as IV is just for an illustrative example, there may not be good choices

of IV here.

5. Concluding Remarks

As it is hard to specify a verification model correctly, sensitivity analyses,

as suggested by Rotnitzky, Faraggi and Schisterman (2006), can be used to com-

plement the non-robustness. One could also consider nonparametric techniques
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−

Figure 1. Boxplots for MMSE. “All” – using all samples, “Verified” – using all verified
samples, “AD” – using verified AD samples, and “AD-free” – using verified AD-free
samples.

such as kernel regression models for the disease model. Bayesian modeling cou-

pled with sensitivity analyses in the context of missing data (Daniels and Hogan

(2008)) can also be considered for further analyses. This can be a topic of future

study.

The proposed method is based on the instrumental variable (IV) assump-

tion. We used the variable that had the lowest marginal correlation with R (the

verification status) as the IV in our simulation study, which led to good per-

formance. This method is not ideal but is simple. Selecting IV is not easy. A

good practicable example of IV choice was introduced by Wang, Shao and Kim

(2014) for a study of a data set from the Korean Labor and Income Panel Survey

(KLIPS). We need more future studies on choosing IV.

After estimating the verification probability and disease probability for each

individual, other types of AUC estimators can be used, for example, the other

AUC estimators introduced in Alonzo and Pepe (2005) or Liu and Zhou (2010),

such as using full imputation (FI) method or mean score imputation (MSI)

method instead of inverse probability weighting (IPW) method. The proposed

Instrumental Variable method can also be used for FL and MSI. Liu and Zhou

(2010) noticed that FI and MSI method generally performed better than the IPW

method. One probable reason is that for the IPW method, there are 1/π̂i terms,
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and this may produce extreme values for the AUC estimator and its correspond-

ing asymptotic variance estimator if the π̂i are small. In addition to AUC, the

proposed method can be easily extended to the estimation of the other indexes

related to ROC curve, such as sensitivity, specificity, and the partial area under

the curve (McClish (1989)) as well as the modified area under the Curve (Yu,

Chang and Park (2014)).

Supplementary Materials

Supplementary material is available online at http://www3.stat.sinica.edu.

tw/statistica/, including proofs of Theorem 3.1, (3.3) and (3.5), and the results

from extra numeric studies. The source codes for some of the simulation studies

are available on https://github.com/wbaopaul/AUC-IV.
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