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Abstract: The regularization approach for variable selection was well developed for

a completely observed data set in the past two decades. In the presence of missing

values, this approach needs to be tailored to different missing data mechanisms.

In this paper, we focus on a flexible and generally applicable missing data mech-

anism. That contains both ignorable and nonignorable missing data mechanism

assumptions. We show how the regularization approach for variable selection can

be adapted to the situation under this missing data mechanism. The computational

and theoretical properties for variable selection consistency are established. The

proposed method is further illustrated by comprehensive simulation studies and

data analyses.
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1. Introduction

Variable selection is an important topic in regression analysis. In the past

two decades, researchers investigated a series of regularization approaches for

variable selection and developed both theoretical and computational properties.

The two mainstream techniques are the LASSO (Least Absolute Shrinkage and

Selection Operator; Tibshirani (1996)), or the L1-penalization, and the noncon-

vex penalizations such as SCAD (Smoothly Clipped Absolute Deviation; Fan and

Li (2001)) and MCP (Minimax Concave Penalty; Zhang (2010)). The LASSO

owns its popularity largely due to its computational convenience, but it induces

estimation bias for parameters with large absolute values. Using a nonconvex

penalty, one has to minimize a nonconvex function, which raises extra compu-

tational challenges, but the intrinsic estimation bias of the LASSO can be elim-

inated, and corrected. With completely observed data, it is shown that, under
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regularity conditions, both of the two mainstream techniques achieve variable

selection consistency properties; however, when missing values are present the

appropriate regularization approaches are relatively limited in the literature. In

this paper, we explore how to use both techniques for variable selection in the

presence of missing data.

In the missing data literature, one often defines an indicator R, with R =

1 for a completely observed subject, and R = 0 otherwise. The probability

distribution function of R conditional on all the data, termed the missing data

mechanism (Little and Rubin (2002)), should be incorporated in the analysis

compensating for the effect of missing data. There are various missing data

mechanism assumptions. Briefly, if it only depends on the completely observed

data, the mechanism is called missing at random (MAR); otherwise, it is called

missing not at random, or nonignorable. The likelihood-based methods, usually

under the MAR assumption, can be derived for variable selection. Most of the

currently existing literature falls in this category. For example, Ibrahim, Zhu

and Tang (2008) developed likelihood methods for the computation of model

selection criteria based on the output of the EM algorithm. They derived a

class of information criteria for missing data problems. Garcia, Ibrahim and Zhu

(2010) considered the regularization approach using SCAD or adaptive LASSO

and adopted the EM technique to formulate the observed likelihood for variable

selection in a low-dimensional setting.

In general, likelihood-based methods need to specify a parametric distribu-

tion of the missing data mechanism. One has to be cautious about this type of

assumption. First, it is well known that a parametric assumption is very sensitive

and may easily induce a misspecified model. If this happens, it prompts biased

estimation and inaccurate selection results. Second, although MAR occurs in

some applications, in many situations there is a suspicion that the missing data

mechanism is nonignorable (Ibrahim, Lipsitz and Chen (1999)). For nonignor-

able missing data, applying methods derived under the MAR assumption may

result in serious estimation bias and incorrect conclusions. Third, the situation

with nonignorable missing data is generally more challenging to deal with. One

notorious feature of nonignorable missingness is the identifiability issue (Robins

and Ritov (1997)). In theory, one has to first carefully study the model identifi-

cation conditions before doing any statistical analyses. Refer to Kim and Shao

(2013) for the most recent developments of nonignorable missing data.

Due to the complexity of the missing data mechanism assumptions, in reality

one can carry out the sensitivity analysis to validate the analysis results. The
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other preferred and ideal remedy is to impose an assumption as flexible and

generally applicable as possible. This type of assumption usually does not specify

a parametric model, and is often called an unspecified missing data mechanism.

The works of Liang and Qin (2000); Tang, Little and Raghunathan (2003); Shao

and Zhao (2013); Zhao and Shao (2015); Fang, Zhao and Shao (2017); Zhao

(2017) follow this direction.

In this paper, our motivation is to conduct variable selection with missing

data, and more interestingly with nonignorable missing data. Under the high

dimensional setting, we consider the generalized linear model (GLM; McCullagh

and Nelder (1989)), which can be applied to either continuous or categorical

data. We impose an unspecified missing data mechanism assumption, which is

flexible and generally applicable and robust for the potential model misspeci-

fication. Besides MAR cases, it contains many nonignorable scenarios. Under

this assumption, although not all parameters are identifiable, a pseudo-likelihood

function that produces an estimator of a dispersion-scaled version of the origi-

nal parameter is developed. We show that the variable selection can be carried

out by penalizing the aforementioned pseudo-likelihood through an estimable

dispersion-scaled parameter. Due to the messy missing data and the flexible

mechanism assumption, we may not fully retrieve all the information contained

in the original data, hence are not able to estimate all the unknown parameters.

However, the key idea is that our regularization procedure can still be carried

out for the purpose of variable selection, based on the pseudo-likelihood function

and the estimable dispersion-scaled parameter.

We propose algorithms to efficiently optimize the penalized pseudo likelihood

for both the LASSO and nonconvex penalties. This is not a trivial task due to

the complicated U-statistic structure in the pseudo-likelihood function. For the

LASSO penalty, we find that, the objective function can be transformed to the

penalized likelihood function for a standard penalized logistic regression model

without the intercept term after some data manipulation. More importantly, for

the nonconvex penalties, we develop an iterative algorithm based on the trick we

used in the LASSO and the local linear approximation (LLA; Zou and Li (2008);

Fan, Xue and Zou (2014)).

We show that, under the high dimensional setting, variable selection con-

sistency can be achieved with some mild regularity conditions. The challenges

in this are from the complicated pairwise U-statistic structure in the pseudo-

likelihood, and from the nonconvex penalties.

There is scarce literature on high dimensional problems with missing data.
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Loh and Wainwright (2012) considered a linear model with covariates that may

have missing values, and studied the theoretical properties of the estimators

using a regularization approach via the LASSO. More recently, Ning, Zhao and

Liu (2017) showed some results on parameter estimation in a similar context,

but our paper is distinctively different from theirs.

The remainder of the paper is organized as follows. In Section 2, we provide

a brief review of the regularization approach in the case of no missing data,

and then introduce our proposed penalized pseudo-likelihood. The algorithms

designed for both the LASSO and nonconvex penalties are presented in Section 3.

Section 4 contains the theoretical results on variable selection consistency, Section

5 includes the numerical results illustrating the finite sample performance of our

proposed method and its comparison with some existing methods. In Section 6,

we conclude our paper with a discussion. Technical details, some extra simulation

studies and two data analyses are in the online supplementary material.

2. Methodology

2.1. Brief review in the case of no missing data

Assume that we have a collection of independent observations {yi,xi}, i =

1, . . . , N , where (yi,xi)’s are identically distributed realizations of (Y,X). We

let Y denote the scalar response variable, and X be a p-dimensional covariate

variable. Assume that, with a canonical link, the conditional distribution of Y

given X belongs to a generalized linear model (GLM; McCullagh and Nelder

(1989)) with the density

p(Y |X;θ) = exp(φ−1{Y η − b(η)}+ c(y;φ)), (2.1)

where b and c are known functions, η = α + βTX, θ = (α,βT , φ)T , and φ

represents the positive dispersion parameter.

To carry out variable selection through the regularization approach, we ob-

tain the minimizer of the penalized likelihood function

− 1

N

N∑
i=1

log p(yi|xi;θ) +

p∑
j=1

pλ(|βj |), (2.2)

where pλ(t) represents a penalty function, and λ ≥ 0 is the tuning parameter.

Here the penalty term is only applied to β. The variable selection can be achieved

without estimating the dispersion parameter φ.

In the LASSO penalty, pλ(t) = λ|t|, and p′λ(t) = λ for t > 0. Due to the
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convexity of the LASSO, the coordinate descent algorithm Friedman, Hastie and

Tibshirani (2010) is very efficient in minimizing (2.2). Theoretically, a strong

irrepresentable condition is necessary for the LASSO to be selection consistent

(Zhao and Yu (2006)).

In Fan and Li (2001), the authors advocated penalty functions that provide

estimators with three properties: sparsity, unbiasedness and continuity. Clearly,

the L1-penalty does not satisfy the unbiasedness property. In this class of non-

convex penalty functions, two frequently used representatives are the SCAD and

the MCP. The SCAD (Fan and Li (2001)) is

p′λ(t) = λ1(t ≤ λ) +
(aλ− t)+

a− 1
1(t > λ),

for some a > 2 and t > 0, where 1(·) is the indicator function; the MCP (Zhang

(2010)) is

p′λ(t) =
(aλ− t)+

a
,

for some a > 0 and t > 0. Numerous papers have been devoted to study the

statistical properties of the resulting estimators, for instance, Fan and Lv (2010,

2011) and the references therein. Computation for this approach is much more

involved, because the resulting optimization problem (2.2) is nonconvex and may

have multiple local minimizers. Fan and Li (2001) proposed the local quadratic

approximation algorithm as a unified method for optimizing the nonconvex pe-

nalized likelihood, while Zou and Li (2008) worked out a local linear approx-

imation (LLA) algorithm that turns a nonconvex penalization problem into a

series of reweighed L1-penalization problems. Both of them are relevant to the

majorization-minimization (MM) principle (Hunter and Lange (2004)).

2.2. Variable selection with missing data

We use the variable R indicating whether the data from each subject are

completely observed. Without loss of generality, we take the first n subjects

as fully observed, ri = 1, i = 1, . . . , n, and the remaining N − n subjects may

contain missing components, ri = 0, i = n+ 1, . . . , N .

The foremost difficulty dealing with missing data is the assumption on the

missing data mechanism, Pr(R = 1|Y,X). With a parametric model for it, the

likelihood based methods can be developed for model selection, especially for

the MAR case Ibrahim, Zhu and Tang (2008); Garcia, Ibrahim and Zhu (2010).

However, there are important limitations to adopting this approach. Since the

underlying truth of the missing data mechanism is unknown and its assumption
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is unverifiable, one looks for an assumption that is robust and as flexible and

generally applicable as possible.

We impose the general assumption

Pr(R = 1|Y,X) = s(Y )t(X), (2.3)

where s and t are some functions, not necessarily known or specified. We do not

impose any concrete form on them. We assume 0 < Pr(R = 1) < 1 throughout.

Our assumption is very flexible and it includes many specific scenarios com-

monly seen in the missing data literature. Thus with Y having missing values

and X fully observed is a special case of (2.3) if s = constant; the nonignorable

nonresponse assumption in Tang, Little and Raghunathan (2003) is also a spe-

cial case of (2.3) if t = constant. Situations included in (2.3) can also allow the

covariate X to have missing values, and both response Y and covariate X to

have missing values.

Chan (2013) considered the problem of nuisance parameter elimination in a

proportional likelihood ratio model under this assumption and Zhao and Shao

(2017) studied identifiability in a GLM with non-canonical link under this as-

sumption. Both of them only considered the classic low-dimensional statistical

models. More recently, Ning, Zhao and Liu (2017) studied the parameter esti-

mation problem and an associated inference procedure under this assumption in

a high-dimensional setting. Here, we focus on the variable selection problem in a

high-dimensional GLM and there are challenges due to the high dimensionality,

compared to Chan (2013) and Zhao and Shao (2017). In a high-dimensional

framework, Ning, Zhao and Liu (2017) mainly addressed the estimation problem

that needs different analytic tools than we do.

Because of the complexity of the missing data structure and the presence of

unknown functions s and t, we propose a pseudo likelihood function. Note that

p(Y |X, R = 1) =
Pr(R = 1|Y,X)

w(X)
p(Y |X), (2.4)

where w(X) =
∫

Pr(R = 1|Y,X)p(Y |X)dY = Pr(R = 1|X). Under (2.3),

Pr(R = 1|Y,X)/w(X) in (2.4) is a multiplier of anX-only function s(X)/w(X),

and a Y -only function t(Y ). Restricting attention to completely observed sub-

jects with subscripts ranging from {1, . . . , n}, decomposing {y1, . . . , yn} as rank

statistics and order statistics, and conditioning on the order statistics {y(1), . . . ,

y(n)}, we have the conditional likelihood for θ as

p(y1, . . . , yn|r1 = · · · = rn = 1,x1, . . . ,xn, y(1), . . . , y(n)).
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After some derivations, it can be shown that this is

Πn
i=1p(yi|xi;θ)∑

c Πn
i=1p(y(i)|xi;θ)

, (2.5)

where the summation in the denominator covers all possible permutations of

{1, . . . , n}.
A nice feature of this method is that all s, t and w functions are all canceled

out through conditioning. This idea was first outlined in Kalbfleisch (1978),

but in practice it encounters a computational burden with an order of n! (Liang

and Qin (2000)). To reduce the computational burden, Liang and Qin (2000)

advocated the pairwise pseudo likelihood∏
1≤i<j≤n

p(yi|xi;θ)p(yj |xj ;θ)

p(yi|xi;θ)p(yj |xj ;θ) + p(yi|xj ;θ)p(yj |xi;θ)
. (2.6)

Under the GLM assumption, the negative part of the log-version of (2.6),

after adding a normalizing constant, can be written as

L(γ) =
2

n(n− 1)

∑
1≤i<j≤n

log(1 + exp(−yi\jxTi\jγ)), (2.7)

where yi\j = yi− yj , xi\j = xi−xj and γ = β/φ. To perform variable selection,

we propose to minimize the penalized pairwise pseudo likelihood

L(γ) +

p∑
j=1

pλ(|γj |) =
2

n(n− 1)

∑
1≤i<j≤n

log(1 + exp(−yi\jxTi\jγ)) +

p∑
j=1

pλ(|γj |),

(2.8)

and we denote the minimizer as γ̂. It can be seen that, the unpenalized com-

ponent L(γ) is a U-statistic, where even the original function b in the definition

of GLM disappears. We cannot estimate the whole unknown parameter θ itself,

but we can estimate a dispersion-scaled parameter γ = β/φ and we carry out

variable selection through this dispersion-scaled parameter.

We turn to the computational and theoretical properties of variable selection

through the regularization approach (2.8).

3. Computational Algorithms

The unpenalized component L(γ) in (2.8) is a U-statistic and it is not trivial

to optimize. In this Section, we propose tractable and efficient algorithms to

minimize (2.8) for the LASSO and nonconvex penalties. We also discuss how to

choose the regularization tuning parameter λ.
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3.1. Algorithm for the LASSO

The unpenalized component L(γ) in (2.8) can be written as

L(γ) =
2

n(n− 1)

∑
1≤i<j≤n

log(1 + exp(−yi\jxTi\jγ))

=
2

n(n− 1)

∑
1≤i<j≤n

log(1 + exp(− sign(yi\j)|yi\j |xTi\jγ))

=
2m

n(n− 1)
· 1

m

m∑
k=1

log(1 + exp(wkv
T
k γ)) +

{
1− 2m

n(n− 1)

}
log(2),

where we let m denote the number of terms in the summation across 1 ≤ i < j ≤
n such that yi\j 6= 0. For example, when Y is continuous, m = n(n− 1)/2; when

Y is binary, m = n0n1, where n0 is the total number of 0’s and n1 is the total

number of 1’s, and n0 + n1 = n. Also, we let sign(·) denote the sign function,

and we define wk = − sign(yi\j) and vk = xi\j |yi\j | for k = 1, . . . ,m.

It can be seen that, the essential component (1/m)
∑m

k=1 log{1+exp(wkv
T
k γ)}

in L(γ) can be treated as the negative log-likelihood function of a regular logistic

regression with response uk, covariate vk, without the intercept term, where

uk =

{
1 if yi\j > 0,

0 if yi\j < 0.

Therefore, to minimize (2.8) with the LASSO penalty, after the aforemen-

tioned data manipulation, it can be carried out directly as a regular penalized

logistic regression forcing the intercept to zero, with m subjects where the k-th

subject has response uk and covariate vk. In R, this procedure can be imple-

mented using the package glmnet Friedman, Hastie and Tibshirani (2010).

3.2. Algorithm for nonconvex penalties

With nonconvex penalties such as the SCAD and the MCP, we adopt a simi-

lar data manipulation technique as for the LASSO, and the LLA algorithm (Zou

and Li (2008); Fan, Xue and Zou (2014)). The LLA algorithm transforms a

concave regularization problem into a series of weighted L1-penalization prob-

lems by taking advantage of the nonconvex structure of the penalty functions

and the MM principle. Moreover, the MM principle provides a guarantee on

the convergence of the LLA algorithm to a stationary point of the nonconvex

penalization problem. In Fan, Xue and Zou (2014), the authors showed that, as

long as the problem is localizable and the oracle estimator is well behaved, one

can obtain the oracle estimator by using the one-step LLA. In addition, once the
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oracle estimator is obtained, the LLA algorithm produces the same estimator in

its following iterations. Here, we summarize the details of the LLA algorithm as

follows

1. Initialize γ̂(0) = (γ̂
(0)
1 , . . . , γ̂

(0)
p )T and compute the adaptive weight

ω̂(0) = (ω̂
(0)
1 , . . . , ω̂(0)

p )T = (p′λ(|γ̂(0)
1 |), . . . , p

′
λ(|γ̂(0)

p |))T .

2. For m = 1, 2, . . ., repeat the LLA iteration till convergence

2.a Obtain γ̂(m) by solving the optimization problem

γ̂(m) = arg min
γ

L(γ) +

p∑
j=1

ω̂
(m−1)
j |γj |

 , (3.1)

2.b Update the adaptive weight vector ω̂(m) with ω̂
(m)
j = p′λ(|γ̂(m)

j |).

In our numerical studies, the initial γ̂(0) is chosen as the LASSO solution.

In R, the major step (3.1) is implemented using the package glmnet.

3.3. Tuning parameter selection

How to select the regularization parameter λ is of paramount importance

in penalized likelihood estimation since λ governs the complexity of the selected

model. A large value of λ tends to choose a simple model, whereas a small value

of λ inclines to a complex model. The trade-off between the model complexity

and the prediction accuracy yields an optimal choice of λ. This is frequently done

by using a K-fold cross-validation. Specifically, we denote the data set indexed

by {1, . . . , n} as T , and cross validation training and test sets by T\T (κ) and T (κ),

for κ = 1, . . . ,K. Each time, for fixed λ and κ, we find the minimizer γ̂(−κ)(λ)

of L(γ) +
∑p

j=1 pλ(|γj |) using the training set T\T (κ). Finally, we choose λ to

be the minimizer of the cross validation function

CV(λ) =

K∑
κ=1

L(κ)(γ̂(−κ)(λ)),

where L(κ)(·) represents the evaluation of L(·) using the test set T (κ).

Alternatively one can select λ by an information criterion, for example, the

generalized information criterion for high-dimensional penalized likelihood pro-

posed by Fan and Tang (2013). They showed that the criterion with a uniform

choice of the model complexity penalty identifies the true model with probability

tending to 1 when the dimensionality grows at most exponentially fast with the

sample size.
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Although cross validation is computationally more expensive, it is less par-

simonious and can often yield more satisfactory performance in practice. In this

paper, we select the tuning parameter λ by the K-fold cross validation with

K = 5.

4. Theoretical Results

We present the theoretical conditions and properties of our method for vari-

able selection in the presence of missing data. For interpretation simplicity, we

only show the results for a family of nonconvex penalties, including the SCAD

and the MCP. Parallel results for the LASSO can be similarly developed, and

hence are skipped. The assumptions for the LASSO to be selection consistent are

stronger (Zhao and Yu (2006)). The results we present hold when the number of

covariates can grow at most exponentially fast with the sample size.

4.1. Notations

We need some notation. For positive sequences an and bn, we write an . bn,

if an/bn = O(1). We write an � bn if an . bn and bn . an. For a vec-

tor v = (v1, . . . , vp)
T ∈ Rp, we take supp(v) = {i: vi 6= 0}, |supp(v)| =

card{supp(v)} = ‖v‖0, and |A| is the cardinality of a set A. For 1 ≤ q <∞, the

Lq-norm is ‖v‖q = (
∑p

i=1 |vi|q)1/q. Let ‖v‖∞ = max1≤i≤p |vi| be the L∞-norm

and v⊗2 = vvT be the Kronecker product. For two vectors v,u ∈ Rp, we write

v ◦u = (v1u1, . . . , vpup)
T as the Hadamard product. For an n× p matrix M, its

matrix L1-norm is ‖M‖L1
= max1≤j≤p

∑n
i=1 |Mij |, the spectral norm is ‖M‖2 =√

λmax(MTM), the matrix L∞-norm is ‖M‖L∞ = max1≤i≤n
∑p

j=1 |Mij |, the el-

ementwise L1-norm is ‖M‖1 =
∑n

i=1

∑p
j=1 |Mij |, and the elementwise supreme

norm is ‖M‖∞ = maxi,j{|Mij |}. If M is squared and symmetric, we write

λmin(M) and λmax(M) as the minimal and maximal eigenvalues of M.

The pairwise pseudo likelihood in (2.8) can be written as

L(γ) =
2

n(n− 1)

∑
1≤i<j≤n

log(1 + exp(−yi\jxTi\jγ))

=
2

n(n− 1)

∑
1≤i<j≤n

{ψ(yi\jx
T
i\jγ)− yi\jxTi\jγ},

and its first and second order gradients are

∇L(γ) =
2

n(n− 1)

∑
1≤i<j≤n

{ψ′(yi\jxTi\jγ)yi\jxi\j − yi\jxi\j},
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∇2L(γ) =
2

n(n− 1)

∑
1≤i<j≤n

{ψ′′(yi\jxTi\jγ)y2
i\jx

⊗2
i\j},

where we have ψ(t) = log(1 + et), and hence ψ′(t) = et/(1 + et), ψ′′(t) = et/(1 +

et)2, ψ′′′(t) = et(1− et)/(1 + et)3. After some algebra, it can be verified that the

derivative functions are bounded, with |ψ′′(t)| ≤ 0.25 and |ψ′′′(t)| ≤ 0.1.

Throughout, we denote the penalty function as Pλ(γ) =
∑p

j=1 pλ(|γj |). We

take qλ(t) = pλ(t)− λ|t|, Qλ(γ) = Pλ(γ)− λ‖γ‖1, and L̃λ(γ) = L(γ) +Qλ(γ) =

L(γ) + Pλ(γ)− λ‖γ‖1. Therefore, the penalized objective function in (2.8) can

be written as

L(γ) + Pλ(γ) = L̃λ(γ) + λ‖γ‖1. (4.1)

We let θ∗ be the true value of parameter θ and γ∗ = (γ∗1 , . . . , γ
∗
p)T the true

value of γ. We define S = {j: γ∗j 6= 0} = {j: β∗j 6= 0}, and its complement

S̄ = {j: γ∗j = 0} = {j: β∗j = 0}, where s∗ = |S| < n. For any vector ξ ∈ Rp,
ξS = {vj : j ∈ S} ∈ Rs

∗
. For the p×p Hessian matrix ∇2L(γ), we write ∇2

SSL(γ)

as the corresponding s∗ × s∗ sub-matrix with restrictions to the coordinates in

S. Finally, the oracle estimator is defined as

γ̂O = arg min
supp(γ)⊂S,γ∈Rp

L(γ).

4.2. Assumptions

In this subsection, we present the main assumptions that are necessary to

derive our theoretical results. Our first assumption is on how to control the tail

behavior of Y given X.

Assumption 1. Assume that ‖X‖∞ < M < ∞, |XTγ∗| < B < ∞, and Y

given X satisfies for any δ > 0, Pr(|Y | ≥ δ|X) ≤ c1 exp(−c2δ), where c1 and c2

are positive constants.

This assumption is similar to the Assumption 3.7 in Ning, Zhao and Liu

(2017). As they verified, the sub-exponential tail assumption is satisfied for most

commonly used GLMs in practice, for example, linear regression with Gaussian

noise and logistic regression.

We need some conditions on the extreme sparse eigenvalues of a matrix M.

Definition 1. Let s be a positive integer. The largest and smallest s-sparse

eigenvalues of a p-dimensional squared matrix M are

ρ+(M, s) = sup(vTMv: ‖v‖0 ≤ s, ‖v‖2 = 1),

ρ−(M, s) = inf(vTMv: ‖v‖0 ≤ s, ‖v‖2 = 1).
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Since we frequently use ρ+(∇2L(γ∗), s) and ρ−(∇2L(γ∗), s) in the follow-

ing derivation, we abbreviate them as ρ+(s) = ρ+(∇2L(γ∗), s) and ρ−(s) =

ρ−(∇2L(γ∗), s).

Assumption 2. There exists positive constants ρ∗ and ρ∗, such that

ρ∗ ≤ ρ−(s) ≤ ρ+(s) ≤ ρ∗.

The sparse eigenvalue conditions are usually proposed to bound the es-

timation error in high dimensional problems. Similar concepts, although in

slightly different forms, have been defined and studied in Bickel, Ritov and

Tsybakov (2009); Ning, Zhao and Liu (2017); Yang, Ning and Liu (2014). In

the Appendix, we verify that Assumption 2 is satisfied with probability at least

1−C1p
2 exp(−C2n/s

2) for the most commonly used GLMs, linear regression with

Gaussian noise and logistic regression. The definitions of C1 and C2 are in the

Appendix.

The theory presented in this Section applies not only to the SCAD and the

MCP penalties, but also to a broad class of nonconvex penalties. We rely on

regularity conditions for penalty functions.

Assumption 3. For pλ(t) or qλ(t) or their first order derivatives

(a) qλ(−t) = qλ(t) for any t, and qλ(0) = 0;

(b) for t′ > t, there exist two constants ζ− ≥ 0 and ζ+ ≥ 0 such that

−ζ− ≤
q′λ(t′)− q′λ(t)

t′ − t
≤ −ζ+ ≤ 0;

(c) |q′λ(t)| ≤ λ for any t, and q′λ(0) = 0;

(d) q′λ(t) has bounded difference with respect to λ: |q′λ1
(t) − q′λ2

(t)| ≤ |λ1 − λ2|
for any t;

(e) There exist c7 ∈ [0, 1] and c8 ∈ (0,∞) such that p′λ(t) ≥ c7λ for t ∈ (0, c8λ];

(f) p′λ(t) = 0 once |t| > ν > c9

√
(log p)/n for some positive constant c9.

The assumptions presented here are similar to those of Wang, Liu and Zhang

(2014); Yang, Ning and Liu (2014). In (b), ζ− and ζ+ are two parameters that

control the concavity of qλ(t). Taking t′ → t in (b), we have q′′λ(t) ∈ [−ζ−,−ζ+],

which suggests that larger ζ− and ζ+ allow qλ(t) to be more concave. For example,

in SCAD we have ζ− = 1/(a− 1) with some a > 2 and ζ+ = 0, and in MCP we
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have ζ− = 1/a with some a > 0 and ζ+ = 0. In Wang, Liu and Zhang (2014),

they found that all these conditions hold for both SCAD and MCP.

In some of our following derivations, we also need a relation between the

concavity parameter ζ− and ρ−(∇2L, 2s∗), the smallest (2s∗)-sparse eigenvalue

of the Hessian matrix ∇2L.

Assumption 4. The concavity parameter ζ− defined in the conditions for the

penalty function satisfies

ζ− ≤ c10ρ−(∇2L, 2s∗),

with some constant c10 < 1.

Since in fact ζ+ ≤ ζ− and ρ−(∇2L, 2s∗) ≤ ρ+(∇2L, 2s∗), this restriction

implies that ζ+ ≤ c10ρ+(∇2L, 2s∗). Theoretically, for each penalty, these two

restrictions are satisfied by going through the verification of the Assumption 2

and appropriately choosing the t and ρ∗, ρ
∗ values.

4.3. Main results

Our main objective in this subsection is to show that the estimator from our

proposed method, γ̂, has the same support as the true value γ∗, also as β∗, thus

variable selection consistency holds. A sequence of results are presented. The

first result shows that the true value of γ, γ∗, minimizes E{L(γ)}, with L(γ) as

in (2.7). This result provides the intuition as to why L(γ) is a legitimate loss

function.

Lemma 1. We have E{∇L(γ∗)} = 0 and γ∗ is a global minimizer of E{L(γ)},
where E(·) is the expectation under the true parameter θ∗.

Now ∇L(γ) has a second-order U-statistic structure. Our second result con-

cerns the concentration inequality for U-statistics with a sub-exponential kernel

function. We only present the result for second-order U-statistics. In Ning, Zhao

and Liu (2017) and Yang, Ning and Liu (2014), the authors have a more general

concentration inequality.

Lemma 2. Let X1, . . . , Xn be independent random variables. Consider the U-

statistics of order 2,

Un =
2

n(n− 1)

∑
1≤i1<i2≤n

u(Xi1 , Xi2),

where E{u(Xi1 , Xi2)} = 0 for all i1 < i2. If there exist constants L1 and L2 such

that

Pr(|u(Xi1 , Xi2)| ≥ x) ≤ L1 exp(−L2x),
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for all i1 < i2 and all x ≥ 0, then

Pr(|Un| ≥ x) ≤ 2 exp

(
−min

{
L2

2x
2

8L2
1

,
L2x

4L1

}
k

)
,

where k = bn/2c is the largest integer less than n/2.

The proofs of these results are in the literature, see Ning, Zhao and Liu

(2017); Yang, Ning and Liu (2014), so they are omitted. The next result controls

the magnitude of ‖∇L(γ∗)‖∞.

Lemma 3. Given Assumption 1, we have

‖∇L(γ∗)‖∞ ≤ C3

√
log

p

n
,

with probability at least 1− δ1, where δ1 = 2p exp
(
−min

{
C4 log p, C5n

1/2(log p)1/2
})

,

C3 is a positive constant, C4 and C5 are constants detailed in the Appendix.

Based on the magnitude of ‖∇L(γ∗)‖∞, we can provide a bound for the

difference between the truth γ∗ and the oracle estimator γ̂O, as follows.

Lemma 4. Given Assumption 1 and that ‖∇2
SSL(γ∗)−1‖L∞ < C, log(n)(s∗)2√

(log p)/n = o(1), we have

‖γ̂O − γ∗‖∞ < 2CC3

√
log s∗

n
,

with probability at least 1 − δ2, where δ2 = 2s∗ exp
(
−min

{
C4 log s∗, C5n

1/2

(log s∗)1/2
})

+ c12p
−1 + c1n

−1.

We present a characteristic of our surrogate loss function that, for the coor-

dinates in S̄, the cardinality of the support set of γ1−γ2 is bounded by the true

number of “important” variables, which bounds the false positive magnitude.

Lemma 5. Given Assumption 3, if γ1 and γ2 are two p-dimensional sparse

vectors that satisfy ‖(γ1 − γ2)S̄‖0 ≤ s∗, then the surrogate loss function satisfies

the restricted strong convexity

L̃λ(γ2) ≥ L̃λ(γ1) +∇L̃λ(γ1)T (γ2 − γ1) +
ρ−(∇2L, 2s∗)− ζ−

2
‖γ2 − γ1‖22,

and the restricted strong smoothness

L̃λ(γ2) ≤ L̃λ(γ1) +∇L̃λ(γ1)T (γ2 − γ1) +
ρ+(∇2L, 2s∗)− ζ+

2
‖γ2 − γ1‖22.

Finally, we present our variable selection consistency result. We achieve this

goal by showing the support set of our proposed estimator and that of the oracle

estimator are the same as that of the true parameter.
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Theorem 1. If Assumptions 1, 2, 3, 4 hold, ‖∇2
SSL(γ∗)−1‖L∞ < C, where C is

a positive constant specified in Lemma 4, log(n)(s∗)2
√

(log p)/n = o(1), and the

weakest signal strength satisfies minj∈S |γ∗j | > 2ν > 2λ, where λ �
√

(log p)/n.

Then, when n is sufficiently large, we have γ̂ = γ̂O, and hence

supp(γ̂) = supp(γ̂O) = supp(γ∗),

with probability at least 1 − δ1 − δ2 − δ3, where δ1 is defined in Lemma 3, δ2 is

defined in Lemma 4, δ3 = C1p
2 exp(−C2n/(s

∗)2) comes from the Assumption 2.

Remark 1. In Theorem 1, the lower bound of the high probability comes from

those in Assumption 2, Lemma 3 and Lemma 4. To be more specific, us-

ing Lemma 4, in equation (1) in the proof, we show that |(γ̂O)j | > ν with

probability at least 1 − δ2; using Lemma 3, in equation (2) in the proof, we

have ‖∇L(γ̂O)‖∞ ≤ C3

√
(log p)/n with probability at least 1 − δ1; based on

the Assumption 2, we establish ‖γ̂(l) − γ∗‖2 ≤ c14ρ
−1
∗
√
s∗λ in equation (3)

with probability at least 1 − δ3. The final lower bound of the high probabil-

ity comes from the combination of the three and the fact that P (A
⋂
B
⋂
C) ≥

P (A)+P (B
⋂
C)−1 ≥ P (A)+P (B)+P (C)−2 ≥ 1−δ1−δ2−δ3 where A, B and

C are three arbitrary events, and P (A) ≥ 1− δ1, P (B) ≥ 1− δ2, P (C) ≥ 1− δ3.

Remark 2. With respect to the high dimensional set-up, we allow both log p,

the logarithm of the dimensionality, and s∗, the number of nonzero components in

the original parameter β, to grow with n. From Theorem 1 and its proof, the con-

dition log p and s∗ need to be satisfied is that log(n)(s∗)2
√

(log p)/n = o(1). This

implies that if s∗ = o(nς) for some 0 < ς < 1/4, then log p = o(n1−4ς/(log n)2).

Here we follow the most recent literature for the definition of high dimension-

ality. For example, in Fan and Lv (2011), the high dimensionality refers to

log p = O(nα), for some 0 < α < 1. Here we have log p = o(n1−4ς/(log n)2).

In the high-dimensional GLM that we consider, the number of covariates p can

grow at most exponentially fast with n, the sample size of the completely ob-

served subjects.

5. Simulation Studies

The objective of our simulation studies is two-fold. First, we evaluate the

finite sample performance of our proposed method by examining two commonly

used models: linear regression and logistic regression, and three representative

penalty functions: LASSO, SCAD and MCP. Second, we compare our proposed

method to two existing methods: one assuming that there is no missing data,
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Figure 1. Boxplots of #FP and #FN in simulation setting (S1). The three columns
represent the methods with no missing data, MAR and proposed, respectively. The first
and third rows show #FP while the second and fourth rows show #FN. The first two
rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.

and the other assuming the missing data mechanism is MAR.

In all of our eight simulation settings (S1)–(S8), we generated the covariate

X from p-dimensional N(0,Σ), where Σij = ρ|i−j|, and we considered ρ ∈
{0, 0.5}. Here b(η) = η2/2 corresponds to linear regression and b(η) = log(1+eη)

corresponds to logistic regression.

Our simulation settings (S1)–(S4) were as follows:

(S1): b(η) = η2/2, with η = α + βTX, α = 0, β = (3, 1.5, 0.5, 0, . . . , 0)T , the
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Figure 2. Boxplots of #FP and #FN in simulation setting (S2). The three columns
represent the methods with no missing data, MAR and proposed, respectively. The first
and third rows show #FP while the second and fourth rows show #FN. The first two
rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.

dispersion parameter φ = 1, s∗ = 3, p = 8 and N = 200. The missing data

mechanism Pr(R = 1|Y,X) = I{Y >γ1}I{X1>γ2} with γ1 = −3.3, γ2 = −0.4

for ρ = 0 and γ1 = −3.8, γ2 = −0.3 for ρ = 0.5.

(S2): same as (S1) except that p = 200, γ1 = −2.8, γ2 = −0.4 for ρ = 0 and

γ1 = −4.1, γ2 = −0.3 for ρ = 0.5.

(S3): b(η) = log(1 + eη), with η = α+βTX, α = 0, β = (2,−2, 1,−1, 0, . . . , 0)T ,

s∗ = 4, p = 8 and N = 500. The missing data mechanism Pr(R =
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Figure 3. Boxplots of #FP and #FN in simulation setting (S3). The three columns
represent the methods with no missing data, MAR and proposed, respectively. The first
and third rows show #FP while the second and fourth rows show #FN. The first two
rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.

1|Y,X) = I{X1>γ} · (2Y + 3)/5 with γ = −0.7 for either ρ = 0 or ρ = 0.5.

(S4): same as (S3) except that p = 500.

The purpose of the different choices of γ values was to guarantee that, in

each setting, the observed proportion was about 60% to 65%. We report the

results based on 100 replications in each setting, with false positive (FP) as the

one with true zero value but falsely estimated as nonzero; and false negative (FN)

as the one with true nonzero value but falsely estimated as zero. We counted the
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Figure 4. Boxplots of #FP and #FN in simulation setting (S4). The three columns
represent the methods with no missing data, MAR and proposed, respectively. The first
and third rows show #FP while the second and fourth rows show #FN. The first two
rows are for the case with ρ = 0 and the last two rows are for the case with ρ = 0.5.

number of false positives (#FP) and the number of false negatives (#FN) and

report them in a boxplot in each setting in Figures 1–4, respectively. We also

list the mean and standard deviation (SD) of #FP and #FN for each setting in

Tables 1–2 for linear regression and logistic regression, respectively.

Some conclusions can be reached from simulation studies (S1)–(S4). First,

in almost all scenarios, our proposed method outperforms the method assuming

MAR in terms of smaller FP and FN mean/median values. Second, in most

scenarios, the method with no missing data, treated as a gold standard, out-



2144 ZHAO, YANG AND NING

Table 1. Mean and standard deviation (SD; in parentheses) of #FP and #FN in simu-
lation settings (S1)–(S2). The proposed method is compared to two other methods: the
method with no missing data, which uses all simulated data; and the method assuming
MAR, which uses completely observed samples only.

Method Penalty
ρ = 0 ρ = 0.5

#FP #FN #FP #FN

p = 8

with no
missing data

LASSO 1.72 (1.57) 0 (0) 1.28 (1.39) 0 (0)
SCAD 0.92 (1.36) 0 (0) 0.62 (1.06) 0 (0)
MCP 0.73 (1.48) 0 (0) 0.45 (0.99) 0.01 (0.10)

MAR
LASSO 2.50 (1.53) 0 (0) 1.76 (1.56) 0 (0)
SCAD 1.30 (1.40) 0 (0) 0.93 (1.29) 0.01 (0.10)
MCP 1.04 (1.59) 0 (0) 0.68 (1.29) 0 (0)

proposed
LASSO 2.34 (1.39) 0 (0) 2.28 (1.33) 0 (0)
SCAD 0.98 (1.25) 0 (0) 0.98 (1.22) 0.02 (0.14)
MCP 0.78 (1.31) 0 (0) 0.63 (1.12) 0.04 (0.20)

p = 200

with no
missing data

LASSO 12.45 (9.90) 0 (0) 8.88 (9.54) 0 (0)
SCAD 3.72 (3.22) 0 (0) 1.41 (1.28) 0.02 (0.14)
MCP 1.38 (2.10) 0 (0) 1.09 (1.14) 0.01 (0.10)

MAR
LASSO 14.06 (10.99) 0.01 (0.10) 9.89 (8.57) 0 (0)
SCAD 6.57 (6.92) 0.01 (0.10) 7.13 (6.60) 0.14 (0.35)
MCP 2.23 (3.59) 0.05 (0.22) 2.42 (2.81) 0.19 (0.39)

proposed
LASSO 12.54 (6.83) 0.01 (0.10) 9.81 (5.84) 0 (0)
SCAD 3.91 (2.86) 0.01 (0.10) 4.35 (2.58) 0.04 (0.20)
MCP 1.96 (1.79) 0.03 (0.17) 2.71 (1.99) 0.10 (0.30)

performs our proposed method. Third, the nonconvex penalties almost always

perform better than the LASSO penalty in terms of variable selection, which is

consistent with the previous literature.

Under the assumption (2.3), the method assuming MAR produces biased

estimators and hence worse results for variable selection, while the proposed

estimator satisfies the variable selection consistency property and hence better

(than the MAR method) variable selection performance is expected. Our numer-

ical findings in (S1)–(S4) match well with the theory.

6. Discussion

One can observe that the proposed method only uses the information con-

tained in the completely observed samples. In applications, there may exist many

partially observed samples, for example, the covariate X values are always avail-

able. It is difficult to directly get these partially observed samples involved in

the current proposed approach. Some imputation techniques, for example Chen

and Wang (2013); Long and Johnson (2015); Liu et al. (2016), may be helpful
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Table 2. Mean and standard deviation (SD; in parentheses) of #FP and #FN in simu-
lation settings (S3)–(S4). The proposed method is compared to two other methods: the
method with no missing data, which uses all simulated data; and the method assuming
MAR, which uses completely observed samples only.

Method Penalty
ρ = 0 ρ = 0.5

#FP #FN #FP #FN

p = 8

with no
missing data

LASSO 2.09 (1.13) 0 (0) 2.42 (1.12) 0 (0)
SCAD 0.76 (1.09) 0 (0) 0.64 (1.10) 0 (0)
MCP 0.52 (1.00) 0 (0) 0.40 (0.96) 0 (0)

MAR
LASSO 2.72 (1.07) 0 (0) 2.56 (1.13) 0 (0)
SCAD 0.81 (0.92) 0 (0) 1.03 (1.34) 0.01 (0.10)
MCP 0.56 (1.07) 0 (0) 0.54 (1.01) 0 (0)

proposed
LASSO 2.32 (1.16) 0 (0) 2.47 (1.10) 0 (0)
SCAD 0.78 (1.08) 0 (0) 0.66 (1.09) 0.01 (0.10)
MCP 0.65 (1.12) 0 (0) 0.58 (1.12) 0.01 (0.10)

p = 500

with no
missing data

LASSO 20.16 (10.93) 0 (0) 19.94 (8.28) 0.04 (0.20)
SCAD 9.77 (8.15) 0 (0) 14.08 (9.40) 0.02 (0.20)
MCP 2.28 (2.83) 0 (0) 3.78 (3.95) 0.05 (0.26)

MAR
LASSO 27.91 (14.38) 0 (0) 27.65 (14.95) 0.46 (0.56)
SCAD 16.87 (8.02) 0.01 (0.10) 18.77 (8.85) 0.22 (0.48)
MCP 4.33 (3.31) 0.01 (0.10) 5.28 (4.28) 0.47 (0.70)

proposed
LASSO 23.09 (13.16) 0 (0) 24.62 (13.96) 0.39 (0.53)
SCAD 13.73 (5.88) 0 (0) 15.59 (6.76) 0.14 (0.38)
MCP 4.84 (3.08) 0.02 (0.14) 4.85 (3.49) 0.22 (0.50)

and this warrants further study. How to conduct high dimensional statistical

inference, especially the post-selection inference, is interesting but challenging

when the data contain missing values. This is beyond the scope of our paper and

certainly warrants further investigation.

Finally, we provide some practical guidance on using the proposed method.

In reality, the missing data mechanism assumption is unverifiable and its un-

derlying truth is unknown. Our assumption (2.3) is more flexible than a single

parametric assumption, and hence more generally applicable. From our data

analyses in Section 6, the proposed method and the method assuming MAR will

always have some agreement and some disagreement. Although we cannot reach

a definite conclusion in practice, our proposed approach and analysis may provide

some insight on the data, especially when the MAR assumption is suspect.

Supplementary Materials

The online supplementary material contains more detailed derivations of the
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results presented in this paper, some additional simulation results, and two data

analyses.
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