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Abstract: We study identification of parametric and semiparametric models with

missing covariate data. When covariate data are missing not at random, identi-

fication is not guaranteed even under fairly restrictive parametric assumptions, a

fact that is illustrated with several examples. We propose a general approach to

establish identification of parametric and semiparametric models when a covariate

is missing not at random. Without auxiliary information about the missingness

process, identification of parametric models is strongly dependent on model spec-

ification. However, in the presence of a fully observed shadow variable that is

correlated with the missing covariate but otherwise independent of the missingness

conditional on the covariate, identification is more broadly achievable, including in

fairly large semiparametric models. Special consideration is given to the generalized

linear models with the missingness process unrestricted. Under such a setting, the

outcome model is identified for a number of familiar generalized linear models, and

we provide counterexamples when identification fails. For estimation, we describe

an inverse probability weighted estimator that incorporates the shadow variable to

estimate the propensity score model, and we evaluate its performance via simu-

lations. We further illustrate the shadow variable approach with a data example

about home prices in China.

Key words and phrases: Identification, missing covariate data, missing not at ran-

dom, shadow variable.

1. Introduction

Missing data are commonly encountered in socioeconomic and biomedical

studies. Methods to account for missing outcome data in regression analysis fig-

ure prominently in the literature. Missing covariate data is also a longstanding

problem in applied research. In the early history of missing data analysis, Glasser

(1964), Afifi and Elashoff (1966), and Haitovsky (1968) studied the missing co-

variate problem in regression analysis; Edgett (1956), Anderson (1957), and Buck

(1960) studied the problem in the context of multivariate analysis. Rubin (1976)

formalized the concept of missing data mechanism as a separate process from
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the full data law of primary scientific interest. The missing data mechanism is

said missing at random, if it is independent of missing values after condition-

ing on the observed data, and it is said missing not at random otherwise. For

analysis of data missing at random, there currently exist a variety of methods

such as likelihood-based approaches (Dempster, Laird and Rubin (1977); Horton

and Laird (2001); Ibrahim (1990)), imputation and multiple imputation (Rubin

and Schenker (1986); Vach and Schumacher (1993); Rubin (1987)), and semi-

parametric methods (Zhao, Lipsitz and Lew (1996); Robins, Rotnitzky and Zhao

(1994)).

Missingness is often related to missing covariate values even after condi-

tioning on the observed data. Most of the aforementioned methods have been

adapted to deal with covariate data missing not at random. Comprehensive

reviews of statistical research on this topic include Ibrahim, Lipsitz and Chen

(1999), Little and Zhang (2011), and Ibrahim et al. (2005). Validity of exist-

ing estimation methods relies on first establishing identification. Identification

means that the parameter of interest is uniquely determined by the observed

data. Without identification, statistical inference is generally of limited interest

and may often be misleading. Under missingness at random, the joint distri-

bution of all variables of interest is identified without parametric assumptions

(Little and Rubin (2002)), but under missingness not at random, identification is

not always guaranteed. Fay (1986) and Ma, Geng and Hu (2003) used graphical

models to represent missingness mechanisms, and they studied identification for

longitudinal categorical variables that are missing not at random. In the context

of missing outcome data, Tang, Little and Raghunathan (2003), Wang, Shao and

Kim (2014), Zhao and Shao (2015), and Miao, Ding and Geng (2017) studied

identification of several parametric and semiparametric models, and presented

counterexamples when identification fails; Kott (2014), Wang, Shao and Kim

(2014), and D’Haultfoeuille (2010) noted that a fully observed shadow variable

can sometimes be used to improve identification under missingness not at ran-

dom, and we have shown identification for a class of location-scale models with

a shadow variable (Miao, Tchetgen Tchetgen and Geng (2015)). Such a vari-

able is associated with the potentially unobserved variable conditional on the

observed data, but independent of the missingness process conditional both on

the observed data and missing variable (Kott (2014)).

Identification is challenging for covariate data missing not at random, but

the literature on this topic is somewhat sparse. In this paper, we illustrate the

difficulty of identification of nonginorable missing covariate data in Section 2. We
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establish a general framework for studying identification with missing covariate

data in Section 3 and we illustrate with several parametric models. In Section

4, we use a shadow variable for the missing covariate to improve identification in

semiparametric models where the missingness process is unspecified, and we es-

tablish identification conditions of a large family of the generalized linear models.

In Section 5, we describe an inverse probability weighted estimator that incor-

porates the shadow variable to estimate the nonignorable missingness process.

We evaluate its performance via simulations in Section 6, and further illustrate

it with an example about home prices in China. In Section 7 we include some

discussions of the difference between the shadow variable and the instrumental

variable.

2. Potential Difficulty for Identification

Throughout, we let Y denote the fully observed outcome variable and (X,Z)

the vector of covariates with Z fully observed and X subject to missingness. We

let R denote the missing indicator of X: R = 1 if X is observed and R =

0 otherwise. For notational convenience, we suppress Z in this section. The

observed data include (Y,R) for all samples, and X only for those with R =

1. The goal of missing data analysis is to make inference about the full data

distribution pr(x, y) and the missingness process (or propensity score) pr(r =

1|x, y), based on the observed data distribution that is captured by pr(y, r = 0)

and pr(x, y, r = 1). Recovery of the full data law and the missingness process

from the observed data distribution is the fundamental identification challenge

in missing data problems.

Definition 1. For a model pr(x, y, r; θ) indexed by θ that may have a finite-

dimensional component as well as nonparametric components, the parameter θ is

said to be identified from the observed data if there exists a one-to-one mapping

between the parameter space Θ = {θ} and the space of observed data distribution

{pr(y, r = 0; θ),pr(x, y, r = 1; θ); θ ∈ Θ}.

When data are missing at random, R X|Y , the joint distribution pr(x, y, r)

is nonparametrically identified because pr(x, y, r = 0) = pr(x|y, r = 0)pr(y, r =

0) and pr(x|y, r = 0) = pr(x|y, r = 1). When data are missing not at ran-

dom, pr(x|y, r = 0) 6= pr(x|y, r = 1), and thus one cannot ignore the missing

data mechanism to make inference (Little and Rubin (2002); Ibrahim, Lipsitz

and Chen (1999)). Even when fairly restrictive parametric models are correctly

specified for pr(x, y, r), identification is not guaranteed, and selection bias due to
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missing data cannot necessarily be eliminated.

Example 1. Consider a joint normal model, encoded in pr(x) ∼ N(γ, λ) and

pr(y|x) ∼ N(β0 + β1x, φ), and a logistic propensity score model

logit pr(r = 1|x, y) = α0 + α1x+ α2y.

Letting (λ, φ, β1) = (1.25, 0.8, 0.4), one can verify that (γ, β0, α0, α1, α2) = (0, 0, 2,

−2, 1) and (2,−0.8,−2, 2,−1) result in identical observed data distribution pr(y, r

= 0) and pr(x, y, r = 1). Therefore, (γ, β0, α0, α1, α2) are not identified from the

observed data.

3. A General Framework for Identification

We consider a model pr(x, y, z, r; θ) indexed by θ.

Assumption 1. There exists a one-to-one mapping between the parameter space

Θ = {θ} and the joint distribution space {pr(x, y, z, r; θ); θ ∈ Θ}.

Condition 1. The parameter θ is identified if for any two candidate values θ1
and θ2 such that pr(z; θ1) = pr(z; θ2) and pr(y|z; θ1) = pr(y|z; θ2) almost surely,

with a positive probability

pr(x, y|z; θ1)
pr(x, y|z; θ2)

6= pr(r = 1|x, y, z; θ2)
pr(r = 1|x, y, z; θ1)

. (3.1)

Inequality (3.1) involves the missingness process, which provides a convenient

approach to check identification for selection models when separate paramet-

ric/semiparametric models are specified for the propensity score pr(r = 1|x, y, z)
and the full data distribution pr(x, y, z). In subsequent sections, we focus on

identification under the selection model parametrization, and in the Supplemen-

tary Material we extend results to the pattern-mixture parametrization (Little

(1993)). Here we provide several examples to illustrate how to apply Condition 1

in selection models. For notational convenience, we suppress Z in these examples.

Example 2. We verify identification of the missingness at random mechanism,

R X|Y , by checking Condition 1. Following the approach of Fay (1986), such a

missingness mechanism can also be encoded in the directed acyclic graph model

of Figure 1 (i), where the arrow between X and R is not present. It is plau-

sible, in a retrospective study such as a case control study in which X is as-

certained only after Y is determined, that Y may directly influence whether or

not X is missing. For any two candidate models pr(x, y, r; θ1) and pr(x, y, r; θ2)

such that pr(y; θ1) = pr(y; θ2), the ratio of the propensity score models pr(r =

1|y; θ1)/pr(r = 1|y; θ2) is a function only of y. However, pr(x, y; θ1)/pr(x, y; θ2)
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Figure 1. Directed acyclic graph models for different missingness mechanisms for x.

must vary with x and thus (3.1) holds. Therefore, θ is identified according to

Condition 1.

Example 3. Bartlett et al. (2014) considered estimation under the missingness

mechanism encoded in the graph model of Figure 1 (ii), where missingness is not

at random. The graph depicts a prospective study in which Y is ascertained only

after X is observed, and therefore, it is reasonable to assume that Y cannot de-

termine whether X is missing, provided a participant is not able to anticipate her

outcome at baseline. Considering an outcome model pr(y|x, θ), for any θ1, θ2, the

ratio {pr(y|x; θ1)pr1(x)}/{pr(y|x; θ2)pr2(x)} must vary with y, and thus cannot

equal the ratio of two propensity score models, a function only of x. Therefore,

θ indexing the outcome model pr(y|x; θ) is identified, although, the covariate

distribution pr(x) may not be.

When the missingness process depends on either the missing covariate X

(Example 3) or the fully observed outcome Y (Example 2), identification is well

established (Little and Rubin (2002)); we have confirmed this by verifying Con-

dition 1. We provide several examples to illustrate cases in which missingness

depends both on X and Y .

Example 4. In empirical studies, the covariate and outcome of interest are often

binary. Identification is not guaranteed for binary variables when the missingness

depends both on X and Y , the missingness mechanism encoded in Figure 1 (iii).

Consider the logistic models for binary X and Y :

logit pr(y = 1|x;β) = β0 + β1x,

logit pr(r = 1|x, y;α) = α0 + α1x+ α2y.

One can verify that pr(y = 1) and pr(r = 1, x|y) are identical under the set-

tings α = (−0.4,−0.4, 0.2), β = (−0.359, 0.6), pr(x = 1) = 0.597, and α′ =

(0.468,−1.64, 0.338), β′ = (−0.361, 0.488), pr′(x = 1) = 0.737.

In the binary example, one can also follow the “parameter counting” ap-

proach to check identification (Baker and Laird (1988)). In Example 4, the

model contains six unknown parameters: (α, β) and pr(x = 1), but the observed
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data distribution only has five degrees of freedom: pr(x, y, r = 1) for x, y = 0 or

1 and pr(y = 1, r = 0), which provides five estimating equations of the unknown

parameters. For a continuous covariate or a semiparametric model, the number

of unknown parameters and degrees of freedom of the observed data are difficult

to characterize, and “parameter counting” does not often apply.

Example 5. Continuation of Example 1. The missingness mechanism can be

encoded in the graph of Figure 1 (iii). The model for the joint distribution is

indexed by θ = (γ, λ, α0, α1, α2, β1, β2, φ). Considering the respective models

indexed by θ and θ′, we have

log
pr(x, y; θ)

pr(x, y; θ′)
= −(y − β0 − β1x)2

2φ
+

(y − β′0 − β′1x)2

2φ′
− (x− γ)2

2λ
+

(x− γ′)2

2λ′
,

(3.2)

which is a linear combination of y2, y, x2, xy and x; and we have

log
pr(r = 1|y, x; θ′)

pr(r = 1|y, x; θ)
= α′0 + α′1x+ α′2y + log

1 + exp(−α0 − α1x− α2y)

1 + exp(α′0 + α′1x+ α′2y)
. (3.3)

For (α0, α1, α2) = −(α′0, α
′
1, α
′
2), (3.3) is a linear combination of x and y. Thus,

(3.2) and (3.3) can be equal for certain values of the parameters such as those

given in Example 1. Thus, (γ, α0, α1, α2, β0) cannot be identified, but (λ, φ, β1)

can be identified by noting that when (3.2) equals (3.3), the coefficients of y2, xy

and x2 must be zero in (3.2).

Examples 1 and 5 show potential lack of identification for the normal model

when the covariate is missing not at random. In this case, the slope of the

outcome model is identified but the intercept is not.

Example 6. Consider a normal model for the covariate, X ∼ N(µ, σ21), an

exponential regression model for the outcome variable, Y ∼ η(x) exp{−yη(x)},
with η(x) = exp(β0 +β1x) and β1 6= 0, and logit pr(r = 1|x, y) = α0 +α1x+α2y.

Here all parameters are identified.

In a breast cancer study, Lipsitz et al. (1999) applied the Weibull regression

Y ∼ σ2y
σ2−1 exp{−yσ2η(x) + log(η(x))} to model the time to treatment failure,

without formally establishing identification of the model. The Weibull regression

model is more general than the exponential regression model. We show in the

Appendix that identification does hold.

4. Identification with a Shadow Variable

In Examples 1–6, identification or lack thereof is determined by the specific

parametric model being considered, and therefore, it is unclear whether a general
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Figure 2. A directed acyclic graph model for the shadow variable.

identification framework is available without all of the restrictions on the models.

However, when a shadow variable for the missing covariate is fully observed,

identification is often possible even in fairly large semiparametric models. A

shadow variable is associated with the potentially missing variable conditional

on the observed data, but independent of the missingness process conditional

both on the observe data and the potentially missing variable (Kott (2014)).

Definition 2. A fully observed variable Z is a shadow variable for X, if Z / X

| Y and Z R | (Y,X).

Definition 2 formalizes the idea that the shadow variable affects the missing-

ness only through its association with the missing covariate and the fully observed

outcome. Figure 2 is a directed acyclic graph encoding the definition.

The shadow variable for a missing covariate may be available in empirical

studies where a fully observed proxy or a mismeasured version of the missing

covariate is available. For example, in a study of mental health of children in

Connecticut (Zahner et al. (1992); Horton and Laird (2001)), researchers were

interested in the correlation between children’s mental health status and uti-

lization of mental health service. The measure of psychopathology used in the

study was based on the teacher’s assessment that had 43% missing values, but

a separate parental report was complete. The parental report is a proxy for the

teacher’s assessment, but it is unlikely to be related to the teacher’s response

rate conditional on other covariates and her assessment of the student; in this

case the parental assessment constitutes a valid shadow variable. Such a variable

introduces additional restrictions on the missingness process, and thus provides

better opportunity for identification under missingness not at random. For ex-

ample, non-identification of the binary case (Example 4) is completely resolved

with a binary shadow variable.

Example 7. Continuation of Example 4. Suppose Z is a valid shadow vari-

able for X. Because Z R|(X,Y ), we have pr(z|x, y) = pr(z|x, y, r = 1) for all

(y, x, z). For arbitrary y, one can solve the linear equation pr(z|y) =
∑

x pr(z|x, y,
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r = 1)pr(x|y) for pr(x|y). As Z /X|Y , the solution is unique, and pr(x|y) is iden-

tified. One can further solve pr(r = 1, x|y) = pr(r = 1|x, y)pr(x|y) to identify

the propensity score pr(r = 1|x, y). Thus, one can identify the joint distribu-

tion pr(x, y, z, r) = pr(y)pr(x|y)pr(z|x, y)pr(r = 1|x, y). See the Appendix for

additional details.

Ma, Geng and Hu (2003) noted that for the binary case of Example 7, the

joint distribution pr(x, y, z, r) can be identified explicitly as a function of the

observed data distribution when a binary shadow variable is available. For more

complicated models, identification is not so straightforward. The following result

is convenient to check identification of the outcome model, even if the propensity

score model is nonparametric.

Proposition 1. Consider models pr(y|x, z; θ) and pr(x|z; ξ). If for any θ1 6= θ2
and for all function h(x, y), pr(x, y|z; θ1, ξ1)/pr(x, y|z; θ2, ξ2) 6= h(x, y) with a

positive probability, then the parameter θ indexing the outcome model pr(y|x, z; θ)
is identified.

The proposition follows from the fact that under the shadow variable assump-

tion, the ratio of any two different propensity score models is not a function of z,

and thus from Condition 1, θ must be identified if the ratio pr(x, y|z; θ1, ξ1)/pr(x,

y|z; θ2, ξ2) varies with z for distinct values θ1 and θ2. Consider identification for

generalized linear models. We suppose that X and Z are continuous variables,

and take

pr(x|z; γ, λ) = exp

(
x · η1 −B1(η1)

λ
+A1(x, λ)

)
, (4.1)

pr(y|x, z;β, φ) = exp

(
y · η2 −B2(η2)

φ
+A2(y, φ)

)
, (4.2)

with dispersion parameters φ, λ > 0, and known functions A1, A2, B1, B2, η1(z; γ)

= η1(γ0+γ1z) and η2(x, z;β) = η2(β0+β1z+β2x). We assume that the functions

are infinitely differentiable and that for all (γ, λ) in the parameter space, the

exponential family pr(x|z; γ, λ) is of full rank (Shao (2003, p.96)). Here the

propensity score model is unspecified except for Z R|(Y,X).

Theorem 1. If Z is a shadow variable and the generalized linear models (4.1)–

(4.2) hold, we have

(a) if η2 is a linear function, then β1/φ is identified;

(b) if η2 a linear function, and B
(2)
2 , the second-order derivative of B2 is not a

linear function, then (β1, β2, φ) are identified;
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(c) if η2 is a nonlinear function, then (β1, β2) are identified.

The proof is in the Supplementary Material. The theorem establishes iden-

tification of the coefficients of Z and X in the outcome model pr(y|x, z) except

when η2 is a linear function and B2 is a cubic or quadratic function. From

Theorem 1, (β1, β2) of the logistic model

pr(y|x, z;β) = exp(y(β0 + β1z + β2x)− log(1 + exp(β0 + β1z + β2x))),

is identified. When η2 is a linear function and B2 is a quadratic function,

pr(y|x, z) is normal, we observe that even though Z is correlated with X, Z

may be independent of X after conditioning on Y , and the shadow variable as-

sumption is not met.

Example 8. Consider the normal models pr(y|x, z) = N(β1z + β2x, φ) and

pr(x|z) = N(γ1z, λ) indexed by θ = (β1, β2, φ, γ1, λ). For the sets of values

θ1 = (1, 1, 1, 1, 1) and θ2 = (1.5, 0.5, 1.5, 1, 2), one can verify

pr(x, y|z; θ1)
pr(x, y|z; θ2)

= exp

(
−1

2
log(3)− 1

6
(y − 2x)2

)
,

which does not vary with z. Consider models for the missingness process

logit pr2(r = 1|x, y) = −logit pr1(r = 1|x, y) = −1

2
log(3)− 1

6
(y − 2x)2.

Here one can verify that the two data generating mechanisms, encoded in pr(x,

y|z, θi) and pri(r = 1|x, y) for i = 1, 2, have identical observed data distribution.

Thus, θ is not identified from the observed data. But β1/φ = 1 is identified, a

fact that is consistent with Theorem 1 (a).

The example shows potential lack of identification of normal models, but

this non-identification only happens at certain values of the parameter space.

Theorem 2. For the normal models pr(y|x, z) = N(β0 + β1z + β2x, φ) and

pr(x|z) = N(γ0 + γ1z, λ), all parameters are identified if β1β2/φ− γ1/λ 6= 0.

The condition β1β2/φ−γ1/λ 6= 0 in fact characterizes the subset of data gen-

erating mechanisms that violate the shadow variable assumption. The following

submodels offer better identification results as they involve fewer parameters than

models (4.1)–(4.2).

η2(x, z;β) = η2(β0 + β2x), β2 6= 0; (4.3)

η2(x, z;β) = η2(β0 + β1z), β1 6= 0. (4.4)

Theorem 3. For model (4.3), (β0, β2, φ) are identified, and for model (4.4),

(β0, β1, φ) are identified.
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5. Estimation

Inverse probability weighting (Horvitz and Thompson (1952); Robins, Rot-

nitzky and Zhao (1994); Scharfstein, Rotnitzky and Robins (1999)) is an in-

fluential method for missing data analysis. The approach employs a propen-

sity score model π(x, y;α) = pr(r = 1|x, y;α), for example, logit {π(x, y;α)} =

α0 +α1x+α2y. If α1 6= 0, the model accommodates a nonignorable missingness

process. With fully observed data, α can be consistently estimated by standard

maximum likelihood. Alternatively, one may solve estimating functions of the

form Ê[{r/π(x, y; α̂) − 1}G(x, y)] = 0, with Ê denoting the empirical expecta-

tion, G(x, y) a user-specified vector function of dimension equal to that of α,

and E[∂{r/π(x, y;α)}/∂α×G(x, y)] nonsingular for all α. For instance, one can

choose G(x, y) = (1, x, y) for the logistic propensity score model. But, when X

has missing values, neither approach is feasible. Nevertheless, when a shadow

variable Z is fully observed, one can solve a modified estimating equation with

G(x, y) replaced by G(z, y):

Ê

[{
r

π(x, y; α̂)
− 1

}
G(z, y)

]
= 0. (5.1)

Incorporating π(x, y; α̂) obtained from (5.1), one can solve

Ê

{
r

π(x, y; α̂)
S(x, y, z; β̂, φ̂)

}
= 0, (5.2)

for (β̂, φ̂), with S(x, y, z;β, φ) = ∂ log(pr(y|x, z;β;φ))/∂(β, φ). With a valid

shadow variable Z, we show that replacing G(x, y) with G(z, y) does not com-

promise unbiasedness of the estimating equations (5.1)–(5.2).

Theorem 4. If the propensity score model π(x, y;α) is correctly specified, then

(5.1) is an unbiased estimating equation for α. If further the outcome model

pr(y|x, z;β, φ) is correctly specified, then (5.2) is an unbiased estimating equation

for (β, φ).

Provided unbiasedness of the estimating equations, consistency and asymp-

totic normality of (α̂, β̂, φ̂) can be obtained under standard regularity conditions

as given by Newey and McFadden (1994, Thm. 6.1), and the asymptotic variance

and 95% confidence intervals can be obtained based on asymptotic normality.

Such asymptotic properties follow from the general theory of estimating equa-

tions. We refer readers to Newey and McFadden (1994), Robins, Rotnitzky and

Zhao (1994), Shao (2003), and Tsiatis (2006) for the technical details. Specific

choices of G can generally affect efficiency but not consistency of the estima-
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tors. In the Supplementary Material, we characterize the optimal choice of G

within our class of estimating equations, which typically follows from the general

framework by Newey and McFadden (1994, Thm. 5.3).

Inverse probability weighted (IPW) estimation as applied in this paper is

not new except that we use the shadow variable to assist with identification and

estimation of the propensity score model in (5.1). There exists a large literature

on properties and extensions of IPW estimation, including Horvitz and Thomp-

son (1952), Robins, Rotnitzky and Zhao (1994), Wang, Shao and Kim (2014),

and Shao and Wang (2016). For IPW estimation, the identification strategy

for nonparametric propensity score models developed under the missing outcome

setting of Sun et al. (2018) can be extended to assess identification for the missing

covariate problem; the semiparametric IPW estimation developed for the miss-

ing outcome problem by Shao and Wang (2016) can be extended to the missing

covariate problem to relax stringent parametric model assumptions. Moreover,

such extensions are often achieved by simply switching X and Y in the propen-

sity score model. Alternative fully likelihood-based or Bayesian-based approaches

also exist for estimation in the present context, e.g., imputation methods (Ru-

bin and Schenker (1986)). However, to account for missing covariate data, these

methods require additionally specifying a model for pr(x|y, z) or E(x|y, z), and

therefore are more sensitive to model misspecification and possible lack of coher-

ence between models for pr(x|y, z) and pr(y|x, z).

6. Numerical Examples

6.1. Simulation studies

We studied the finite sample performance of the proposed inverse probability

weighted estimator via simulations. We generated the shadow variable Z from

N(0, 1), X ∼ N(0.5 + 0.5z, 1), and Y ∼ N(β0 + β1z + β2x, 1) with (β0, β1, β2) =

(0.5, 1.5,−0.5). We generated R from logit (pr(r = 1|x, y)) = α0 + α1y + α2x

with (α0, α1, α2) = (0.5,−1, 1), and treated the samples of X with R = 0 as

missing values. Under such a setting, the missing data proportion is about 39%.

We simulated 1,000 independent data sets under sample sizes 500 and 1,500.

We applied inverse probability weighting, complete-case analysis, and full data

maximum likelihood estimation in which we pretend to have the missing values.

Results are summarized in the boxplots of Figure 3. As expected, the full data

maximum likelihood estimation always performs best, with smallest bias and

variance, but is infeasible when missing data arise. With the shadow variable in-
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α  α  β  β  

Figure 3. Boxplots for the estimators. Note: Data are analyzed with inverse probability
weighting (IPW), complete-case analysis (CC), and full data maximum likelihood esti-
mation (MLE). In each boxplot, white boxes are for sample size 500 and gray ones for
1,500. The horizontal line marks the true value of the parameter.

Table 1. Coverage probability of the 95% confidence interval.

α1 α2 β1 β2
N = 500 0.959 0.954 0.911 0.931

1,500 0.943 0.939 0.929 0.945

Note: Confidence intervals are constructed based on asymp-
totic normality of the estimators.

corporated, the inverse probability weighted estimator performs reasonably well.

Both bias and variance are relatively small under moderate sample sizes; as sam-

ple size increases, the bias and variance decrease and the coverage probability of

the 95% confidence interval approximates the nominal level as shown in Table 1.

The estimator obtained from complete-case analysis has large bias, and this is

not alleviated as sample size increases.

6.2. China home pricing example

We applied the shadow variable approach to a data set extracted from

China Family Panel Studies (CFPS). Details of the survey can be found at

http://www.isss.edu.cn/cfps/EN/. The dataset we used consists of 5,534

homeowners. One is interested in the effect of family income (faminc) on home

price (houspr). Other covariates include gender, age, education status, and

family size of the homeowners being investigated, and location, distance to the

downtown (dist), year of construction, size, type, and tidiness of their homes.

http://www.isss.edu.cn/cfps/EN/


NONIGNORABLE MISSING COVARIATE 2061

Table 2. Results for the China home pricing example.

Outcome model Propensity score model
gender −0.242 (0.182, 0.302) gender 0.358 (0.234, 0.483)
age 0.018 (0.015, 0.021) age 0.015 (0.008, 0.021)
educ −0.019 (−0.030, −0.009) educ 0.081 (0.049, 0.113)
urban 0.497 (0.390, 0.604) urban 0.737 (0.599, 0.875)
year −0.021 (−0.025, −0.018) famsz 0.059 (0.008, 0.110)
size 0.039 (0.035, 0.043) faminc −0.440 (−0.773, −0.107)
type 0.746 (0.656, 0.836) houspr 0.013 (−0.072, 0.098)
famsz −0.017 (−0.036, 0.001)
tidy 0.088 (0.064, 0.111)
faminc 0.148 (0.104, 0.191)
dist −1.972 (−2.107, −1.838)

Note: Point estimates and confidence intervals (in brackets) for the models, with
7 variables (after stepwise selection) included in the propensity score model and
11 in the outcome model.

Family income has 1,896 (34.2%) missing values, while the other variables are

fully observed. Home price increases as the distance to the downtown decreases,

and homeowners living closed to the downtown are more likely to be wealthy.

Thus, dist is highly correlated both with home price and family income, but

it is reasonable to assume that dist does not affect the response propensity

of homeowners after conditioning on home price, family income, and other co-

variates. As such, we used dist as a shadow variable for family income. We

analyzed the dataset with a linear outcome model and a logistic propensity score

model, and summarize the results in Table 2. The results for the propensity

score model provides significant empirical evidence of nonignorable missingness

of family income, with a coefficient of −0.440 and 95% confidence interval of

(−0.773,−0.107), which indicates that homeowners with high family income tend

not to respond to the survey. In the outcome model, the coefficient of faminc is

0.148 with confidence interval (0.104, 0.191), which shows a significant positive

effect of family income on home price. The results also confirm that home price

increases as the distance to downtown decreases and home size increases, and

that a newer home has a higher price.

7. Discussion

The shadow variable plays a central role in identification of the semipara-

metric models where the propensity score pr(r = 1|x, y) is left unspecified. The

definition of shadow variable in this paper is close to the “instrumental variable”
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described by D’Haultfoeuille (2010), Wang, Shao and Kim (2014), and Shao

and Wang (2016), but differs from the conventional instrumental variable in the

econometrics literature, where an instrumental variable is independent of the

potentially missing variable but associated with its missingness. In economet-

rics, the instrumental variable approach has a longstanding tradition initiated

by Wright (1928) and Goldberger (1972), and further developed by Imbens and

Angrist (1994), Angrist, Imbens and Rubin (1996), and Heckman (1997). Re-

cently, Sun et al. (2018) and Tchetgen Tchetgen and Wirth (2017) implemented

such an instrumental variable to establish identification conditions for nonignor-

able missing data that only involve the propensity score pr(r = 1|x, y). Their

work can be generalized to the missing covariate problem when an instrumental

variable for X is available and the propensity score model is specified, and thus

is a useful complement to this paper.

Supplementary Materials

The online supplementary material includes identification results for the

pattern-mixture parametrization, efficiency issue for (5.1), useful lemmas, and

proofs of the theorems.
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Appendix

This appendix includes additional details for Examples 1, 2, 3, 6, and 7.

Details for Example 1

As pr(y, r = 0) = pr(y) − pr(y, r = 1) and pr(y, r = 1) =
∫
x pr(x, r =

1|y)pr(y)dx, we only need to show that these two settings lead to the identical

distributions of pr(y) and pr(x, r = 1|y). One can verify that pr(y) = N(0, 1)

and

pr(x, r = 1|y) = (2π)−1/2 exp

{
−(y − 2x)2

8

}
exp(2− 2x+ y)

1 + exp(2− 2x+ y)
.
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Details for Example 2

Suppose pr(x|y; θ1)/pr(x|y; θ2) = h(y) for some function h(y), then for all y

we have ∫
x

pr(x|y; θ1)dx =

∫
x

pr(x|y; θ2)h(y)dx = h(y) = 1,

which contradicts pr(x|y; θ1) 6= pr(x|y; θ2). Therefore, pr(x|y; θ1)/pr(x|y; θ2)

must vary with x.

Details for Example 3

We only need to prove that pr(y|x; θ1)/pr(y|x; θ2) varies with y. If not,

suppose pr(y|x; θ1)/pr(y|x; θ2) = h(x) for some function h(x). Then for all x we

have ∫
y

pr(y|x; θ1)dy =

∫
y

pr(y|x; θ2)h(x)dy = h(x) = 1,

which contradicts pr(y|x; θ1) 6= pr(y|x; θ2). Therefore, pr(y|x; θ1)/pr(y|x; θ2) and

thus {pr(y|x; θ1)pr1(x)}/{pr(y|x; θ2)pr2(x)} must vary with y.

Details for Example 6

We use a proof by contradiction to show identification of the parameters.

Suppose that there were two sets of parameters resulting in the identical distri-

bution pr(x, y, r = 1):

exp(β0 + β1x) exp(−y exp(β0 + β1x))
1

σ1
Φ

(
x− µ
σ1

)
exp(α0 + α1x+ α2y)

1 + exp(α0 + α1x+ α2y)

= exp(β′0+β′1x) exp(−y exp(β′0+β′1x))
1

σ′1
Φ

(
x− µ′

σ′1

)
exp(α′0 + α′1x+ α′2y)

1+exp(α′0 + α′1x+α′2y)
,

(A.1)

with Φ the probability density function of N(0, 1). Taking logarithm on both

sides and rearranging the terms, we have

c−
{

(x− µ)2

2σ21
− (x− µ′)2

2σ′21

}
+ (β1 − β′1 + α1 − α′1)x+ (α2 − α′2)y

= y{exp(β0 + β1x)− exp(β′0 + β′1x)}+ log
1 + exp(α0 + α1x+ α2y)

1 + exp(α′0 + α′1x+ α′2y)
, (A.2)

with c = {β0 − β′0 + α0 − α′0 − log(σ1) + log(σ′1)}. For arbitrary y, the left hand

side of (A.2) is a linear combination of x and x2. But for β0 6= β′0 or β1 6= β′1,

note that β1, β
′
1 6= 0, the right hand side of (A.2) must include an exponential

term of x, and it cannot equal the left hand side of (A.2). Thus, we must have
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β0 = β′0 and β1 = β′1, and (A.1) reduces to

1

σ1
Φ

(
x− µ
σ1

)
exp(α0+α1x+α2y)

1+ exp(α0+α1x+α2y)
=

1

σ′1
Φ

(
x− µ′

σ′1

)
exp(α′0+α

′
1x+α′2y)

1+ exp(α′0+α
′
1x+α′2y)

.

By the argument of Miao, Ding and Geng (2017) for identification of normal

densities, the identity holds only for µ = µ′, (α0, α1, α2) = (α′0, α
′
1, α
′
2) and

σ1 = σ′1. Therefore, all parameters are identified.

The Weibull regression Y ∼ σ2y
σ2−1 exp{−yσ2η(x) + log(η(x))} is a gener-

alization of the exponential regression model. We first prove identification of

σ2, and then identification of other parameters follows from identification of the

exponential regression model. For the Weibull regression, we follow the proof for

the exponential regression and then obtain a parallel version of (A.2):

c−
{

(x−µ)2

2σ21
−(x−µ′)2

2σ′21

}
+(β1−β′1+α1−α′1)x+(α2−α′2)y+(σ2−σ′2) log(y)

= {yσ2 exp(β0+β1x)−yσ′
2 exp(β′0+β

′
1x)}+ log

1+ exp(α0+α1x+α2y)

1+ exp(α′0+α
′
1x+α′2y)

. (A.3)

For arbitrary x, the left hand side of (A.3) is a linear combination of y and

log(y). But for σ2 6= σ′2, the right hand side of (A.2) must include a power of y,

and is not equal to the left hand side of (A.2). Thus, we must have σ2 = σ′2. If

Ỹ = Y σ2 , then Ỹ ∼ exp{−ỹη(x) + log(η(x))}, which is an exponential regression

model. Applying the identification result of the exponential regression model, we

obtain identification of the remaining parameters.

Details for Example 7

WhenX and Z are binary, for arbitrary y we solve the equation pr(z = 1|y) =∑
x=0,1 pr(z = 1|x, y, r = 1)pr(x|y) for pr(x = 1|y). As pr(x = 1|y) + pr(x =

0|y) = 1, we have

pr(x = 1|y) =
pr(z = 1|y)− pr(z = 1|x = 0, y, r = 1)

pr(z = 1|x = 1, y, r = 1)− pr(z = 1|x = 0, y, r = 1)
.

Under the assumption Z /X|Y = y for any y, pr(z = 1|x = 1, y) 6= pr(z = 1|x =

0, y), thus, pr(z = 1|x = 1, y, r = 1) 6= pr(z = 1|x = 0, y, r = 1) by the shadow

variable assumption Z R|(X,Y ). Therefore, the solution for pr(x = 1|y) is

unique.
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