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Abstract: We consider nonrandomized pretest-posttest designs with complex survey

data for observational studies. We show that two-sample pseudo empirical likeli-

hood methods provide efficient inferences on the treatment effect, with a missing-

by-design feature used for forming the two samples and the baseline information

incorporated through suitable constraints. The proposed maximum pseudo empiri-

cal likelihood estimators of the treatment effect are consistent and pseudo empirical

likelihood ratio confidence intervals are constructed through bootstrap calibration

methods. The proposed methods require estimation of propensity scores which

depend on the underlying missing-by-design mechanism. A simulation study was

conducted to examine finite sample performances of the proposed methods under

different scenarios of nonignorable and ignorable missing patterns. An application

to the International Tobacco Control Policy Evaluation Project Four Country Sur-

veys is also presented to demonstrate the use of the proposed methods for examining

the mode effect in survey data collection.
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1. Introduction

Two-sample problems are commonly encountered in many fields of scientific

investigation, including classical designed experiments, modern case-control stud-

ies, and many observational studies in social and medical sciences. There exist

standard statistical tools for handling problems with two independent samples,

especially with parametric approaches where likelihood-based methods are read-

ily available. The nonparametric empirical likelihood methods, first proposed by

Owen (1988) for a single sample, have been extended to cover two independent

samples. Wu and Yan (2012) contains detailed discussions and related references

for two-sample empirical likelihood.

Pretest-posttest studies are a special type of two-sample problem. They

constitute a very broad topic relevant to many subject areas; see, for instance,
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Brogan and Kutner (1980) for a detailed discussion. Randomized pretest-posttest

designs are often used in medical studies to examine a treatment effect where

baseline (pretest) information is collected for all selected units before they are

randomly assigned to treatment or control groups. Nonrandomized designs are

common in observational studies to investigate the effect of a treatment or an

intervention. There are two unique features for pretest-posttest studies: the

baseline information collected for all units in the initial combined sample; and

the missing-by-design structure for the two samples where each unit is assigned to

either the treatment group or the control group but not both. How to best use the

pretest information and how to incorporate the unique missing-by-design feature

are the two major statistical research problems for pretest-posttest studies.

There have been several promising developments in empirical likelihood meth-

ods for pretest-posttest studies under randomized designs in recent literature.

Huang, Qin and Follmann (2008) proposed an empirical likelihood method for

estimating the treatment effect θ = µ1 − µ0, where µ1 and µ0 are respectively

the mean response under the treatment and the control. Their approach fo-

cused on estimating µ1 and µ0 separately while incorporating the pretest in-

formation through additional constraints for the maximum empirical likelihood

estimators. Chen, Wu and Thompson (2015) proposed an imputation-based em-

pirical likelihood approach to effectively combining the baseline information and

the missing-by-design feature of pretest-posttest studies. Empirical likelihood

ratio confidence intervals for θ can be constructed directly without involving

µ1 or µ0. The authors showed that the empirical likelihood ratio test of the

treatment effect θ is more powerful than existing alternative methods. Another

important problem is to test the equality of the two distribution functions, H0:

F1(t) = F0(t), where F1(t) and F0(t) are the distribution function of the response

variable under the treatment and the control, respectively. This is equivalent to

testing H0: S1(t) = S0(t), where S1(t) and S0(t) are the corresponding survival

functions, which is often of primary interest in medical research. Chen, Wu and

Thompson (2016) developed different versions of the Mann-Whitney test using

empirical likelihood methods.

Pretest-posttest designs are also frequently used in observational studies with

complex surveys. For example, a youth smoking intervention program may have

the following design. First, a sample of grade six students is selected from a par-

ticular student population using a probability sampling method. Certain baseline

information, such as gender, age, family background, and other social-economic

indicators, is collected for all selected students. Then each selected student is
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presented with the opportunity to join an intervention program. The treatment

group consists of all participating students in the program and the control group

includes those who choose not to participate. A key feature for such studies is

that randomization is not used for assigning units to treatment or control. The

main objective of the study is to examine the effectiveness of the intervention. In

Section 5, we present an example from the ITC Four Country Survey on mode

effect in data collection, where each respondent is given options to complete the

same set of survey questionnaires through either a self-administered web sur-

vey or a telephone interview, but not both. The objective of the example is

to demonstrate the use of the proposed methods for testing whether there is a

non-negligible difference in the distribution of responses to a specific question

between the two modes (web versus telephone) in data collection.

This paper develops empirical likelihood methods for complex surveys with

nonrandomized pretest-posttest designs. We consider observational studies for

which baseline information is gathered for all units in the initial survey sample

but there is a self-selection for each unit on whether to be in the treatment group

or the control group. Let S be the set of n units selected for the initial sample.

Let πi = P (i ∈ S) be the first order inclusion probabilities for the survey design.

Let Ri = 1 if unit i chooses to be in the treatment group and Ri = 0 if unit i is

in the control group. We have S = S1 ∪ S0, where S1 = {i|i ∈ S and Ri = 1}
is the set of units in the treatment group and S0 = {i|i ∈ S and Ri = 0} is

the set of units in the control group. Let n1 = |S1| and n0 = |S0| be the sizes of

the two groups, with n = n1 + n0. Let xi be the value of the vector of auxiliary

variables x for unit i; let y1i be the value of the potential response variable y1 if

unit i is exposed to the treatment and y0i be the value of the potential response

variable y0 if unit i is exposed to the control. The full observations on x and the

missing-by-design feature of the responses can be represented by the following

table:

i 1 2 · · · n1 n1 + 1 n1 + 2 · · · n
x x1 x2 · · · xn1

xn1+1 xn1+2 · · · xn

y1 y11 y12 · · · y1n1 ∗ ∗ · · · ∗
y0 ∗ ∗ · · · ∗ y0(n1+1) y0(n1+2) · · · y0n

In the absence of randomization for the treatment assignments, the two

samples S1 and S0 are not representative for the finite population under the

original survey design. For instance, under the extreme scenario where all “male

units” choose to be in the treatment group and all “female units” choose to belong
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to the control group, the two samples would each represent a subpopulation of

males or females. Let

ri = P (Ri = 1|i ∈ S, y1i, y0i,xi) = P (i ∈ S1|i ∈ S, y1i, y0i,xi) .

It is a commonly acceptable assumption that P (Ri = 1|i ∈ S, y1i, y0i,xi) =

P (Ri = 1|y1i, y0i,xi): the exposure of a unit to treatment or control is not con-

founded with the inclusion of the unit in the initial sample given all the character-

istics of the unit to be measured by the survey. The missing-by-design mechanism

(i.e., treatment assignment) is called ignorable (Rosenbaum and Rubin (1983))

if

ai = P (Ri = 1|y1i, y0i,xi) = P (Ri = 1|xi) .

Our discussions in Sections 2 and 3 will adopt the assumption that the treat-

ment assignment is ignorable. In the simulation studies presented in Section 4,

we investigate practical scenarios where the missing-by-design mechanism is not

ignorable.

2. The Propensity Score Adjusted Two-Sample Empirical Likelihood

Let Y 1 = (y11, . . . , y1N)′, Y 0 = (y01, . . . , y0N)′, X = (x1, . . . ,xN), where

N is the population size. The parameter of interest is θN = µ1 − µ0 where

µ1 = N−1
∑N

i=1 y1i and µ0 = N−1
∑N

i=1 y0i are the population means of the

potential responses under the treatment and the control. Let

γ1i = P (i ∈ S1|Y 1,Y 0,X) and γ0i = P (i ∈ S0|Y 1,Y 0,X)

be, respectively, the inclusion probabilities for the treatment and control groups

with the given finite population. We assume that

P (i ∈ S1|i ∈ S,Y 1,Y 0,X)

= P (i ∈ S1|i ∈ S, y1i, y0i,xi)

= P (Ri = 1|y1i, y0i,xi) .

Since i ∈ S1 implies i ∈ S, we have

γ1i = P (i ∈ S1|Y 1,Y 0,X)

= P (i ∈ S1, i ∈ S|Y 1,Y 0,X)

= P (i ∈ S|Y 1,Y 0,X)P (i ∈ S1|i ∈ S,Y 1,Y 0,X)

= πiai ,

where ai is the propensity score that unit i chooses the treatment. Similarly, we

have γ0i = πi(1− ai).
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We first consider the hypothetical scenario where the propensity scores ai
are known for every unit in the population and not dependent on S. The self-

selection for treatment assignment is equivalent to an added last stage of Poisson

sampling and γ1i and γ0i are design-based inclusion probabilities for the samples

S1 and S0, respectively. Let w1i = 1/γ1i and w0i = 1/γ0i be the survey weights.

Let

w̃1i(S1) =
w1i∑
j∈S1

w1j
and w̃0i(S0) =

w0i∑
j∈S0

w0j

be the normalized survey weights. Following the formulation used in Wu and

Rao (2006), the joint pseudo empirical (log) likelihood function is given by

`(p, q) =
1

2

∑
i∈S1

w̃1i(S1) log(pi) +
1

2

∑
i∈S0

w̃0i(S0) log(qi) ,

where p = (p1, . . . , pn1
) and q = (q1, . . . , qn0

) are nonparametric discrete proba-

bility measures over S1 and S0, respectively. The two factors 1/2 appearing in

`(p, q) are for computational purposes and have no impact on inferences. The

standard normalization constraints are given by∑
i∈S1

pi = 1 ,
∑
i∈S0

qi = 1 . (2.1)

The constraint induced by the parameter θN = µ1 − µ0 is given by∑
i∈S1

pi y1i −
∑
i∈S0

qi y0i = θ . (2.2)

Maximizing `(p, q) under the normalization constraints (2.1) gives p̂i = w̃1i(S1)

and q̂i = w̃0i(S0). Let p̂i(θ) and q̂i(θ) be the maximizer of `(p, q) under both the

normalization constraints (2.1) and the parameter constraint (2.2) for a fixed θ.

Let

`
(
p̂(θ), q̂(θ)

)
=

1

2

∑
i∈S1

w̃1i(S1) log
(
p̂i(θ)

)
+

1

2

∑
i∈S0

w̃0i(S0) log
(
q̂i(θ)

)
.

The maximum empirical likelihood estimator of θN , which maximizes `
(
p̂(θ),

q̂(θ)
)

with respect to θ, is given by

θ̂N =
∑
i∈S1

p̂i y1i −
∑
i∈S0

q̂i y0i . (2.3)

It can be shown that θ̂N is a design consistent estimator of the true parameter

θN = µ1 − µ0. The empirical (log) likelihood ratio function for θN is given by

r(θ) = `
(
p̂(θ), q̂(θ)

)
− `
(
p̂, q̂

)
, (2.4)

where p̂ = (p̂1, . . . , p̂n1
) and q̂ = (q̂1, . . . , q̂n0

). There exists a simple and efficient
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algorithm for computing r(θ) for a given θ; see Section 3 of Wu and Yan (2012)

for details. It also follows from Theorem 3.1 in Wu and Yan (2012) that −2r(θN)

is asymptotically distributed as a scaled χ2 with one degree of freedom, with the

scaling constant involving the design-based variance of θ̂N .

One of the major advantages of the empirical likelihood approach is the

power of combining additional available information for inferences. The baseline

information on x, collected for all units in the initial sample S = S1 ∪ S0, with

the missing-by-design feature for response variables can be incorporated through

the additional constraints ∑
i∈S1

pi xi =
∑
i∈S0

qi xi . (2.5)

Under this setting, the p̂ and q̂ maximizes `(p, q) subject to (2.1) and (2.5);

the p̂(θ) and q̂(θ) maximizes `(p, q) subject to (2.1), (2.2), and (2.5); the max-

imum empirical likelihood estimator θ̂N is still given by (2.3), and the empirical

likelihood ratio function r(θ) is given by (2.4).

We now discuss practical scenarios where the propensity scores ai are un-

known. If the missing-by-design mechanism is ignorable, we can estimate ai using

available data {(Ri,xi), i ∈ S} under a suitable model. A popular choice for R|x
is the logistic regression model

log
( ai

1− ai

)
= η0 + x′iη1 , (2.6)

where η = (η0,η
′
1)
′ is the vector of model parameters. This leads to ai =

a(xi,η) = exp(η0+x′iη1)/{1+exp(η0+x′iη1)}. Let η̂ be the maximum likelihood

estimator of η under model (2.6). The estimated propensity scores are given by

âi = a(xi, η̂).

When the missing-by-design mechanism is nonignorable, estimation of propen-

sity scores becomes difficult and valid inferences often rely on strong assumptions

or availability of additional information. In this paper we focus on estimating

propensity scores based on model (2.6) under the assumption of ignorability, and

examine the consequences of analysis through simulation studies to be reported in

Section 4 on different scenarios of ignorable and nonignorable missing-by-design

mechanisms.

Recall that γ1i = πiai and γ0i = πi(1−ai). For simplicity of notation without

causing any confusion, we now let γ1i = πiâi and γ0i = πi(1− âi). The maximum

empirical likelihood estimator θ̂N and the empirical likelihood ratio function r(θ)

can be computed in the same way as in (2.3) and (2.4), respectively. Under the

current setting, however, asymptotic properties of θ̂N and the asymptotic distri-
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bution of r(θ) need to be considered under the joint randomization framework

with both the probability sampling design for the initial sample selection and

the assumed logistic regression model (2.6) for the estimation of the propensity

scores. Purely design-based inferences are no longer feasible.

It is possible to go through the traditional route E(θ̂N) = EpEξ(θ̂N |S1,S0)

and V (θ̂N) = EpVξ(θ̂N |S1,S0) + VpEξ(θ̂N |S1,S0), where Ep(·), Eξ(·), Vp(·), and

Vξ(·) denote, respectively, the expectation and the variance under the probability

sampling design (p) and the assumed model (ξ) on the propensity scores. The

consistency of the point estimator θ̂N under the joint randomization can be easily

established since θ̂N is a smooth function of η̂ and we have η̂ = η + Op(n
−1/2)

under the assumed model (2.6).

For the empirical likelihood ratio statistic r(θ), a practically more conve-

nient approach is to use a bootstrap calibration method. With complete ob-

servations, Wu and Rao (2010) developed bootstrap procedures for the one-

sample pseudo empirical likelihood method for certain survey designs. Noting

that r(θN) = h(θN , η̂) can be viewed as a smooth function of η̂, the current two-

sample problem with the added complication from the model-based estimation

of η̂ can be handled through an embedded procedure in the bootstrap method

described below.

Consider single-stage unequal probability sampling with small sampling frac-

tions. The conventional with-replacement bootstrap method provides valid infer-

ences under the design-based framework for such cases. Let θ̂N be the maximum

empirical likelihood estimator of θN computed with the estimated propensity

scores âi. We assume that constraints (2.5) are included when computing r(θ) for

the given θ. The asymptotic distribution of r(θN) can be approximated through

the following bootstrap procedures.

1. Let S∗ be the set of n units, including duplicated ones, selected from the

initial sample S by simple random sampling with replacement. Let S∗1 =

{i|i ∈ S∗ and Ri = 1} and S∗0 = {i|i ∈ S∗ and Ri = 0}. Both S∗1 and S∗0
might include duplicated units from S and the total number of units in S∗1
(or S∗0) is not necessarily n1 (or n0).

2. Fit model (2.6) using data {(Ri,xi), i ∈ S∗}; let η̂∗ be the estimate of

η. Compute the estimated propensity scores â∗i = a(xi, η̂
∗) for i ∈ S∗.

Compute the inclusion probabilities γ∗1i = πiâ
∗
i for i ∈ S∗1 and γ∗0i = πi(1−

â∗i ) for i ∈ S∗0. Let w∗1i = 1/γ∗1i and w∗0i = 1/γ∗0i and let
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w̃∗1i(S
∗
1) =

w∗1i∑
j∈S∗

1
w∗1j

, i ∈ S∗1 and w̃∗0i(S
∗
0) =

w∗0i∑
j∈S∗

0
w∗0j

, i ∈ S∗0 .

3. Compute the bootstrap version of r(θ) at θ = θ̂N using the bootstrap version

of the empirical likelihood function

`(p, q) =
1

2

∑
i∈S∗

1

w̃∗1i(S
∗
1) log(pi) +

1

2

∑
i∈S∗

0

w̃∗0i(S
∗
0) log(qi) ,

where p and q are, respectively, the discrete probability measures over S∗1
and S∗0, with the normalization constraints (2.1), the parameter constraint

(2.2), and the constraint (2.5) for incorporating the baseline information

replaced, respectively, by∑
i∈S∗

1

pi = 1 ,
∑
i∈S∗

0

qi = 1 ,

∑
i∈S∗

1

pi y1i −
∑
i∈S∗

0

qi y0i = θ̂N ,∑
i∈S∗

1

pi xi =
∑
i∈S∗

0

qi xi .

4. For a predetermined B, repeat Steps 1-3 independently to obtain B boot-

strap copies of r(θ), all at θ = θ̂N :

r[1](θ) , r[2](θ) , . . . , r[B](θ) .

The typical choice of the value for B is 1,000. Let α ∈ (0, 1) and bα be

the lower 100αth quantile from the sequence given in Step 4. The bootstrap

calibrated (1 − α)-level empirical likelihood ratio confidence interval for θN is

constructed as

C =
{
θ|r(θ) > bα

}
. (2.7)

Finding the lower and upper boundaries of the confidence interval C requires

profiling. Detailed algorithms and computational code for finding empirical like-

lihood ratio confidence intervals can be found in Chen, Sitter and Wu (2002) and

Wu (2004, 2005). Finite sample performances of the interval C were investigated

through simulation studies to be presented in Section 4.

3. Two-Sample Empirical Likelihood with Post-Stratification by Pro-

pensity Scores

Pretest-posttest designs in the absence of randomization on treatment assign-

ments have brought challenges for data analysis. There exists a rich literature on
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analysis of observational data with such designs under an assumed model for the

potential response variables Y1 for treatment and Y0 for control. The population

level treatment effect is defined as θ = E(Y1) − E(Y0) where E(·) refers to the

assumed model. Samples are obtained for the treatment (R = 1) and the control

(R = 0). Without randomization of treatment assignments, the samples are not

representative of their respective populations since E(Y1|R = 1) 6= E(Y1) and

E(Y0|R = 0) 6= E(Y0). When data on covariates X are collected for all sampled

units, conditional models for Y1|X and Y0|X can be used for inference. Esti-

mation of treatment effect through conditional models often requires that the

characteristics of X for the treatment group and the control group follow the

same distributions, the covariates need to be balanced between the two groups.

Balancing covariates through propensity scores has been studied by several au-

thors, including Austin (2008, 2009), Imai and Ratkovic (2014) and Li, Morgan

and Zaslavsky (2015). Rosenbaum and Rubin (1984) proposed using subclassifi-

cation based on propensity scores, and Zanutto, Lu and Hornik (2005) provided

an application of the subclassification method. The idea was also investigated

by Lunceford and Davidian (2004) and Miratrix, Sekhon and Yu (2013) under

slightly different terms such as “stratification” or “post-stratification”. If we

define the treatment effect as the finite population mean of y1 minus the finite

population mean of y0 and estimate it using a design-based approach, we do not

need to bring in the covariates or the models, and balancing covariates does not

appear to be crucial. One nice thing about balancing covariates is that there is a

kind of matching of treatment and control subjects on x, and if under the model

the mean functions of y0 and y1 differ by a constant, the estimation should be

very efficient because of the matching.

It turns out that post-stratification by propensity scores provides an at-

tractive alternative formulation for the joint pseudo empirical (log) likelihood

function `(p, q). The key observation is that if the propensity scores ai = c are

a constant for all units, the normalized survey weights w̃1i(S1) = w1i/
∑

j∈S1
w1j

and w̃0i(S0) = w0i/
∑

j∈S0
w0j , where w1i = 1/(πiai) and w0i = 1/{πi(1−ai)}, do

not involve ai and reduce to normalized weights based on the basic design weights

di = 1/πi for the initial sample S. Post-stratification by propensity scores breaks

the initial sample into subsamples such that the propensity scores within each

subsample have similar values. From the efficiency point of view, this approach

may not do quite as well as adjustment by propensity scores, which is also what

we observed from simulation studies. However, It does balance the covariates

approximately within the post-strata, and it means that we have a bit of the
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benefit of the conditional modeling even if that is not done.

Let âi, i ∈ S be the estimated propensity scores based on model (2.6) and

order the n units in S according to the size of âi:

â(1) ≤ â(2) ≤ · · · ≤ â(n) .

The initial sample S can be divided into K subsamples of equal or similar sample

sizes based on suitable cut-offs of the estimated propensity scores. Let

S = Q1 ∪ Q2 ∪ · · · ∪QK

be the resulting post-stratification of S. Within each post-stratified sample Qk,

k = 1, . . . ,K, values of the propensity scores are similar. Let n =
∑K

k=1mk be

the corresponding breakdown of the sample sizes.

It is theoretically helpful (but not practically critical) to assume that there

exists a conceptual stratification at the population level with stratum population

size Nk, k = 1, . . . ,K such that N =
∑K

k=1Nk. Let Wk = Nk/N be the stratum

weights, which can be estimated by Ŵk = N̂k/N̂ , where N̂ =
∑

i∈S di and N̂k =∑
i∈Qk

di. It follows that N̂ =
∑K

k=1 N̂k and
∑K

i=1 Ŵk = 1. Let Qk = S1k ∪ S0k,

where

S1k =
{
i|i ∈ Qk and Ri = 1

}
, S0k =

{
i|i ∈ Qk and Ri = 0

}
.

Let n1k and n0k be the sample size of S1k and S0k, respectively. We have mk =

n1k + n0k, k = 1, . . . ,K.

One of the practical issues for post-stratification by propensity scores is the

choice of K. A larger K would result in post-stratified samples with more uniform

values of propensity scores within each subsample. However, a finer stratification

is associated with smaller sample sizes mk for Qk and much smaller sample sizes

n1k for S1k (or n0k for S0k) for the first and the last subsamples. Rosenbaum

and Rubin (1984) suggested using K = 5. Our simulation results also suggest

that K = 5 is a reasonable choice for moderately large sample sizes.

We define the joint pseudo empirical (log) likelihood function for the post-

stratified samples as

`(p1, . . . ,pK
, q1, . . . , qK

)

=

K∑
k=1

Ŵk

∑
i∈S1k

d̃i(S1k) log(pik) +

K∑
k=1

Ŵk

∑
i∈S0k

d̃i(S0k) log(qik) ,

where pk = (p1k, . . . , pn1kk) and qk = (q1k, . . . , qn0kk) are the discrete probability

measures over S1k and S0k, respectively, d̃i(S1k) = di/
∑

j∈S1k
dj , and d̃i(S0k) =

di/
∑

j∈S0k
dj , k = 1, . . . ,K. The estimated propensity scores are no longer used
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explicitly in defining the joint empirical likelihood function other than in forming

the stratification. The set of normalization constraints is given by∑
i∈S1k

pik = 1 ,
∑
i∈S0k

qik = 1 , k = 1, . . . ,K . (3.1)

The constraint associated with the parameter θN is given by

K∑
k=1

Ŵk

∑
i∈S1k

piky1i −
K∑
k=1

Ŵk

∑
i∈S0k

qiky0i = θ . (3.2)

The baseline information on x can be incorporated through the constraints

K∑
k=1

Ŵk

∑
i∈S1k

pikxi =

K∑
k=1

Ŵk

∑
i∈S0k

qikxi . (3.3)

Let p̂k and q̂k, k = 1, . . . ,K, be the maximizer of `(p1, . . . ,pK
, q1, . . . , qK

) under

constraints (3.1) and (3.3); let p̂k(θ) and q̂k(θ), k = 1, . . . ,K, be the maximizer

of `(p1, . . . ,pK
, q1, . . . , qK

) under constraints (3.1), (3.2), and (3.3) with a fixed

θ. The maximum empirical likelihood estimator of θN is given by

θ̂N =

K∑
k=1

Ŵk

∑
i∈S1k

p̂iky1i −
K∑
k=1

Ŵk

∑
i∈S0k

q̂iky0i .

The pseudo empirical (log) likelihood ratio statistic for θ is computed as

r(θ) = `(p̂1(θ), . . . , p̂K
(θ), q̂1(θ), . . . , q̂K

(θ))− `(p̂1, . . . , p̂K
, q̂1, . . . , q̂K

) .

The asymptotic distribution of r(θN) under the current setting, however, does not

seem to have a tractable form due to multiple sources of variation: the estimated

propensity scores âi based on an assumed model; post-stratification by âi; the

estimation of stratum population weights Wk; approximation of propensity scores

within each stratum by a constant.

For single-stage unequal probability sampling designs for the initial sample S,

we propose to use the following bootstrap procedures to obtain an approximation

to the sampling distribution of r(θN).

1. Select a sample S∗ of size n from the initial sample S using simple random

sampling with replacement (S∗ typically contains duplicated units from S).

2. Obtain the estimated propensity scores âi, i ∈ S∗ using data {(Ri,xi), i ∈
S∗} and the model (2.6).

3. Break the bootstrap sample S∗ into K subsamples Q∗1, . . . ,Q
∗
K

based on the

ordering of the âi, i ∈ S∗.
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4. Compute Ŵ ∗k using {di, i ∈ Q∗k}; Split Q∗k into S∗1k and S∗0k based on whether

Ri = 1 or Ri = 0; Calculate d̃i(S
∗
1k) = di/

∑
j∈S∗

1k
dj for i ∈ S∗1k and

d̃i(S
∗
0k) = di/

∑
j∈S∗

0k
dj for i ∈ S∗0k, k = 1, . . . ,K.

5. Compute r[1](θ) in the same way that r(θ) is computed, but use Ŵ ∗k , S∗1k,

S∗0k, d̃i(S
∗
1k), d̃i(S

∗
0k), and θ = θ̂N in the formulation of `(p1, . . . ,pK

, q1, . . . ,

q
K

), (3.1), (3.2) and (3.3).

6. Repeat Steps 1-5 independently B = 1,000 times to obtain r[1](θ), r[2](θ),

. . ., r[B](θ).

Let bα be the lower 100αth quantile from the simulated sequence given in

Step 6. The (1−α)-level pseudo empirical likelihood ratio confidence interval for

the treatment effect θN can be constructed as (2.7).

Under standard settings for stratified survey samples, the pseudo empirical

likelihood ratio statistic follows a scaled chi-square distribution (Theorems 3 and

4, Wu and Rao (2006)). A bootstrap method was described in Wu and Rao (2010)

and was shown to be valid if the sampling fractions within all strata are small.

The proposed bootstrap method takes into account of the post-stratification

through the estimated propensity scores, and is shown to perform well in the

simulation studies.

A major computational task is the constrained maximization of `(p1, . . . ,pK
,

q1, . . . , qK
) subject to (3.1), (3.2) and (3.3). A simple technique is to introduce

the factor 1/2, as in Section 2, and reformulate the problem as a single stratified

sample, with a total of 2K strata and stratum weights (Ŵ1/2, . . . , ŴK/2, Ŵ1/2,

. . . , ŴK/2). The reformulated problem can then be handled straightforwardly

by the algorithm of Wu (2004) on the empirical likelihood method for stratified

survey samples. The R code presented in Wu (2005) can be modified to handle

the current problem without any major difficulties. See Rao and Wu (2009) for

an overview on the formulation as well as computational aspects of empirical

likelihood methods for non-stratified and stratified complex surveys.

4. Simulation Studies

In this section we report results from a simulation study on performances

of the maximum pseudo empirical likelihood estimators for the treatment ef-

fect and pseudo empirical likelihood ratio confidence intervals under different

scenarios for the population and the missing-by-design mechanisms. The sur-

vey population consisted of N = 20,000 units, with five variables of interest:
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{(y1i, y0i, x1i, x2i, x3i), i = 1, . . . , N}. The x variables were generated using x1i ∼
Bernoulli(0.5) (gender), x2i ∼ Uniform(0, 1) (age), x3i ∼ Exponential(1) (size

measure of the unit). The two response variables were y1i under treatment and

y0i under control, and both are associated with the x variables through a linear

regression model

yti = β0t + β1tx1i + β2tx2i + β3tx3i + εti , i = 1, . . . , N , t = 1, 0 ,

where the εti were independently generated from N(0, σ2t ). The two auxiliary

variables x1i (gender) and x2i (age) have different impacts on the response in

terms of treatment or control and they played a bigger role than the variable x3i,

as is reflected by the choices (β11, β21, β31) = (1.0, 2.0, 0.3) and (β10, β20, β30) =

(2.0, 1.0, 0.3). The two intercepts β01 and β00 were chosen such that y1i > 0 and

y0i > 0 for all units. The residual variances σ2t , t = 1, 0 were used to control the

correlation coefficients ρt(y,x) between the response variable yti and the linear

predictor β0t + β1tx1i + β2tx2i + β3tx3i.

The values of the treatment assignment indicator Ri were generated for all

units in the survey population using a logistic regression model similar to (2.6).

We considered two scenarios.

(i) Ignorable missing-by-design: The propensity scores ai = P (Ri = 1|y1i, y0i,
x1i, x2i, x3i) = a(x1i, x2i,η) depend only on the two auxiliary variables gen-

der and age.

(ii) Nonignorable missing-by-design: The values of ai = P (Ri = 1|y1i, y0i, x1i,
x2i, x3i) = a(y1i, y0i,η) depend on both potential outcome variables y1i and

y0i.

The model parameters η were chosen to control the mean and the range of the

propensity scores. We considered unbalanced treatment and control assignments

with R̄N = N−1
∑N

i=1Ri
.
= 0.65, on average 65% of units would have chosen the

treatment group if selected by the initial sample. The survey population along

with the treatment assignments was held fixed for repeated simulation runs.

This assured that treatment assignments were not confounded with selection of

units for simulated samples. The parameter of interest was the treatment effect

θN = N−1
∑N

i=1 y1i −N−1
∑N

i=1 y0i.

We considered single-stage unequal probability sampling designs for the

initial survey sample S, selected by the randomized systematic PPS sampling

method of Goodman and Kish (1950) and Hartley and Rao (1962), with inclu-

sion probabilities πi = P (i ∈ S) ∝ x3i. In the simulation we added a constant
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c to all x3i to avoid very small size measures, which led to maxπi/minπi ≈
12 for the PPS samples. The simulated sample data can be represented by

{(Ri, y1i, y0i, x1i, x2i, πi), i ∈ S}. For all the calculations, however, the responses

only involved {y1i|i ∈ S and Ri = 1} and {y0i|i ∈ S and Ri = 0}. We consid-

ered sample sizes n = 200, 400 and 600, corresponding to sampling fractions 1%,

2%, and 3%, which were viewed as small. For n = 200, we encountered compu-

tational issues for the bootstrap calibration methods with the post-stratification

approach. The subsample sizes were mk = 40 with K = 5. Under the unbalanced

treatment assignments with R̄N

.
= 0.65, some bootstrap subsamples correspond-

ing to the low or high propensity scores could have no units belonging to the

treatment (or control) group. The issues disappeared completely for n = 600.

The results reported below are based on n = 400.

For each simulated sample, we first fit the logistic regression model (2.6)

to obtain estimated propensity scores âi, i ∈ S using data {(Ri, x1i, x2i), i ∈ S}.
This is the correct model for Scenario (i) but an incorrect model for Scenario (ii).

Results under Scenario (ii) would shed light on the consequences of analyzing

nonignorable missing-by-design pretest-posttest studies based on the ignorable

treatment assignment assumption. We considered six maximum pseudo empirical

likelihood estimators of θN using six different approaches.

A1. The naive two-sample pseudo empirical likelihood method, which is equiva-

lent to setting the propensity scores as a constant for the method presented

in Section 2 and using w̃1i(S1) = di/
∑

j∈S1
dj and w̃0i(S0) = di/

∑
j∈S0

dj
where di = 1/πi. The constraints (2.5) on auxiliary variables x1i and x2i
were not used.

A2. The naive two-sample pseudo empirical likelihood method with constraints

(2.5) on auxiliary variables x1i and x2i.

A3. The propensity score adjusted pseudo empirical likelihood method presented

in Section 2 without constraints (2.5).

A4. The propensity score adjusted pseudo empirical likelihood method presented

in Section 2 with constraints (2.5).

A5. The pseudo empirical likelihood method under post-stratification by the

estimated propensity scores, presented in Section 3 with the choice K = 5,

without constraints (3.3).

A6. The pseudo empirical likelihood method under post-stratification by the
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estimated propensity scores, presented in Section 3 with the choice K = 5,

with constraints (3.3).

Performance of a point estimator θ̂N was evaluated by the simulated relative bias

(in percentage, RB%) and mean squared error (MSE) computed as

RB% = 100× 1

M

M∑
m=1

(θ̂
(m)
N − θN)

|θN |
, MSE =

1

M

M∑
m=1

(
θ̂(m)

N
− θN

)2
,

where θ̂
(m)
N is the estimator θ̂N computed from the mth simulated sample and

M = 2,000 is the total number of simulation runs. Our simulations were pro-

grammed in R; the simulation codes are available from the authors upon request.

The range of the propensity scores, denoted by (amin, amax), has a major

impact on the performances of different methods. We considered the cases

(amin, amax) = (0.56, 0.73) and (amin, amax) = (0.20, 0.95). The first of them

represents situations where the propensity scores are less variable and hence the

missing-by-design mechanism leans toward missing completely at random. The

second represents the other end of the spectrum. For all scenarios investigated

in the simulation the average propensity score is 0.65.

The simulated relative bias (RB%) and the mean squared error (MSE) of

point estimators of θN for different settings are presented in Table 1. We have

several observations from the simulation results with n = 400.

1. When the estimation uses the correct model for the propensity scores and

(amin, amax) = (0.56, 0.73), the methods A3 and A4 of Section 2 and A5

and A6 of Section 3 all show excellent results. The relative biases are all

within 4% except for (amin, amax) = (0.20, 0.95) and ρt(y,x) = 0.30 where

the RBs are around 6%.

2. When the estimation uses an incorrect model for the propensity scores, the

methods A3−A6 provide acceptable results only for one particular setting:

(amin, amax) = (0.56, 0.73) and ρt(y,x) = 0.80. Here propensity scores are

relatively uniform and the correlation between y and x is strong.

3. The naive method A1 does not provide any valid results. The naive estima-

tor from method A2 with calibration constraints on auxiliary variables x1i
and x2i has excellent performance, very similar to A3 when (amin, amax) =

(0.56, 0.73), but better than A3 when (amin, amax) = (0.20, 0.95).

4. All methods under highly variable propensity scores ((amin, amax) = (0.20,

0.95)) coupled with misspecification of the propensity score model do not
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Table 1. Relative bias (in %) and mean squared error of point estimators of θN (I :
(amin, amax) = (0.56, 0.73), II : (amin, amax) = (0.20, 0.95); (i): P (R = 1|y,x) =
a(x1, x2), (ii): P (R = 1|y,x) = a(y1, y0)).

ρt(y,x) A1 A2 A3 A4 A5 A6
I (i) 0.80 RB% 14.3 −0.4 −0.8 −0.8 0.3 −0.9

MSE 0.040 0.010 0.010 0.010 0.011 0.010
0.30 RB% 11.6 −3.2 −3.8 −3.8 −2.7 −3.9

MSE 0.158 0.135 0.136 0.136 0.139 0.139
(ii) 0.80 RB% 11.4 3.2 2.7 2.7 3.6 2.7

MSE 0.033 0.011 0.011 0.011 0.012 0.011
0.30 RB% 22.6 19.7 19.4 19.4 19.6 19.4

MSE – – – – – –
II (i) 0.80 RB% 80.6 1.0 −2.7 −1.7 2.3 −2.1

MSE 0.667 0.014 0.020 0.015 0.016 0.015
0.30 RB% 77.6 −1.3 −6.3 −5.5 −2.4 −6.5

MSE 0.753 0.203 0.225 0.217 0.215 0.220
(ii) 0.80 RB% 53.8 18.5 16.9 17.0 18.9 17.0

MSE – – – – – –
0.30 RB% 104.2 91.1 90.4 90.4 91.7 90.5

MSE – – – – – –

produce acceptable results. All estimators are seriously biased for those

cases and the related MSEs are not reported in Table 1.

With n = 600, all scenarios with small relative biases for n = 400 continue to

have small biases with decreased mean squared errors. Where the relative biases

are unacceptably large for n = 400 and the corresponding methods are invalid,

the relative biases remain at the same magnitude, where the mean squared errors

are no longer relevant.

That the naive estimator from method A2 with calibration constraints on

auxiliary variables performs well is not a surprise as calibration has been shown

to be a useful tool to adjust for nonresponse; see, for instance, Chang and Kott

(2008). Chen, Wu and Thompson (2015) observe that the calibration approach

used in Huang, Qin and Follmann (2008) performs very well for the empiri-

cal likelihood-based estimation of the treatment effect in a randomized pretest-

posttest study. The use of calibration constraints on x in methods A4 and A6

provides mild improvement over A3 and A5 for some cases, but none are dra-

matically different.

Performances of pseudo empirical likelihood ratio confidence intervals are as-

sessed through average length (AL) and coverage probability (CP) of the interval
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Table 2. Average length and coverage probability of 95% confidence intervals for θN
(I : (amin, amax) = (0.56, 0.73), II : (amin, amax) = (0.20, 0.95); (i): P (R = 1|y,x) =
a(x1, x2), (ii): P (R = 1|y,x) = a(y1, y0)).

ρt(y,x) A1 A2 A3 A4 A5 A6
I (i) 0.80 AL 0.556 0.383 0.384 0.384 0.429 0.396

CP 83.6 94.9 95.0 94.9 96.1 94.9
0.30 AL 1.52 1.46 1.47 1.47 1.51 1.51

CP 94.6 95.7 95.7 95.8 95.7 95.4
(ii) 0.80 AL 0.562 0.386 0.387 0.387 0.444 0.398

CP 88.6 94.0 94.2 94.3 95.6 94.6
0.30 AL 1.52 1.46 1.47 1.47 1.52 1.51

CP 91.1 91.7 91.9 91.5 92.3 92.6
II (i) 0.80 AL 0.530 0.457 0.539 0.467 0.517 0.486

CP 0.0 94.5 94.8 93.3 95.3 94.6
0.30 AL 1.52 1.78 1.83 1.81 1.86 1.85

CP 49.5 93.9 93.8 93.7 95.2 94.4
(ii) 0.80 AL – – – – – –

CP 3.5 55.3 62.3 61.5 60.2 63.7
0.30 AL – – – – – –

CP 21.4 29.0 30.9 31.1 31.4 33.1

computed as

AL =
1

M

M∑
m=1

(
θ̂(m)

U
− θ̂(m)

L

)
, CP =

1

M

M∑
m=1

I
(
θ̂(m)

L
≤ θN < θ̂(m)

U

)
,

where
(
θ̂
(m)
L , θ̂

(m)
U

)
is the confidence interval computed from the mth simulated

sample and I(·) is the indicator function. Simulation results are reported in

Table 2. The performances of the six confidence intervals follow those of the point

estimators, if the point estimators perform well, the corresponding confidence

intervals also perform well. All methods fail when (amin, amax) = (0.20, 0.95) and

the model for propensity scores is misspecified.

5. The ITC Four Country Survey

The International Tobacco Control (ITC) Policy Evaluation Project was cre-

ated in 2002 to measure the effectiveness of national-level tobacco control policies

in selected countries which signed and ratified the Framework Convention on To-

bacco Control (FCTC). The ITC project is a prospective cohort study and first

started in Canada, USA, Australia, and the UK. The first wave ITC Four Coun-

try Survey used a stratified sampling design and conducted telephone interviews

of over 2000 adult smokers in each of the four countries. The initial group of
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respondents was followed in subsequent waves and a new cross-sectional replen-

ishment sample was added at each wave to make up for the reduced size of the

longitudinal sample due to attrition. The ITC survey questionnaires cover the

domains which are relevant to the implementation of FCTC: demographic vari-

ables, smoking behaviour, warning labels, advertising and promotion, light/mild

brand descriptors, taxation and purchase behaviour, stop-smoking medications

and alternative nicotine products, cessation and quitting behaviour as well as

key psychosocial measures. Thompson et al. (2006) contains further details on

the ITC Four Country Survey.

The ITC Four Country Survey conducted a pilot study at Wave 7 to evaluate

whether an online version of the survey would be a viable option for further

waves. The study was to determine the amount of cost savings that could be

achieved if some of the cohort participants completed the survey online, and

to determine whether some people could be retained who might otherwise be

lost. After the pilot study, it was decided that the web survey option would be

offered to all respondents starting from Wave 8. The Wave 8 Recontact Survey

employed a mixed mode for data collection, combining telephone interviews with

self-administered web surveys. Each recontact respondent of Wave 8 received

either an email invitation (if an email address was available at Wave 7) or a

mailed letter invitation to respond online. Among the 5135 recontact respondents

who were invited, 2006 (39%) participated through the web survey. Chen (2014)

provides detailed descriptions of the survey data set.

One of the research problems for mixed mode surveys is to examine whether

there is a mode effect in data collection. Web surveys are self-administered with

the questionnaires visually presented to the respondent while telephone surveys

require the reading of questions and possible answers in a particular order by the

interviewer. In addition, answers to certain questions may require a respondent’s

recall of activities in the past, and answering those questions online in a self-

controlled manner might differ from speaking to an interviewer.

We applied the methods developed in Sections 2 and 3 on two-sample em-

pirical likelihood for nonrandomized pretest-posttest studies to the ITC Four

Country survey to investigate a mode effect in data collection. The data set we

used was the Canadian sample of smokers present in both Wave 7 and Wave 8

who provided answers to a question on number of cigarettes smoked per day (y,

CPD). The data set contained n = 900 respondents, with n1 = 398 participating

through the web survey. Let µ1 be the population mean response of y in Wave

8 if everyone were to answer the question through the web survey and µ0 be the
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Table 3. Point estimates and 95% confidence intervals for the mode effect: The ITC
Canada survey (W8, all values multiplied by −1).

A1 A2 A3 A4 A5 A6
2.38 1.98 1.96 1.97 2.09 2.04

(0.9, 3.8) (0.5, 3.5) (0.5, 3.4) (0.5, 3.4) (0.6, 3.6) (0.5, 3.6)

population mean response of y if the survey were done entirely through telephone

interviews. The parameter of interest is θ = µ1 − µ0.
The ITC survey contains a long list of questions over several areas, and it

is reasonable to assume that the propensity scores of choosing the web survey

depend on certain basic demographic variables but not on some of the key vari-

ables to be measured. Chen (2014) contains detailed discussions on building

a model for the propensity scores with the ITC Four Country survey data set.

One interesting finding is that the variable on invitation method (“Email” versus

“Regular Mail”) is highly correlated to the treatment assignment. Chen (2014)

also presents balance checks among several covariates between the treatment

group and the control group. To simplify the application and for the purpose of

illustration, we fit the logistic regression model (2.6) involving only gender (x1)

and age (x2). It has been found that both variables are highly significant. The

fitted propensity scores ranged from 0.21 to 0.59. The Wave 7-8 longitudinal

weights were used and the survey design is treated as if it is single stage unequal

probability sampling. The six different approaches A1 − A6 described in Sec-

tion 4 are used to compute the point estimate θ̂ and the 95% confidence interval

(θ̂L, θ̂U) associated with each method. The results are presented in Table 3.

There are two major findings. First, the calibration method A2 and the

propensity score adjusted methods A3 and A4 give very similar results, while

A5 and A6, based on post-stratification of the propensity scores, provide slightly

different results. This is consistent with observations from the simulation results

reported in Section 4. Second, all methods show that there is a mode effect for

measuring CPD, with none of the 95% confidence intervals containing zero. On

average, the value of CPD reported through telephone interviews tends to be two

cigarettes higher than the one obtained by the web survey.

6. Concluding Remarks

We demonstrate in this paper that the pseudo empirical likelihood approach

can be used for nonrandomized pretest-posttest studies with observational sur-

vey data. Our proposed approaches provide design-consistent estimators as well
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as confidence intervals for the treatment effect, and allow the use of auxiliary

information through additional constraints.

The missing-by-design mechanism and the distribution of the propensity

scores are among factors that affect the effectiveness of these methods. There

might be scenarios, such as in the ITC Four Country Survey, where the propen-

sity scores of selecting the treatment most likely depend on basic characteristics

of the respondents rather than the variables to be measured, which lends itself

to the reasonable assumption of ignorable missing-by-design. Such scenarios can

be efficiently handled by the proposed approaches but testing for ignorable treat-

ment assignment has been shown in applications to be a challenging task. With

nonignorable missingness-by-design, strong assumptions about the model struc-

ture for the propensity scores or additional information are typically required

to obtain estimates for the propensity scores. Chen and Kim (2014) proposed

a two-phase sampling method to conduct a test for ignorable missingness using

additional information collected from the second phase sample. Wang, Shao and

Kim (2014) discussed an instrumental variable approach for identification and

estimation with nonignorable nonresponse. Shao and Wang (2016) studied semi-

parametric inverse propensity weighting methods for nonignorable missing data

assuming that information on an instrumental variable is available. Whether

these approaches can be applied to the missing-by-design pretest-posttest prob-

lems requires further investigation. Furthermore, rigorous asymptotic develop-

ments for the second proposed approach based on post-stratified samples have

not been pursued in this paper and remain as a challenging problem.
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