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Abstract: In observational studies, propensity score methods are popular for esti-

mating causal effects. With completely observed data, this approach is valid under

several assumptions; however, in practice data are often missing which can have

a substantial impact on the estimation. Current remedies to deal with missing

covariates in propensity score methods generally fall into two categories. Some

authors propose to account for the missing data patterns in propensity score esti-

mation. Others propose to first impute the missing data, then utilize conventional

propensity score adjustment methods. Both approaches assume that the data are

missing at random (MAR), and there is little discussion regarding the impact on

treatment effect estimation if covariates are missing not at random (MNAR). In this

paper, we first examine the implication of the MAR assumption under the potential

outcome framework. We then propose a sensitivity analysis method for assessing

the impact of a MNAR covariate on treatment effect estimation with a matching

estimator, with varying magnitudes of unmeasured confounding effect due to the

missing covariate. Our method takes full advantage of the information contained in

the partially missing covariate by matching on the observed portion and identify-

ing a bounding distribution for the missing portion. It can be interpreted similarly

as Rosenbaum’s sensitivity analysis, and the results are robust since we make few

parametric assumptions. We illustrate the application of the method using the

2012 Ohio Medicaid Assessment Survey (OMAS) to investigate the effect of health

insurance on health outcomes, where an important covariate, household income, is

partially missing.

Key words and phrases: Matching, not missing at random, propensity score, sensi-

tivity analysis.

1. Introduction

Modern causal inference methodology is built on the potential outcome

framework, which assumes the existence of a pair of outcomes for each subject,

one under treatment and the other under control. In observational data we can

never observe both potential outcomes for each subject at the same time. There-

fore causal inference can be thought of as a missing data problem where we try to

https://doi.org/10.5705/ss.202016.0320


2006 LU AND ASHMEAD

infer about the missing potential outcomes and estimate the causal effect. The as-

sumption that the unobserved potential outcomes are missing at random (MAR)

given observed confounders provides the basis for estimation of the treatment

effect. The missing data mechanism of the confounders plays a critical role in

estimating the causal effect. While some authors have focused research on under-

standing the impact of completely unobserved confounders (Rosenbaum (1987)),

an often overlooked detail in causal inference is partially missing confounders,

which seems inevitable in observational data.

It is quite challenging to handle missingness in both the potential outcomes

and covariates as the missing covariate not only has implications for the treat-

ment assignment, but it may affect the outcome as well. Without appropriate

adjustment of the partially missing confounder, the treatment effect estimate

may be biased. In observational studies, propensity score-based methods are

widely used to estimate the average causal effect, due to the lack of randomiza-

tion. The propensity score is commonly used to stratify the data, to construct

weights, or to create matched pairs. Propensity score-based methods are shown

to yield unbiased treatment effect estimates under certain assumptions, which

include treatment assignment ignorability and stable unit treatment values (Ru-

bin (1978), Rosenbaum and Rubin (1983), and Lunceford and Davidian (2004)).

These assumptions are usually not verifiable with observed data. For example,

the ignorability assumption implies that there is no unmeasured confounding

given the observed set of covariates.

There are two general strategies for dealing with missing covariate data in

the literature: a pattern-mixture model approach using a generalized propensity

score and a multiple imputation approach. Rosenbaum and Rubin (1984) pro-

posed the generalized propensity score, defined as the probability of treatment

conditional on a set of observed covariates and a missing data pattern indicator

e∗ = P (T = 1|Xobs,M), (1.1)

where T is the treatment indicator, Xobs are the non-missing values of the com-

plete data X, and M is a vector that indicates which variables in the complete

data X are missing. Let X∗ denote the non-missing values of X with indicators

(∗’s) in place of any missing data. Rosenbaum and Rubin proved that X∗ ⊥⊥ T |e∗,
meaning that e∗ balances the observed covariates along with the missing data

patterns. This does not imply that X ⊥⊥ T |e∗, meaning that the unobserved

values of X are not necessarily balanced conditional on e∗, only the missing-

ness patterns. Rosenbaum and Rubin recommended using separate models to
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estimate the generalized propensity score for each missingness pattern in large

studies, and treating the missing values as additional categories for discrete vari-

ables in a single model when there are a large number of missing data patterns.

D’Agostino Jr and Rubin (2000) extended the idea by using a general location

model to jointly model (Z,X,M), where model parameters are estimated using

EM and ECM algorithms.

Another popular alternative to handling incomplete data is imputation. Us-

ing Rubin’s methodology for multiple imputation (Rubin (2009)), Crowe, Lip-

kovich and Wang (2010) examined the properties of various multiple imputation

strategies in a simulation for a binary outcome using a stratification estimator.

They found that multiple imputation methods outperformed the complete case

analysis, and the best performance came when including the outcome in the im-

putation model along with the treatment and covariates. Hill (2004) considered

two modified imputation strategies for missing covariate data which either com-

bined treatment effect estimates across multiply imputed datasets or averaged the

propensity score estimates across the imputations, then estimated a single treat-

ment effect. Through simulation, the former procedure was found to be slightly

less biased as well as having a smaller Monte Carlo variance than the latter.

Qu and Lipkovich (2009) proposed a multiple imputation missingness pattern

(MIMP) approach for dealing with missing covariate data in a propensity score

analysis. Simulation results showed that the MIMP approach performed better

than a multiple imputation without indicators for the missing data pattern in

the presence of a MNAR mechanism. However, it showed no improvements over

multiple imputation under MCAR or MAR mechanisms. Interestingly, Rubin

and Rosenbaum’s pattern mixture model (Rosenbaum and Rubin (1984)), which

included no imputation, performed as well or better than MIMP in the MNAR

case. Mitra and Reiter (2011) proposed another method combining D’Agostino

and Rubin’s general location model with multiple imputation.

A key assumption for most existing methods is that covariates are missing

at random, but covariates not missing at random have seldom been discussed

in the literature. Moreover, most imputation approaches try to take advantage

of as much observed information as possible, i.e., the observed outcome is used

in the imputation. This practice ignores the subtle but critical point that the

observed outcome is a function of the potential outcomes, which cannot be fully

observed in nature. Our paper discusses the MAR and MNAR assumptions un-

der the potential outcome framework, and proposes a sensitivity analysis method

for assessing potential changes of causal effect with a MNAR covariate. In Sec-
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tion 2, we elaborate MAR and MNAR assumptions under the potential outcome

framework. In Section 3, we propose a sensitivity analysis approach to assessing

the impact due to a MNAR covariate. In Section 4, we discuss the large sample

approximation for the proposed method to speed up computations. In Section

5, we apply our method to a dataset which suffered from the missingness of an

important covariate. Lastly, in Section 6, we provide some guidelines on using

our method in practice, and discuss the limitations.

2. Ignorability: Missingness and Treatment Assignment

In the causal inference problem with missing covariates, the ignorability as-

sumption needs to be carefully examined. It involves two different but related

components: ignorability of missing covariates and ignorability of the treatment

assignment.

2.1. Notation

To facilitate the discussion, we introduce the following notation:

T : Treatment indicator (T = 1 for treated and T = 0 for control)

Y 1: Potential outcome under treatment

Y 0: Potential outcome under control

Y : Observed outcome, Y = T × Y 1 + (1− T )× Y 0

X: Fully observed covariates

Z: A partially observed covariate

R: Response indicator for Z (R = 1 for observed and R = 0 for missing)

The observed data vector includes (T, Y,X,Zobs, R), and the missing data

vector includes ((1−T )Y 1, TY 0, Zmis). We only focus on the case with a partially

missing covariate in this paper. The fully missing covariate case is equivalent to

the the unmeasured confounder problem in causal inference, and it is usually

handled with a sensitivity analysis approach such as Rosenbaum (1987) that

varies the assumption about treatment assignment ignorability.

2.2. Ignorability assumptions

There are two important ignorability assumptions for causal inference with

partially missing covariates, one for treatment assignment and the other for the

missingness mechanism. Following Rosenbaum and Rubin (1983), in general,

with confounders X and Z the strongly ignorable treatment assignment assump-

tion implies:

(Y 1, Y 0) ⊥⊥ T |X,Z.
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When Z is fully observed, this is the classic causal inference problem. When

Z is only partially observed, strictly speaking, the strongly ignorable treatment

assignment assumption does not hold because it is necessary to condition on a

variable with unobserved values to achieve conditional independence between the

treatment and potential outcomes. To proceed, we need to make an additional

assumption on the missingness mechanism.

If the missingness of Z depends only on the observed X, an ignorable missing

or MAR case, we can obtain an unbiased estimate of the population average

treatment effect (PATE), ∆PATE = E(Y 1 − Y 0), using the observed data, as

shown in the following proposition:

Proposition 1. Assume the strongly ignorable treatment assignment defined

above and that the missingness of the covariate Z is ignorable depending only

on X (R is independent of all other variables given X). Then the population

average treatment effect can be unbiasedly estimated based on the observed data.

Proof. Since the missingness of Z depends only on X, we note that Z is missing

completely at random (MCAR) given X. Therefore, we have

(Y 1, Z, T ) ⊥⊥ R|X.

This implies that Y 1 ⊥⊥ R|X,Z, T , the marginal mean of Y 1|X,Z, T is the same

regardless of R:

E(Y 1|X,Z, T ) = E(Y 1|X,Z, T,R = 1).

Under the strong ignorability of treatment assignment, we have E(Y 1|X,Z, T ) =

E(Y 1|X,Z). The fact that Z is MCAR also implies (Y 1, Z) ⊥⊥ R|X. Then we

know Y 1 ⊥⊥ R|X,Z, which leads to

E(Y 1|X,Z) = E(Y 1|X,Z,R = 1). (2.1)

So, we have E(Y 1|X,Z, T,R = 1) = E(Y 1|X,Z,R = 1).

Similarly, we can show E(Y 0|X,Z, T,R = 1) = E(Y 0|X,Z,R = 1). Then,

∆PATE = E(Y 1 − Y 0) = E{E(Y 1 − Y 0|X,Z)} = E{E(Y 1 − Y 0|X,Z,R = 1)}
= E{E(Y 1|X,Z,R = 1)− E(Y 0|X,Z,R = 1)}
= E{E(Y 1|X,Z, T = 1, R = 1)− E(Y 0|X,Z, T = 0, R = 1)}
= E{E(Y |X,Z, T = 1, R = 1)− E(Y |X,Z, T = 0, R = 1)}

where the third equality follows from (2.1). To obtain the overall population av-

erage effect, the outer expectation is taken over the joint distribution of (X,Z).

Even though this joint distribution is not directly observed due to missing data, it
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can be recovered since Z is MCAR givenX. Noting that P (X,Z) = P (Z|X)P (X),

one can capture the conditional distribution of Z given X by either assuming a

parametric distributional relationship between X and Z or imputing Z based on

X.

For imputation methods dealing with missing covariate data, many authors

(Qu and Lipkovich (2009), Crowe, Lipkovich and Wang (2010)) propose to include

the observed outcome Y in an effort to take advantage of all available information.

Even if the outcome is not related to the missingness mechanism, by its inclusion

in the confounder set we relate Z to Y . Therefore, Y may provide information

about the distribution of Z whether it is related to its missingness or not. This

is a plausible approach but its implication has not been fully explored. Under

the potential outcome framework, the observed Y is an intermediate variable, as

a function of T , Y 1, and Y 0.

Assuming that the missingness depends on Y has complex implications. It

essentially assumes that the missingness depends on Y 1 for the treatment group

and Y 0 for the control group. Simply saying that missingness depends on ob-

served Y tends to downplay the importance of T . If the treatment has any effect,

we need to adjust both T and Y to capture the missing information correctly. A

small simulation study illustrates that imputing Z solely using observed Y gen-

erates biased results even if the missingness can be characterized as a function

of Y .

In this simple example, we simulated Y 0 ∼ N (50, 10) and used a constant

effect model, Y 1 = Y 0 + 10. We considered one covariate Z set to be Z =

Y 0 + ε, where ε ∼ N (0, 1). We assumed Z partially missing, and its missingness

depended on Y , in the sense that missing occurs when Y > 55. The treatment

group was randomly assigned to units with a 50% probability independently of

everything else. Using the observed data, we imputed for the missing Zs in two

ways. Using the fully observed data, we fit a linear model using only Y or using

both T and Y to impute for Z. The simulation was repeated 5,000 times with a

sample size of 100. Table 1 presents the results of percentage bias of Z’s mean

after imputation for treated and control groups, with missing data rates of 30%

on average.

The estimates of the covariate mean are biased in both groups when only Y

is used in imputation. This is because the distribution of Z|Y = y differs from

the distribution of Z|Y = y, T = 1 or the distribution of Z|Y = y, T = 0 (due

to the non-zero treatment effect). Note that (Z|Y = y, T = 1) = (Z|Y 1 = y)

and (Z|Y = y, T = 0) = (Z|Y 0 = y). This implies that when Y is used in
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Table 1. Bias associated with imputation based on observed outcome.

T = 0 T = 1

True Z̄ 50 50
% Bias of Z̄, using only Y −3.6 4.9
% Bias of Z̄, using T and Y 0.009 0.018

the imputation model, we should either impute Z separately for the treated and

control units or include the treatment indicator T in the model as well.

In reality, things are likely much more complicated than this. In the next

section, we propose an approach based on sensitivity analysis to gauge the impact

of MNAR covariate on treatment effect estimation.

3. Covariates Missing Not At Random

If the missingness of the covariate depends on unobserved values, we should

treat the missing as MNAR. For example, the missingness may depend on the

covariate’s own values, or another unobserved variable. To investigate the impact

of MNAR covariates on the causal effect estimation, we propose a sensitivity

analysis strategy for a matching estimator to handle the observed component

and the missing component separately. We use propensity score matching to

balance the observed data and identify bounds on the treatment effect p-value

due to the missing covariate given a hypothetical parameter that represents the

assumed association between the variable with missing data and the treatment

assignment.

We assume a relationship between the treatment assignment and covariates

based on a logit model, which allows us to mathematically identify the bounds for

the p-value of the test of no treatment effect for various magnitude of the sensitiv-

ity parameter. Then we can reach qualitative conclusions on how likely the causal

findings will change due to a partially observed confounder that is MNAR. The

larger the hypothetical parameter value required to change the qualitative con-

clusion, the less likely the causal estimation is affected by the MNAR covariate.

This is similar to the idea of Rosenbaum’s sensitivity analysis for unmeasured

confounding (Rosenbaum (1987)), but the setup is more general. It handles a

missing covariate with arbitrary missing rate. With 100% missingness, this is a

unmeasured confounding problem and our formula is equivalent to Rosenbaum’s

sensitivity analysis. With 0% missingness, all confounders are observed and our

method is simplified to the conventional propensity score matching approach.

When the missing data fraction is low or the causal relationship is very strong
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based on the observed data, even an MNAR confounder may not change the

study conclusion and our approach provides a way to gauge how likely this is

the case. This is very useful for practitioners since it adds substantial robust-

ness to the study findings, eliminating questions related to different missing data

mechanism assumptions in the analysis.

3.1. Identifying bounds for the causal effect under MNAR

Following the notation outlined in section 2.1, we assume that the treatment

assignment T is strongly ignorable given (X, Z). If Z is fully observed, adjusting

for the propensity score including both X and Z would suffice to remove the

confounding bias. The propensity score can have a very general form:

e = P (T = 1|X, Z) = g−1(f(X) + γZ), (3.1)

where g() denotes the link function and f() is any function with respect to

covariate vector X. We can also assume that

Z ⊥⊥ X. (3.2)

In practice this assumption has little impact because we could replace Z with

Z ′ = Z−E(Z|X), which, while not necessarily independent of X, is uncorrelated

with X (Rosenbaum (1987)).

When Z is only partially observed, we need to further assume a certain

functional form of the relationship between Z and T in order to identify the sen-

sitivity. We pick the logit model as inspired by Rosenbaum’s sensitivity analysis

and write the propensity score as

e = P (T = 1|X, Z) = logit−1(f(X) + γZ) =
exp(f(X) + γZ)

1 + exp(f(X) + γZ)
. (3.3)

We assume that (3.3) is the true relationship between T,X, and Z going forward.

In practice, e cannot be estimated directly due to the missingness of Z, so we

instead work with the generalized propensity score which includes the response

indicator and is written as

e∗ = P (T = 1|X, Zobs, R). (3.4)

The generalized propensity score e∗ is not known in practice either, but it can

be estimated. We discuss how to estimate e∗ in Section 3.2.

Assuming the true generalized propensity score e∗ is known, it will balance

the observed covariates and the missing data patterns when Z is not observed

(Rosenbaum and Rubin (1984)). Assume we create S matched pairs exactly on

e∗ and R with one treated and one untreated subjects in each pair. Specifically,
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we first match on R to ensure a perfect balance on missingness status, and then

match on e∗ to ensure balance on X and Zobs. Therefore, among the matched

pairs with completely observed data (R = 1), both X and Z are balanced to

remove the confounding. Among the matched pairs with missing data (R = 0),

only X values are balanced. Since the exact values of Z are not observed, the

treatment odds in each pair may differ by exp(γ(z − z′)), where z and z′ are the

unobserved values of Z for the matched pair.

Under the potential outcome framework, let (Y 1
s1, Y

0
s1) denote the pair of

potential outcomes for first unit in the sth pair. Then {(Y 1
s1, Y

0
s1), (Y

1
s2, Y

0
s2)} are

the two pairs of potential outcomes in this matched pair. Assuming an additive

treatment effect τ , we can write the potential outcomes as

Y 1
s1 = Y 0

s1 + (Ts1)τ and Y 1
s2 = Y 0

s2 + (Ts2)τ.

The observed outcomes are then

Ys1 = Ts1Y
1
s1 + (1− Ts1)Y 0

s1 and Ys2 = Ts2Y
1
s2 + (1− Ts2)Y 0

s2.

If Ds is the difference in observed responses, then

Ds = Ys1 − Ys2
= Ts1(Y

0
s1 + Ts1τ) + (1− Ts1)Y 0

s1 − {Ts2(Y 0
s2 + Ts2τ) + (1− Ts1)Y 0

s2}
= Y 0

s1Ts1 + τTs1 + (1− Ts1)Y 0
s1 − {Y 0

s2Ts2 + τTs2 + Y 0
s2(1− Ts1)}

= τ(Ts1 − Ts2) + Y 0
s1(Ts1 + 1− Ts1)− Y 0

s2(Ts2 + 1− Ts2)
= (Y 0

s1 − Y 0
s2) + (Ts1 − Ts2)τ.

Let Vs = Ts1−Ts2. Then the treated-minus-control difference in responses in sth

pair is DsVs, where

DsVs =
{

(Y 0
s1 − Y 0

s2) + (Ts1 − Ts2)τ
}

(Ts1 − Ts2)
= (Ts1 − Ts2)(Y 0

s1 − Y 0
s2) + (Ts1 − Ts2)2τ

= (Ts1 − Ts2)(Y 0
s1 − Y 0

s2) + τ.

If each unit in a matched pair has the same probability of treatment assignment e,

then the distribution of (Ts1 − Ts2)(Y 0
s1 − Y 0

s2) is centered at zero, which implies

that the mean or median of the S treated-minus-control differences yields an

estimate of τ .

Without further parametric assumptions, the Wilcoxon signed-rank statistic

is used; it can be represented as

T = t(D,V) =

S∑
s=1

I(VsDs > 0)q(Ds),
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where q(Ds) is the rank of |Ds|. The Wilcoxon signed-rank statistic is not the

only statistic that can be used for this method. For example, the treated minus

control differences could instead be used. However, to compute the null distri-

bution for such a statistic it is necessary to compute every possible treatment

assignment permutation for the set of matched pairs. The signed-rank statistic is

more accessible because a closed-form solution for the approximate distribution

is available.

Consider the assumptions:

(B.1) Treatment assignment is strongly ignorable given (X, Z).

(B.2) Treatment assignment is specified by the logit model (3.3).

(B.3) S treated/control pairs are matched on R and the true generalized propen-

sity score e∗.

Let ws = zs1 − zs2, the difference in values of Z for a matched pair, and

w be the vector of the S observed ws values. Let B be the set containing the

2S possible treatment assignments of the matched pairs. Define nobs to be the

number of pairs for which Z is not missing, nobs ≤ S.

Proposition 2. Under assumptions (B.1) through (B.3) and under the null

hypothesis of zero treatment effect, for each k

pr{t(D,V) ≥ k|D = d,X,Z,R = r} = pr{t(d,V) ≥ k|W = w,R = r} (3.5)

=
∑
v∈B

I(t(d,v) ≥ k)

(
1

2

)nobs ∏
s∈{rs=0}

exp((1/2)γvsws)

exp((1/2)γws) + exp((−1/2)γws)

= hk(d,w). (3.6)

The proof is included in the Appendix.

To identify the explicit form of the bounds on the p-value, we make one

additional assumption on Z. We assume that Z ∈ [0, 1] so that ws ∈ [−1, 1] and

the log odds of treatment differ by at most γ for a matched pair with missing

Z values. This assumption is minor because, as long as Z is bounded, which is

usually the case in data, we can always rescale Z to be within the range of 0

and 1.

Since W is not completely observed, we can calculate a bound for (3.6) using

the “least favorable” value of w and some estimate of γ. “Least favorable” refers

to selecting w to create a conservative bound. Rosenbaum (1987) shows that

the least favorable w is correlated with d. Then setting ws equal to 1 or −1
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(whichever is in the same direction as ds) for all unobserved values makes (3.6)

larger and thus more conservative.

Some intuition about the least favorable value is as follows. Assume that

the treatment effect τ is positive and that γ > 0 (Z is positively associated with

treatment). If the treatment difference d > 0 , then w = 1 would account for

some of the difference. This is because w = 1 implies that the first observation

in the pair was more likely to get the treatment, which in turn had a positive

effect on the outcome, giving the first observation higher probability of having a

larger outcome.

The most extreme w is positively associated with D, so it can explain away

the observed association as much as possible. Let w̃(d)s = sgn(ds) when Rs = 0

and w̃(d)s = ws when Rs = 1. Also take w̃∗(d)s = −sgn(ds) when Rs = 0 and

w̃∗(d)s = ws when Rs = 1. Then we can identify the bounds for P (T (D,V) ≥
k|D = d,W = w) with the following.

Proposition 3. Assume conditions (B.1) through (B.3), the null hypothesis of

zero treatment effect, and that γ ≥ 0 hold. Also assume that the partially observed

covariate Z ∈ [0, 1]. Then for each possible w

hk(d, w̃
∗(d)) ≤ P (T (D,V) ≥ k|D = d,W = w) ≤ hk(d, w̃(d)). (3.7)

A proof can be found in the Appendix for Proposition 3; it follows from the

idea of Rosenbaum (1987).

3.2. Estimating the generalized propensity score

We do not observe the generalized propensity score for each unit, and there-

fore must estimate it. In our scenario we only have two missing data patterns:

missing data for Z and no missing data. Consider estimating the generalized

propensity scores using logistic regression under the model

log
pr(T = 1|X, Zobs, R)

pr(T = 0|X, Zobs, R)
= β′X + ηI(R = 1)Zobs + αI(R = 0). (3.8)

Ideally, this model should balance the observed covariates and missing data pat-

tern. Specifically, the model building for propensity score can be an iterative

process that should follow the general guidelines in Rubin (2007). Another op-

tion would be to estimate the generalized propensity score separately for each

missing data pattern, but we prefer to borrow strength in case of a small sample.

In an extension of this method with multiple missing data patterns, it might be

necessary to collapse patterns with small sizes using techniques as suggested in

Qu and Lipkovich (2009).
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4. Large Sample Approximation

The rank-based test statistics are not easy to compute. Especially, in the

presence of missing data, we have to vary the magnitude of γ to assess the impact

over a wide range of values. This implies that we need to calculate a series of

p-values. In this section, we provide a large sample approximation to the test

statistic based on the normal distribution, which is easy to compute.

4.1. Normal approximation

We derive the mean and variance of the test statistic t(D,V) under the null

hypothesis of no treatment effect when W = w̃(d), which provides the upper

bound of the p-value for our test. This computation is conditional on the ranks

that have missing data. Under the null hypothesis τ = 0, our test statistic is

T = t(D,V) =
∑
I(VsDs > 0)q(Ds). Reorder the matches by their ranked

differences q(D), and let the subscript i, i = 1, . . . , S denote the ordered pairs.

In the simplest case when there are no ties in the ranks, q(Di) = i. Then define

Pi = I(ViDi > 0)q(Di), i = 1, . . . , S. We can write T =
∑
Pi.

When Ri = 1, Vi = 1 with probability 1/2 and Vi = −1 with probability 1/2.

This implies that P (ViDi > 0) = 1/2 for any Di. Thus Pi takes on the value

q(Di) with probability 1/2 and 0 with probability 1/2.

When Ri = 0, Pi takes on the value q(Di) with probability

P (Pi = q(Di)|Ri = 0) =
exp((1/2)γ)

exp((1/2)γ) + exp((−1/2)γ)
. (4.1)

which follows from considering two cases. When Di > 0, w = w̃(d) = 1. Thus

P (Vi = 1|Ri = 0,W = 1) =
exp((1/2)γ(1))

exp((1/2)γ(1)) + exp((−1/2)γ(1))
.

When Di < 0, w = w̃(d) = −1. We know

P (Vi = 1|Ri = 0,W = −1) =
exp((1/2)γ(−1))

exp((1/2)γ(−1)) + exp((−1/2)γ(−1))
,

then

P (Vi = −1|Ri = 0,W = −1) = 1− exp((1/2)γ(−1))

exp((1/2)γ(−1)) + exp((−1/2)γ(−1))

=
exp((1/2)γ(1))

exp((1/2)γ(1)) + exp((−1/2)γ(1))
.

I(ViDi > 0) = 1 holds when Di > 0 and Vi = 1 or when Di < 0 and Vi = −1. So

we have the distribution of Pi as Pi = q(Di) with probability at (4.1), and that

Pi = 0 otherwise.
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We can generalize our probabilities as

f(ri) =
exp((1/2)riγ)

exp((1/2)riγ) + exp((−1/2)riγ)
,

which equals 1/2 when ri = 0. Then we have

E

(
S∑
i=1

Pi

)
=

S∑
i=1

E(Pi) =

S∑
i=1

f(ri)q(Di) = µ. (4.2)

As the Pi’s are mutually independent, we have

var

(
S∑
i=1

Pi

)
=

S∑
i=1

var(Pi).

Then

var(Pi) = E(P 2
i )− {E(Pi)}2 = q(Di)

2f(ri)− {q(Di)f(ri)}2

= q(Di)
2f(ri)− q(Di)

2f(ri)
2 = q(Di)

2f(ri){1− f(ri)}

which implies that∑
var(Pi) =

S∑
i=1

q(Di)
2f(ri){1− f(ri)} = σ2. (4.3)

These results hold generally regardless of missing data rates. When γ = 0

(when there is no missing data), the mean and variance expressions (4.2) and

(4.3) simplify to the traditional mean and variance expressions of the normal

approximation to a Wilcoxon signed-rank test. When all pairs have missing

data for Z (100% missing), they simplify to Rosenbaum’s sensitivity analysis

expressions when Z is an unobserved confounder (Rosenbaum (1987)). For any

missing data rate in between, it is a mixture of ri taking values from 0 and 1’s.

When using the Wilcoxon signed-rank test we need a modification to the

test statistic because of ties between matched pair outcome differences (Ds =

Ys1 − Ys2 = 0). We adopt the method described in Section 3.1 of Hollander and

Wolfe (1999) to deal with this circumstance. If there are zero values in matched

pair outcome differences Ds, discard the non-zero values and redefine the number

of matched pairs S appropriately.

4.2. Calculating the p-value

For a given value of the sensitivity parameter, γ, we use the expressions (4.2)

and (4.3) as the null mean and variance of our test statistic t(D,V) and calculate

the p-value of our observed data. We take the upper bound of the p-value to be

conservative. Let γs be the assumed sensitivity value for γ, then the normal
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approximation of our test statistic is given by

Z∗γs =
t(D,V)− µγs√

σ2γs

, (4.4)

where µγs and σ2γs are defined by (4.2) and (4.3) for a given value γs.

If we are testing the one-sided alternative of a positive treatment effect,

H0 : τ = 0 vs. H1 : τ > 0, then the p-value for a given γs is calculated as

p = P (Z > Z∗γs), where Z ∼ N(0, 1). If we are testing the two-sided alternative

H0 : τ = 0 vs. H1 : τ 6= 0, the calculation is slightly more complicated. Let Z∗0
be the value of Z∗ when γs = 0, the unadjusted value. To ensure that the p-value

is larger than the unadjusted value, if Z∗0 > 0, then the p-value is given by

p(γs) = min[2×min(0.5, P (Z > Z∗γs)), 2×min(0.5, P (Z > Z∗−γs))]. (4.5)

If Z∗0 < 0 then

p(γs) = min[2×min(0.5, P (Z < Z∗γs)), 2×min(0.5, P (Z < Z∗−γs))]. (4.6)

5. Data Example

While a majority of adults ages 19 through 64 years in Ohio had employer-

sponsored health insurance (54.4%) in 2012, approximately one out of every

six adults ages 19 through 64 years were uninsured (17.3%) Tumin, Ashmead

and Sahr (2013). Using the 2012 Ohio Medicaid Assessment Survey (OMAS), a

dual-frame telephone health survey representative of Ohio’s non-institutionalized

adults, we are interested in estimating the effect of health insurance coverage on

the self-rated health of adults 19–64 years of age with incomes between 138%

and 400% of the FPL (Federal Poverty Level). This is a relevant segment of the

population in reference to the healthcare insurance exchange of the 2010 Patient

Protection and Affordable Care Act (ACA).

In the OMAS, there are a series of questions asking about the respondents’

income, like most surveys, some people chose not to provide an answer to such

questions. In the 2012 OMAS, self-reported annual household income is missing

for 18% of the data, while no other variable has a missing rate more than 5%.

OMAS has provided a complete dataset with missing values imputed by either

hot-deck imputation or regression imputation. For our analysis we first created a

study population dataset consisting of adults with reported or imputed incomes

between 138% and 400% FPL and reported or imputed ages between 19 and 64

years.

Household income is a key factor in determining health insurance status,
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could be related to health outcomes, and is likely to be missing not at random

(Gelman and Hill (2006)). To illustrate our proposed methodology, we treat in-

come as the only missing covariate in the analysis. After discussions with content

experts, we included 13 covariates available to us in the survey in the analysis

as predictors in the propensity score model. These variables were race-ethnicity,

age, gender, working status, education, disability status, income, county type,

children in the household, marital status, smoking status, drink alcohol, and men-

tal health distress. The outcome of interest was self-rated health status based on

a five-point Likert scale (1 = Excellent, 5 = Poor).

In total there were 3,920 persons in our analytical dataset, 483 without

health insurance and 3,437 with health insurance. We regarded those without

health insurance as “treated” and calculated the treatment effect as the differ-

ence between those not having insurance and those do have. We estimated the

“average treatment effect on the treated” (ATT), ATT = E(Y 1 − Y 0|T = 1).

This can be interpreted as what would have happened to those uninsured if they

had been insured. The missing data rate for income was 17% for those without

health insurance and 18% for those with health insurance. We computed the

propensity score, matched pairs, and the treatment effect for different missing

data assumptions.

We used R (R Development Core Team (2008)) for data analysis, and the

Matchby function in the package Matching (Sekhon (2011)) with a caliper of 0.25

standard deviations of the propensity score in order to make treatment-control

matches. First, under MCAR, a complete case analysis that excluded those

units with missing income resulted in 384 matched pairs with a mean difference

of self-rated health status of 0.03, which implies having health insurance tends to

improve health status by 0.03 points on average. The p-value for the one-sided

Wilcoxan signed-rank test was 0.3262. If the cases without missing data are

representative of the entire target population, there is no evidence of an effect of

insurance status on self-reported health status.

In comparison, we also included two other MAR-based methods in the data

analysis. First, we used the OMAS imputed values for income to estimate the

propensity score and create matched pairs. Using the imputed values we created

464 matched pairs with a mean difference of 0.20 and a Wilcoxan signed-rank test

p-value of 0.0017. This implies that if the MAR assumption and the parametric

model used in the OMAS’s imputation hold, there is significant evidence of a

treatment effect. Additionally, we utilized the method of Qu and Lipkovich

(2009) for an additional comparison. This method used a weighting estimator
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(instead of a matching estimator) of the ATT, so the results might not be as

comparable for that reason. We used 5 multiple imputations of the missing

values of income and 500 bootstraps of the data to estimate the within-imputation

variance. The analysis found a highly significant estimated mean difference of

self-rated health status of 0.83 points (p < 0.0001). These results are summarized

in Table 2.

Analyses based on MCAR and MAR show different results. This implies

that the missing data mechanism plays a role in how to interpret the evidence

from the data. It is sensible to explore further when the missing data differ from

the observed data in some unknown way. As pointed out by many researchers,

the missingness of income is more likely to be MNAR (Gelman and Hill (2006)).

So we applied our sensitivity method to this data to gain more insight on what

the inference on the treatment effect might be if income is MNAR. Including

units with missing income and estimating the generalized propensity score with

a missing variable indicator resulted in 459 matched pairs and a mean difference

was 0.13 points. The p-value for the one-sided Wilcoxon signed-rank test was

0.046. This result gives more evidence towards an effect of insurance status on

self-reported health status, but we have not taken into account that the missing

data may be MNAR. On this same set of matched pairs, we applied our proposed

sensitivity method to investigate how the conclusions might change if income is

MNAR. The p-values for this method along with the γ values are presented in

Table 2 (labeled as “18% missing”). It shows that the p-value jumps over the

threshold of 0.05 for a small deviation from MAR (γ > 0). The sensitivity p-

value increased to above 0.1 for γ > 0.05, which means a potential 5% difference

in odds of having insurance, due to missing income, may account for the ob-

served health status discrepancy. The sensitivity p-values increased quickly as

γ went up. This implies the causal effect estimated based on MAR assumption

is sensitive to a small influence from the unknown income if the missing data

is MNAR. From a practical perspective, this is plausible since income is such

an important determinant for health outcomes. Therefore, we need to be very

careful interpreting the findings from the observed data.

To gauge the impact due to a different missing data rate, we used some of

the imputed values in the OMAS dataset at random so that 9% of the income

values would be missing (half of the original missing rate). We then repeated

the propensity score estimation and matching using the generalized propensity

score and our method. As shown in Table 2 with a smaller missing data rate, the

observed association is slightly more robust to hidden bias. It remains significant
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Table 2. Comparison of OMAS analysis results.

Method p-Value
Complete Case Analysis 0.3262
Generalized PS 0.0459
OMAS Imputed Values 0.0017
Qu and Lipkovich < 0.0001
MNAR Sensitivity, 18% missing, γ = 0 0.0459
MNAR Sensitivity, 18% missing, γ = 0.05 0.1008
MNAR Sensitivity, 18% missing, γ = 0.1 0.1924
MNAR Sensitivity, 18% missing, γ = 0.2 0.4782
MNAR Sensitivity, 18% missing, γ = 0.3 0.7763
MNAR Sensitivity, 9% missing, γ = 0 0.0174
MNAR Sensitivity, 9% missing, γ = 0.05 0.0447
MNAR Sensitivity, 9% missing, γ = 0.1 0.0987
MNAR Sensitivity, 9% missing, γ = 0.2 0.3187
MNAR Sensitivity, 9% missing, γ = 0.3 0.6350

for a small influence due to the MNAR covariate with γ = 0.05. Overall, it still

suggests that the significant findings under MAR are sensitive to non-ignorable

missing income data. From a statistical perspective, this is because the matched

pairs with missing income are associated with some large outcome differences,

which contribute large rank scores in the test. The uncertainty of these income

values could substantially weaken the significance of the test under the worst

case scenario.

6. Discussion

The implementation of our proposed method is simple, similar to how Rosen-

baum’s sensitivity analysis was implemented. First we make inference assuming

MAR (setting the sensitivity parameter to zero). If the hypothesis test is signifi-

cant, we then increase γ to the point where the test is no longer significant. This

tells us how sensitive the causal conclusion is to assumptions about the missing

data. Practically, it remains a question how to effectively choose the value of γ to

assess the sensitivity. Since the missing part of the covariate is not ignorable, it

is hard to guess the true value of γ. However, in some occasions, the researchers

may have a better idea of γ. For example, if there are external data on the

covariate and treatment assignment from a similar population, we can estimate

their association and use it as a reasonable value for γ. Or we may consult the

content expert to solicit a range of reasonable values for γ.

There are two limitations of the method. First, our proposed method can be
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quite conservative due to the fact that we find the bounding distribution using

the “least favorable” approach. The method does not assume any parametric

assumption for the non-ignorable missing data, only a logit treatment assign-

ment model. We follow Rosenbaum’s sensitivity analysis framework to assess

the impact of a MNAR covariate on treatment effect estimation. The goal is

to evaluate the robustness of the results based on observed data if there is a

non-ignorable missing covariate. This approach is designed to be conservative,

in the sense that, if the observed finding remains significant under a moderate

to large influence from the MNAR covariate, the result is trustworthy. The con-

servativeness of the method depends on several factors, including the strength of

evidence contained in the observed data, the belief of the impact of the MNAR

covariate and the missing data rate. These factors vary from study to study.

Similar to what is shown in Rosenbaum (2002), some studies are sensitive to

small influence from missing covariates, but other studies are more robust. In

general, with large γ and a high missingness rate, the method could be very

conservative. Usually there is no good way to handle this unless the researcher

is willing to make more parametric assumptions. Another alternative is to seek

help from instrumental variable (IV) approach if a good IV exists. Yang, Lorch

and Small (2014) discussed the development of IV based strategy for estimating

causal effect with potential MNAR covariates. Second, the current development

of the method only works for a single missing covariate. This certainly limits its

practical utility. More research is needed regarding how to generalize it to the

situation with multiple missing covariates. Like the OMAS example, when there

are other covariates that are rarely missing, we could impute them first before

applying our method. In general, with multiple missing covariates, it is difficult

to find the bounding distribution of the test statistic and it tends to be very

conservative if the impact of those covariates are cumulative. Alternatively, we

could assume some parametric structure among missing covariates and observed

variables, indexed by several sensitivity parameters. We then can impute the

missing data for various values of the sensitivity parameters and proceed our

analysis. This is similar to the idea of the imputation based sensitivity analysis

for complex observational studies (Lu et al. (2012)).
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Appendix

A. Details of proof of Proposition 2
Proof. Under the null hypothesis of no treatment effect, Ds = Y 0

s1 − Y 0
s2. By the

assumption that the treatment assignment is strongly ignorable given (X, Z), our

generalized propensity scores, and our matching procedure,

(Y 1
s1, Y

0
s1) ⊥⊥ (Y 1

s2, Y
0
s2) ⊥⊥ Vs|e∗s, Rs = 1, and

(Y 1
s1, Y

0
s1) ⊥⊥ (Y 1

s2, Y
0
s2) ⊥⊥ Vs|e∗s, Zs1, Zs2, Rs = 0.

These along with assumption of the null hypothesis imply that

Ds ⊥⊥ Vs|e∗s, Zs1, Zs2.
P (Vs = 1|Rs, e∗s, Zs1, Zs2)

=
P (Ts1 = 1, Ts2 = 0|Rs, e∗s, Zs1, Zs2)
P (Ts1 + Ts2 = 1|Rs, e∗s, Zs1, Zs2)

=
P (Ts1 = 1|Rs, e∗s, Zs1)P (Ts2 = 0|Rs, e∗s, Zs2)

P (Ts1 = 1|Rs, e∗s, Zs1)P (Ts2 = 0|Rs, e∗s, Zs2) + P (Ts1 = 0|Rs, e∗s, Zs1)P (Ts2 = 1|Rs, e∗s, Zs2)

=
es1(1− es2)

es1(1− es2) + (1− es1)es2
.

If R = 1, (3.8) implies that e∗s1 = es1 and e∗s2 = es2. Also, based on matching

e∗s1 = e∗s2 = e∗s, so then

P (Vs = 1|Rs = 1, e∗s, Zs1, Zs2) =
es1(1− es2)

es1(1− es2) + (1− es1)es2
=

1

2
.

If R = 0, because of matching e∗s1 = e∗s2 = e∗s . However, (3.8) implies that

es1 = logit−1 (logit(e∗s) + γZs1) =
exp (logit(e∗s) + γUs1)

1 + exp (logit(e∗s) + γZs1)
.

Then we can write P (Vs = 1|Rs = 0, e∗s, Zs1, Zs2) as

P (Vs = 1|Rs = 0, e∗s, Zs1, Zs2)

=
es1(1− es2)

es1(1− es2) + (1− es1)es2

=
exp (logit(e∗s) + γZs1)

exp (logit(e∗s) + γZs1) + exp (logit(e∗s) + γZs2)
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=
exp(γZs1)

exp(γZs1) + exp(γZs2)
.

In summary we have that

P (Vs = 1|e∗s, Rs = 1) = 1/2, and (A.1)

P (Vs = 1|e∗s, Rs = 0, Zs1 = zs1, Zs2 = zs2)

=
exp(γzs1)

exp(γzs1) + exp(γzs2)
× exp((−1/2)γ(zs1 − zs2))

exp((−1/2)γ(zs1 − zs2))

=
exp((1/2)γ(zs1 − zs2))

exp((1/2)γ(zs1 − zs2)) + exp((−1/2)γ(zs1 − zs2))
. (A.2)

Since (A.1) and (A.2) only depend on (e∗s, zs1, zs2) through ws = zs1 − zs2,
we can ignore e∗s in (3.5). From Theorem 1 in Rosenbaum (1984), we note that

D is fixed and the only random variable is the treatment assignment indicator.

Then (3.6) follows from (A.1) and (A.2) because

pr(t(d, V ) ≥ k|W = w,R = r)

=
∑
v∈B

I(t(d, v) ≥ k|V = v)pr(V = v|W = w,R = r).

B. Details of proof of Proposition 3

Proof. Since Z ∈ [0, 1], ws ∈ [−1, 1] ∀s. This implies that for all s, {w̃(d)s −
ws}ds ≥ 0 and {ws − w̃∗(d)s}ds ≥ 0. It follows that for each possible d,

w̃∗(d) .d w .d w̃(d) (B.1)

where .d is defined for any S-dimensional vector d such that a .d b if {(bs −
as)ds ≥ 0 ; s = 1, . . . , S}. Now t(D,V) is isotonic with respect to .d, meaning

that (V,V′ ∈ B; V .d V′) → {t(d,V) ≤ t(d,V′)}. Then the result follows

directly from Lemma 1 from Rosenbaum (1987) and equation (B.1).
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