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Abstract: Missing data are frequently encountered in longitudinal clinical trials. To

better monitor and understand the progress over time, one must handle the missing

data appropriately and examine whether the missing data mechanism is ignorable

or nonignorable. In this article, we develop a new probit model for longitudinal

binary response data. It resolves a challenging issue for estimating the variance of

the random effects, and substantially improves the convergence and mixing of the

Gibbs sampling algorithm. We show that when improper uniform priors are spec-

ified for the regression coefficients of the joint multinomial model via a sequence

of one-dimensional conditional distributions for the missing data indicators under

nonignorable missingness, the joint posterior distribution is improper. A variation

of Jeffreys prior is thus established as a remedy for the improper posterior dis-

tribution. In addition, an efficient Gibbs sampling algorithm is developed using

a collapsing technique. Two model assessment criteria, the deviance information

criterion (DIC) and the logarithm of the pseudomarginal likelihood (LPML), are

used to guide the choices of prior specifications and to compare the models under

different missing data mechanisms. We report on extensive simulations conducted

to investigate the empirical performance of the proposed methods. The proposed

methodology is further illustrated using data from an HIV prevention clinical trial.

Key words and phrases: Collapsed Gibbs sampler, DIC, identifiability, Jeffreys

prior, latent variable, LPML, probit model.

1. Introduction

Intermittent missingness and dropout are frequently encountered in longitu-

dinal studies. Intermittent missingness occurs when the subject returns to the

study after missing one or more visits and dropout refers to the situation where

the subject permanently withdraws from the study.
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Little and Rubin (2002) classified the type of missingness into three cat-

egories: “Missing Completely at Random” (MCAR), the probability of miss-

ingness does not depend on either the observed or unobserved data; “Missing

at Random” (MAR), the probability of missingness does not depend on the

unobserved data conditional on the observed data; “Missing Not at Random”

(MNAR), the probability of missingness depends on the unobserved data. Under

the assumption that the parameters of the missing data mechanism are distinct

from the parameters of the sampling model, MCAR and MAR are referred to as

ignorable missing data mechanisms since the missing data mechanism does not

need to be included in the likelihood specification, while MNAR is referred to as

a nonignorable missing mechanism for obtaining the maximum likelihood esti-

mates. Nonignorable missing data is most frequently encountered in longitudinal

studies, where data is gathered for the same subject repeatedly over time.

One approach for handling missing data is listwise deletion, in which all cases

with missing values are deleted. This approach, however, introduces bias if the

missingness is not MCAR. For MAR, inferential methods include maximum likeli-

hood (Rubin (1976); Ibrahim, Lipsitz and Chen (1999); Newman (2003); Ibrahim

et al. (2005)), multiple imputation (Rubin (2004); Royston (2004); Sterne et

al. (2009)) and weighted estimating equations (Robins and Rotnitzky (1995);

Preisser, Lohman and Rathouz (2002)). If the data are MNAR, one approach

is to specify a parametric model for the missing data mechanism, and then to

jointly model the response variables and the missing data mechanism by incor-

porating them into the complete data log-likelihood. Three commonly used joint

models are selection (Glynn, Laird and Rubin (1986)), pattern-mixture (Little

(1993)), and shared-parameter models (Follmann and Wu (1995)).

Ibrahim, Chen and Lipsitz (2001) proposed a general joint multinomial model

for the missing data mechanism for longitudinal data, which nicely accommo-

dates nonignorable missing response data with nonmonotone missingness pat-

terns. They also devised a Monte Carlo EM algorithm, and derived the analyt-

ical form of the E- and M-steps for the normal random effects model. Huang,

Chen and Ibrahim (2005) provided theoretical justifications of model identifia-

bility for generalized linear models with nonignorably missing covariates where

they mainly focused on missing covariates rather than missing response measure-

ments. Albert (2000) considered the transition model, which is appropriate if one

is interested in how the response and covariates are related to the missingness

path of each subject. He examined the setting of intermittent missingness and

proposed a transition model for longitudinal binary data which allows for non-
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ignorable intermittent missingness and dropout of each subject. However, the

model does not allow for correlations between the response variable within each

subject, and it also does not consider the fact that an intermittent missing value

at time t must be followed by an observed value at some time point greater than

t (otherwise, it would be a dropout).

One challenge of the probit mixed-effects regression model for longitudinal

binary response data is the estimation of the variances of the random effects. In

this paper, we propose a new reparameterization technique to develop a probit

model with latent variables. Our proposed model not only makes the variance for

the random effects more identifiable but it also improves convergence and mixing

of the Gibbs sampling algorithm, particularly for the parameters involved in the

covariance matrix of the random effects. Following Ibrahim, Chen and Lipsitz

(2001); Ibrahim et al. (2005), we adopt a sequence of one-dimensional conditional

distributions for the missing data indicators via a logistic regression model, and

further show that the posterior distribution is improper if improper uniform pri-

ors are specified for the regression coefficients corresponding to the missing binary

responses in the logistic regression models. To overcome this non-identifiability

issue, we first specify normal priors for these regression coefficients and then use

the DIC and LPML criteria to guide the choice of “optimal” normal priors for

the regression coefficients. We further propose a variation of Jeffreys prior, which

circumvents the identifiability issue all together. The proposed Jeffreys prior is

attractive since it is relatively noninformative, guarantees that the joint poste-

rior distribution is proper, and has similar performance as the “optimal” normal

priors. Finally, the proposed joint model for the longitudinal binary responses

and the missing data mechanism (ignorable or nonignorable) is computationally

attractive since it allows us to conveniently sample missing binary responses and

to apply the collapsed Gibbs technique (Liu (1994)) within the Gibbs sampling

framework.

The remainder of this article is organized as follows. A brief description of the

HIV prevention behavioral data is presented in Section 2. Section 3 introduces

a probit model with latent variables, and presents a joint multinomial model

for the missing data indicators. In Section, we investigate and characterize the

conditions for propriety of the joint posterior distribution, followed by a variation

of Jeffreys prior as a remedy for impropriety of the posterior. In addition, we

develop an efficient Gibbs sampling algorithm, and in the same section, provide

a detailed formulation of the partial DIC and conditional LPML criteria in the

presence of missing data. An extensive simulation is related in Section 5. In
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Table 1. Characteristics of study participants (N = 1,875).

Characteristics Standard of Care Intervention
(N = 1875) (N = 915) (N = 960) P
Lives in city or township 0.008

Yes 148 (16.17%) 202 (21.04%)
No 767 (83.83%) 758 (78.96%)

Cohabitates with sex partner 0.034
Yes 470 (51.37%) 445 (46.35%)
No 445 (48.63%) 515 (53.65%)

Meets with a counselor at clinic every 3 months or less 0.017
Yes 768 (83.93%) 764 (79.58%)
No 147 (16.07%) 196 (20.42%)

Reported drinking alcohol weekly or more frequently < 0.001
Yes 47 (5.14%) 16 (1.67%)
No 868 (94.97%) 944 (98.33%)

Depressed (modified CESD 11 score of 9 or more) 0.036
Yes 480 (52.46%) 551 (57.40%)
No 435 (47.54%) 409 (42.60%)

Gender 0.924
Female 511 (55.85%) 533 (55.52%)
Male 404 (44.15%) 427 (44.48%)

Median Age (IQR) 36 (31, 42) 36 (31, 43) 0.447

The final column indicates the p-values from the Mantel-Haenszel Chi-squared test
(categorical covariates) and the Wilcoxon rank sum test (continuous covariates)
for equality of proportions.

Section 6 we carry out a detailed analysis of the HIV prevention behavioral data.

We conclude the paper with a brief discussion in Section 7.

2. HIV Prevention Behavioral Data

We consider data from an HIV prevention behavioral intervention clinical

trial (Fisher et al. (2014)) in South Africa, where people living with HIV (PLWH)

on antiretroviral therapy (ART) constitute a large population. The goal of this

trial was to understand if a brief counseling intervention can significantly reduce

HIV risk behavior among HIV-infected South Africans on ART. The data were

collected from sixteen urban, peri-urban, and rural primary healthcare clinics and

community health centers in the uMgungundlovu and uMkhanyakude health dis-

tricts of KwaZulu-Natal, South Africa from June 2008 to May 2010. The sixteen

health districts were then randomized to intervention (8 clinics) and standard

of care (8 clinics) arms. The total number of HIV-infected participants on ART

was 1,891 (967 for intervention and 924 for standard of care).
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PLWH were invited to take part in the study and provided informed consent.

Participation consisted of completing audio computer- assisted self-interviews

(ACASI) and interviewer-administered questionnaires at baseline, 6, 12, and 18

months, of providing biological samples assessing sexually transmitted infections

(STIs) at baseline, 12, and 18 months, and of consenting to medical chart re-

views for CD4 count, HIV viral load, STIs, and health status. As part of routine

clinical care, participants in the intervention and standard of care arms received

counseling from lay counselors concerning issues relevant to PLWH on ART (e.g.,

adherence education and counseling). Participants at the 8 intervention clinics re-

ceived brief, theory and evidence-based, tailored, one-on-one counseling sessions

with trained lay counselors concerning sexual risk behavior reduction. Standard

of care participants received standard of care safer sex promotion messages from

counselors, typically involving standard condom promotion messaging. Assess-

ments were carried out by a different individual in a separate research setting at

the 4 specified time points within the 18-month study.

The longitudinal binary response variable is any ACASI-reported unpro-

tected penile-vaginal or penile-anal sex acts in the past 4 weeks with partners of

any HIV status, where 1 denotes the occurrence and 0 indicates otherwise. We

excluded subjects who had missing values for the entire study, including base-

line measurements from our analysis. We also excluded four subjects who had

missing baseline covariates, so that the resulting number of subjects in our study

cohort is 1,875. Table 1 shows the characteristics of these 1,875 PLWH, and

Figure 1 visually presents the path diagram of the longitudinal binary response

data (any unprotected sex acts). Determining whether missing responses are ig-

norable or nonignorable is of great practical interest in HIV intervention clinical

trials, which motivates our proposed methodology.

3. The Proposed Models

Suppose there are a total of T visits and K health districts in a clinical trial.

Let yt denote the measurement for a patient at visit t in the kth health district

(1 ≤ k ≤ K), and yt = (y0, y1, . . . , yt)
′ denote the vector containing all the

measurements up to and including visit t, for t = 0, . . . , T , where y0 represents

the baseline measurement. Also, denote by z the intervention indicator such that

z = 0 if the subject belongs to the control arm and z = 1 if the subject belongs

to the intervention arm.
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Figure 1. Path diagram of the binary responses (any unprotected sex acts), where 0
in circle indicates observed and 1 in circle indicates missing; and the two numbers in
parentheses indicate the number of zero counts (the first, blue) and the number of ones
(the second, red) of the binary response variable at each visit on the specific path.

3.1. The model for longitudinal binary measurements

According to Verbeke (2005), for longitudinal measurements, it is often as-

sumed that yt follows a pre-specified distribution F (β, εt), depending on co-

variates and is parameterized through a vector β, common to all subjects, and

subject-specific random effects εt. When yt is binary, the probit mixed-effects

regression model is assumed and given by

P (yt = 1|z,x1, k,β
∗, τ∗, ζk, ε

∗
t ) = Φ(zβ∗1t + x′1β

∗
2t + τ∗ζk + ε∗t ), (3.1)
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for t = 0, . . . , T , where Φ is the N(0, 1) cumulative distribution function, x1 is

a vector of baseline covariates, β∗ = (β∗1t,β
∗′
2t)
′ with β∗1t denoting the regression

coefficient corresponding to treatment condition and β∗2t is the vector of regres-

sion coefficients corresponding to x1. Due to the design of the HIV prevention

behavioral data that sixteen health districts were randomized instead of patients,

we introduce random effects ζk
i.i.d.∼ N(0, 1) with τ∗2(τ∗ > 0) being the variance,

representing the random effect for all the patients from the kth heath district,

k = 1, . . . ,K. We further assume that ε∗ = (ε∗0, ε
∗
1, . . . , ε

∗
T )′ ∼ N(0, σ2Σ), where

Σ is a (T + 1)× (T + 1) correlation matrix with (s, t)th entry ρ|t−s|. Under this

formulation, the variance σ2 of the random effects cannot be estimated.

To better see this identifiability problem, we obtain an equivalent repre-

sentation of the model given in (3.1) by introducing the latent variables w∗ =

(w∗0, . . . , w
∗
T ). Following Albert and Chib (1993), (3.1) can be reformulated as

yt =

{
1 if w∗t ≥ 0,

0 if w∗t < 0,
(3.2)

w∗t | ε∗t ∼ N(zβ∗1t + x′1β
∗
2t + τ∗ζk + ε∗t , 1) (3.3)

for t = 0, 1, . . . , T , where ε∗ = (ε∗0, ε
∗
1, . . . , ε

∗
T )′ ∼ N(0, σ2Σ).

First we note that yt modeled in (3.2) is invariant with respect to the scale

parameter (variance) of w∗t : if we replace w∗t in (3.3) by C · w∗t , where C is

any nonnegative constant, (3.2) is still identical to (3.1). Therefore, the marginal

variance of w∗t and the marginal variance of ε∗t are not identifiable. Another issue

with this model is that the marginal variance of each individual w∗t given health

districts, which is 1 + σ2, is partially confounded with the scale parameter σ2 in

the binary response model (See Kim, Chen and Dey (2008) for a related discus-

sion and Remark 3.1). These issues ultimately imply that β∗ is essentially not

identifiable and this leads to poor convergence of the Gibbs sampling algorithm.

To circumvent these problems, we consider the reparameterization

wt =
w∗t√

1 + σ2
, βt =

β∗t√
1 + σ2

, τ =
τ∗√

1 + σ2
, εt =

ε∗t√
1 + σ2

. (3.4)

After this reparameterization, we propose our equivalent but identifiable model

as

P (yt = 1|z,x1, k,β, τ, ζk, εt) = Φ
(

(zβ1t + x′1β2t+τζk+εt)
√

1+σ2
)

= πt, (3.5)

or
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yt =

{
1 if wt ≥ 0,

0 if wt < 0,
(3.6)

wt | εt ∼ N
(
zβ1t + x′1β2t + τζk + εt,

1

1 + σ2

)
(3.7)

for t = 0, 1, . . . , T , where ε = (ε0, . . . , εT )′ ∼ N(0, {σ2/(1 + σ2)}Σ). Under

this model, the marginal variance of wt equals 1, leading to a better separation

between β and σ2, and improving convergence and mixing of the Gibbs sampling

algorithm. For simplicity, we let α denote σ2/(1 + σ2) throughout.

The proposed model is attractive since (i) εt captures the dependence of the

longitudinal measures, yt, over time; (ii) the time-varying vector of coefficients

βt allows us to assess effectiveness of the intervention over time; (iii) the random

effect ζ adjusts for the effects of 16 health districts; and most importantly (iv)

all the parameters involved in the model given by (3.5) or the model defined by

(3.6) and (3.7) are identifiable.

Remark 1. After the reparameterization in (3.4), βt, as the ratio of β∗t and√
1 + σ2 is now identifiable. This implies that, in the original formulation of

(3.3), a large value of σ2 corresponds to large absolute values of the elements in

β∗ due to the dual role σ2 plays in the binary response and the latent variable

model. It thus becomes difficult to interpret the meaning of β∗, and leads to

poor convergence of the Gibbs sampling algorithm. This phenomenon is also

empirically observed in our analysis of the HIV data discussed in Section 2 by

fitting the model defined by (3.2) and (3.3) without reparameterization, which

further confirms the necessity of the reparameterization technique.

3.2. Missing data mechanism

Let RT = (R0, . . . , RT )′ denote the vector of the missing data indicators,

where Rt at time t is 1 if yt is missing and Rt = 0 if yt is observed. With

P (Rt = 1|Rt−1,yt, z,x2,γt) , Pt, a logistic regression model is assumed for Pt:

logit(Pt) = log
( Pt

1− Pt

)
= zγ1t + x′2γ2t + g(Rt−1,γ3t) + h(yt,γ4t), (3.8)

where x2 is a vector of baseline covariates, which may be different from x1, while

g and h are certain linear functions. We set g = 0 when t = 0 since there are no

previous missing indicators (Rt−1). Following Ibrahim, Lipsitz and Chen (1999);

Ibrahim et al. (2005), we construct the joint distribution of R via a sequence of

one-dimensional conditional distributions,
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P (R0 = r0, . . . , Rt = rt|yt, z,x2,γ) =

T∏
t=0

Pt
1(rt=1)(1− Pt)1(rt=0). (3.9)

Remark 2. If we assume that P (Rt = m|Rt−1 = l,yt, z,x2,γt) depends on the

longitudinal measures only through the current and previous visits, we simply

take h(yt,γ4t) = γ4t1yt−1 + γ4t2yt in (3.8). The model in (3.9) implies nonignor-

able missingness due to the existence of intermittent missingness and dropout.

We may also let h(yt,γ4t) = 0 if the missingness is ignorable. (See Section 6 for

further discussion.)

Remark 3. For t > 0, we may choose g(Rt−1,γ3t) = R′t−1γ3t, which depends on

all of the previous missingness indicators. In this paper, we set g(Rt−1,γ3t) =∑t−1
j=0Rjγ3t. The new covariate

∑t−1
j=0Rj captures the cumulative number of

missing response indicators, reduces the number of nuisance parameters for mod-

eling the missing data mechanism, and makes the nonignorable missing data

mechanism more identifiable (See Section 4.2).

4. Bayesian Inference

4.1. The likelihood function

Suppose there are n subjects and assume that (zi, ki,x1i,x2i) is completely

observed, for all i = 1, . . . , n. Let yobs = (y′1,obs, . . . ,y
′
n,obs)

′ and ymis = (y′1,mis
, . . . ,

y′n,mis
)′, where yi,obs and yi,mis are the observed and missing binary responses for

the ith subject.

Let yi = (yi0, . . . , yiT ), and RiT denote the collection of all missing data

indicators RiT = (Ri0, . . . , RiT ). Denote by Dc = {yi, zi, ki,x1i,x2i, ζki , εi,

wi,Ri, i = 1, . . . , n} the set of complete data and Dobs = {yi,obs, zi, ki,x1i,

x2i,Ri, i = 1, . . . , n} is the set of observed data. Denote by fy and fR the

marginal densities of y and R, respectively. Let θ = (β,γ, α, τ, ρ) denote the

collection of all model parameters.

Let [A|B] denote the conditional distribution of A given B. We model the

observed data through the sequence of conditional distributions [y][R|y]. The

complete data likelihood function is therefore given by

L(θ|Dc)

=

n∏
i=1

{
fy(yi|zi,x1i, ki, ζki , εi,wi,θ)fR|y(RiT |yi, zi,x2i,θ)

}
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=

n∏
i=1

{
T∏
t=0

1(wit ≥ 0)yit1(wit < 0)1−yit
1√

2π(1− α)

exp

(
−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

)
Pit

1(rit=1)(1− Pit)1(rit=0) 1√
2π

exp

(
−
ζ2ki
2

)}
1√

2π|αΣ|
exp

(
− 1

2α
ε′iΣ
−1εi

)
.

(4.1)

After integrating out the missing longitudinal responses yi,mis, ζki , εi, and

the latent variables wi, the observed data likelihood function is given by

L(θ|Dobs)

=
∑
ymis

∫ n∏
i=1

{
T∏
t=0

1(wit ≥ 0)yit1(wit < 0)1−yit

1√
2π(1− α)

exp

(
−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

)
dwPit

1(rit=1)

(1− Pit)1(rit=0) 1√
2π

exp

(
−
ζ2ki
2

)
dζ

}
1√

2π|αΣ|
exp

(
− 1

2α
ε′iΣ
−1εi

)
dε. (4.2)

4.2. Prior and posterior distributions

We assume that the joint prior density can be expressed as

π(θ) = π(β)π(γ)π(α)π(τ)π(ρ).

The joint posterior based on the observed data Dobs is written as

π(θ|Dobs) ∝ L(θ|Dobs)π(θ). (4.3)

We first establish a useful proposition regarding the propriety of the posterior

distribution when an improper uniform prior is assumed for γ.

Proposition 1. Suppose we take π(γ) ∝ 1, the joint posterior in (4.3) is im-

proper regardless of whether π(β, α, τ, ρ) is proper or improper.

A sketch of the proof of the proposition is given in Appendix A. From Propo-

sition 1, the joint posterior distribution is improper if π(γ) ∝ 1. The next propo-

sition, based on Chen and Shao (2001), states that under some mild conditions,

the joint posterior is proper if π(γ) is proper, but π(β, α, τ, ρ) ∝ 1.

Let Zi be the (T + 1)× (T + 1) diagonal matrix with diagonal elements zi,

X1i be the matrix with all the row vectors equal x′1i, and β = (β′1, . . . ,β
′
T )′
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is a vector of length p. Denote by Ic = {i|Ri0 = 0, . . . , RiT = 0} the set of

observations with no missing visits, and ĩ = (i−1)(T +1)+(t+1), for 1 ≤ i ≤ n,

0 ≤ t ≤ T . Let ε = (ε′i, i ∈ Ic)′, ui = (ui0, . . . , ui,T )′, u = (u′i, i ∈ Ic)′, where

the uit’s are i.i.d N(0, 1) random variables. Let X∗ = {(Zi,X1i)
′, i ∈ Ic}′ be the

design matrix, where each row vector is defined as x′i. We take X∗
obs

to be the

matrix with rows equal (1− yit)x′ĩ, such that i ∈ Ic.

Proposition 2. Suppose π(γ) is a proper prior, π(τ) is a proper prior with a

finite pth moment, and that we specify improper uniform priors for the other

parameters. The joint posterior in (4.3) is proper if (C1) X∗ is of full rank and

(C 2) there exists a positive vector a, i.e., each component ai > 0, such that

X∗
obs

′a = 0.

Next, we consider Jeffreys prior (Jeffreys (1946)) regarding γ. Due to the

involvement of the missing data in the design matrix, the conventional Jeffreys

prior is computationally infeasible. However, we observe that Jeffreys prior based

on a certain subset of the data is not only computationally feasible, but also leads

to a proper posterior distribution (Chen, Ibrahim and Kim (2008)). Thus, we

propose a variation of Jeffreys prior that is analytically attractive. We select a

certain observed subset, denoted by D̃obs, such that the likelihood function of

the parameters does not involve any missing data. The logarithm of the joint

likelihood function in (4.2) based on D̃obs is given by

`(θ|D̃obs)

= log

∫ ∏
(i,t)∈D̃obs

1(wit ≥ 0)yit1(wit < 0)1−yit

1√
2π(1− α)

exp

(
−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

)
dw

1√
2π

exp

(
−
ζ2ki
2

)
dζ

1√
2π|αΣ|

exp

(
− 1

2α
ε′iΣ
−1εi

)
dε

+ log
∏

(i,t)∈D̃obs

Pit
1(rit=1)(1− Pit)1(rit=0). (4.4)

For γt at visit t, we use a different observed subset to construct the prior, aiming

to utilize as many observations as possible. Indeed, the idea of using a subset of

the data is equivalent to selecting the corresponding terms from the log-likelihood

function: if we take h(yt,γ4t) = γ4tyt for t = 0, and h(yt,γ4t) = γ4t1yt−1 +γ4t2yt
for t > 0 in (3.8), the log-likelihood of γt based on this subset of the data is given
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by

`(γt|Dc) =

{∑n
i=1 log

({
Pit

1(rit=1)(1− Pit)1(rit=0)
}1(rit=0))

t = 0,∑n
i=1 log

({
Pit

1(rit=1)(1− Pit)1(rit=0)
}1(rit−1=0)1(rit=0))

t > 0,

=

{∑n
i=1 1(rit = 0) log(1− Pit) t = 0,∑n
i=1 1(rit−1 = 0)1(rit = 0) log(1− Pit) t > 0.

We specify the joint prior distribution for γt as

π(γt) ∝|X∗t
′DtX

∗
t |1/2, (4.5)

where

X∗t =

{{
1(rit = 0)X∗it : i = 1, . . . , n

}′
t = 0,{

1(rit−1 = 0)1(rit = 0)X∗it : i = 1, . . . , n
}′

t > 0,

| · | represents the determinant of a matrix, X∗it = (z,x′2,yit)
′ if t = 0, and X∗it =

(z,x′2,
∑t−1

j=0Rj ,yit−1,yit)
′ for t > 1. For t = 1, since

∑t−1
j=0Rj = R0 = 0 for

the subjects within this subset, an improper uniform prior is essentially assumed

for γ3t in π(γt) defined by (4.5) while Jeffreys prior is constructed for the other

parameters in γt such that X∗it = (z,x′2,yit−1,yit)
′. Also, in (4.5), Dt is an n×n

diagonal matrix with diagonal elements Pit(1−Pit). If the design matrix X∗t is of

full column rank (Chen, Ibrahim and Kim (2008)), the prior for the corresponding

parameters in γt is proper. In addition, we specify improper uniform priors for

(β, α, ρ), and a truncated normal prior for τ .

4.3. Computational development

The joint posterior distribution of (θ,ymis) based on the observed data is

given by

π(θ,ymis|Dobs) ∝ L(θ|Dc)π(θ), (4.6)

where L(θ|Dc) is defined in (4.1). Thus, the joint posterior distribution of

(β,γ, α, τ, ρ) is written as

π(β,γ, α, ρ, τ,ymis,w, ζ, ε, |Dobs)

∝
n∏
i=1

T∏
t=0

{
1(wit≥0)yit1(wit<0)1−yitPit

1(rit=1)(1−Pit)1(rit=0)

}
(1− α)−n(T+1)/2

n∏
i=1

T∏
t=0

exp

(
−(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

) n∏
i=1

T∏
t=0

exp

(
−
ζ2ki
2

)
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(α)−n(T+1)/2
n∏
i

|Σ|−1/2 exp

(
− 1

2α
ε′iΣ
−1εi

)
π(β)π(γ)π(α)π(τ)π(ρ). (4.7)

The Gibbs sampling algorithm requires sampling from the following full con-

ditional distributions in turn:

(i) [ymis,γ|w,β, ζ, ε, α, τ, ρ,Dobs]; (ii) [w,β|ymis,γ, ζ, ε, α, τ, ρ,Dobs];

(iii) [α, ρ|ymis,w,β,γ, ζ, ε, τ,Dobs]; (iv) [ε|ymis,w,β,γ, ζ, α, τ, ρ,Dobs];

(v) [τ |ymis,w,β,γ, ζ, ε, α, ρ,Dobs]; (vi) [ζ|ymis,w,β,γ, ε, α, τ, ρ,Dobs].

(4.8)

For (i), we first collapse out the latent random variables w via the identity

[ymis,γ,w,β|ζ, ε, α, τ, ρ,Dobs]

= [ymis,γ|β, ζ, ε, α, τ, ρ,Dobs][w,β|ymis,γ, ζ, ε, α, τ, ρ,Dobs]

= [ymis|β,γ, ζ, ε, α, τ, ρ,Dobs][γ|ymis, Dobs][w,β|ymis,γ, ζ, ε, α, τ, ρ,Dobs], (4.9)

and then run a sub-Gibbs sampling algorithm to sample from the following full

conditional distributions in turn: (ia)[ymis|β,γ, ζ, ε, α, τ, ρ,Dobs] and (ib)[γ|ymis,

Dobs].

Sampling w and β in (ii) are straightforward since the components of w are

conditionally independent truncated normal random variables, and β, conditional

on the other parameters and variables, follows a multivariate normal distribution.

The posterior distribution of (α, ρ) in the binary response model is highly

dependent on the random effects ε. Directly sampling (α, ρ) from their full

conditional distributions leads to slow convergence and poor mixing of the Gibbs

sampling algorithm. Due to the introduction of the probit link and the latent vari-

ables w, we are able to analytically integrate out ε. For (iii), we again apply the

collapsed Gibbs technique through the identity: [α, ρ, ε|ymis,w,β,γ, ζ, τ,Dobs] =

[α, ρ|ymis,w,β,γ, ζ, τ,Dobs][ε|ymis,w, β,γ, ζ, α, τ, ρ,Dobs].

Sampling ε in (iv) is also straightforward since the εt are independent mul-

tivariate normal random variables conditional on the other parameters and vari-

ables.

We briefly explain how to sample from these full conditional distributions.

Step (ia). For each missing response yit,mis, compute qit as

qit =

{
πit

T0∏
j=t

P (rij |rij−1,yij , yit = 1, z,x2,γ)

+ (1− πit)
T0∏
j=t

P (rij |rij−1,yij , yit = 0, z,x2,γ)

}−1
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πit

T0∏
j=t

P (rij |rij−1,yij , yit = 1, z,x2,γ),

where T0 = min(t+1, T ), it refers to the tth visit for the ith observation, πit
is introduced in (3.5), and P (rij |rij−1,yij , z,x2,γ) is given in (3.8). Sample

yit from a Bernoulli(qit) distribution.

Step (ib). Write the full conditional distribution of γ as

π(γt|ymis, Dobs) ∝
n∏
i=1

P
1(rit=1)
it (1− Pit)1(rit=0)π(γt),

where Pit is established in (3.8). Let π(γ) be the Jeffreys prior constructed

in Section 4.2. As adaptive rejection sampling is not poissible since Jeffreys

prior is not log-concave (Chen, Ibrahim and Kim (2008)), use the localized

Metropolis algorithm to sample γ.

Step (iia). Draw wit from a truncated N(ziβ1t + x′1iβ2t + τζki + εit, 1 − α)

distribution given yit, for i = 1, . . . , n, and t = 0, . . . , T .

Step (iib). Let X̃i = (zi,x
′
1i)
′. Assuming π(βt) ∝ 1, sample βt|ymis,w, ζ, ε, α, τ, ρ,

Dobs for t = 0, . . . , T from

N

( n∑
i=1

X̃′iX̃i

)−1 n∑
i=1

X̃′i(wit − τζki − εit),

(
n∑
i=1

X̃′iX̃i

)−1
(1− α)

 .

Step (iii). Let µ1i = (wi0−ziβ10−x′1iβ20−τζki , . . . , wiT−ziβ1T−x′1iβ2T−τζki)′

and Σ1
−1 = (1/α)Σ−1 + I/(1− α). The joint full conditional distribution

[α, ρ|ymis,w,β,γ, ζ, ε, τ,Dobs] is given by

π(α, ρ|ymis,w,β,γ, ζ, ε, τ,Dobs)

∝ {α(1− α)}−n(T+1)/2|Σ|−n/2π(α)π(ρ)
n∏
i=1

exp

(
−ε
′
i((1/α)Σ−1 + I/(1− α))εi − 2µ′1iεi/(1− α) + µ′1iµ1i/(1− α)

2

)
∝ {α(1− α)}−n(T+1)/2|Σ|−n/2π(α)π(ρ)

n∏
i=1

exp

(
µ′1iΣ1µ1i/(1− α)2 − µ′1iµ1i/(1− α)

2

)
n∏
i=1

exp

(
−(εi − Σ1µ1i/(1− α))′Σ1

−1(εi − Σ1µ1i/(1− α))

2

)
.
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Integrate out ε, and the joint full conditional distribution simplifies to

π(α, ρ|ymis,w,β,γ, ζ, τ,Dobs) ∝ {α(1− α)}−n(T+1)/2|Σ|−n/2|Σ1|n/2
n∏
i=1

exp

(
µ′1iΣ1µ1i/(1− α)2 − µ′1iµ1i/(1− α)

2

)
π(α)π(ρ).

(a). The full conditional distribution of α is given by

π(α|ymis,w,β,γ, ζ, τ, ρ,Dobs) ∝ {α(1− α)}−n(T+1)/2|Σ1|n/2
n∏
i=1

exp

(
µ′1iΣ1µ1i/(1− α)2 − µ′1iµ1i/(1− α)

2

)
π(α).

Since α is always between 0 and 1 exclusively, let

α =
1

1 + e−δ

with support on (−∞,∞) to indirectly sample α. Thus

π(δ|ymis,w,β,γ, ζ, τ, ρ,Dobs) = π(α|ymis,w,β,γ, ζ, τ, ρ,Dobs)
eδ

(1 + eδ)2
.

Under a uniform prior specified for α, use the localized Metropolis algorithm

to sample δ, and then convert it back to α.

(b). The full conditional distribution of ρ is given by

π(ρ|ymis,w,β,γ, ζ, α, τ,Dobs) ∝ |Σ|−n/2|Σ1|n/2
n∏
i=1

exp

(
µ′1iΣ1µ1i/(1− α)2

2

)
π(ρ).

Since −1 < ρ < 1, use a “de-constraining” transformation to sample ρ

(Chen, Shao and Ibrahim (2000)):

ρ =
−1 + eξ

1 + eξ
, −∞ < ξ <∞.

Thus

π(ξ|ymis,w,β,γ, ζ, α, τ,Dobs) = π(ρ|ymis,w,β,γ, ζ, α, τ,Dobs)
2eξ

(1 + eξ)2
.

Assume that a Uniform(−1, 1) prior is specified for ρ. Since π(ξ|ε,β, α,
ymis, Dobs) is not log-concave, use the localized Metropolis algorithm to sam-

ple ξ, and then convert it back to ρ.

Step (iv). Based on the derivation in Step (iii), draw εi from a N(Σ1µ1i/(1−
α),Σ1).
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Step (v). The full conditional distribution of τ is given by

π(τ |ymis,w,β,γ, ζ, ε, α, ρ,Dobs)

∝ exp

(
−
∑n

i=1

∑T
t=0(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

)
π(τ).

Assume τ follows the truncated normal prior τ ∼ N(0, 10)1(τ > 0). Draw

τ from the posterior distribution

N

( ∑n
i=1

∑T
t=0 ηitζki∑n

i=1

∑T
t=0 ζ

2
ki

/
(1− α) + 1/10

,
1∑n

i=1

∑T
t=0 ζ

2
ki

/
(1− α) + 1/10

)
1(τ > 0),

where ηit = wit − ziβ1t − x′1iβ2t − εit.

Step (vi). The full conditional distribution of ζk is given by

π(ζk|ymis,w,β,γ, ε, α, τ, ρ,Dobs)

∝ exp

(
−
∑
{i|ki=k}

∑T
t=0(wit − ziβ1t − x′1iβ2t − τζki − εit)2

2(1− α)

)

exp

(
−
∑
{i|ki=k}

∑T
t=0 ζ

2
ki

2

)
.

Draw ζk from a N(
∑
{i|ki=k}

∑T
t=0 ηitτ/(1− α)/{nk(T + 1)τ2/(1− α)+ nk

(T + 1)}, 1/{nk(T+1)τ2/(1− α)+nk(T+1)}) distribution for k = 1, . . . , 16,

where nk is the total number of patients in the kth health district, i.e.,

nk =
∑
{i|ki=k} 1.

4.4. Bayesian model assessment

It is of great practical interest to assess whether the missingness is ignor-

able or nonignorable. In this section, several Bayesian model assessment criteria

are considered: the DIC relating to the missing data model (DICR|y)(Yao et

al. (2015);Mason, Richardson and Best (2012)), and the LMPL relating to the

missing data model (LPMLR|y) (Zhang et al. (2014)).

Since our focus is on the missing data mechanism, these criteria are applied

only to the distribution of the missing data indicators. Both criteria are com-

putationally attractive, and can be implemented with any types of priors, i.e.,

informative, noninformative, or even improper priors.

DICR|y. Let ψ = (γ,ymis) denote the vector of the missing data model parame-

ters of interest, where we view ymis as nuisance parameters. For the missing model

in (3.8), D(ψ) = −2
∑n

i=0

∑T
t=0{ritηrit− log(1+exp(ηrit))}. For computing D(ψ),
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we need to estimate several discrete parameters such as the binary response ymis.

The posterior mean of ymis, which is no longer binary, may not be a desirable

estimate to be applied in the DICR|y formula. Instead, we may use the posterior

mode, which maintains the binary nature of these parameters. Another possible

choice of Huang, Chen and Ibrahim (2005) is that we apply the linear predictor

ηrit directly to the DICR|y formula. Therefore, we have DICR|y = D(ηr) + 2pD,

where ηrit = E{ziγ1t+x′2iγ2t+g(Rit−1,γ3t)+h(yit,γ4t)|Dobs}, pD = D(ψ)−D(ψ)

is the effective number of parameters in the model, and D(ψ) = E{D(ψ)|Dobs}.
This modification is appropriate since the model for the missing data indicators

depends on ψ only through the linear predictor ηr. Moreover, with the intro-

duction of ηr in the computation of DICR|y, we no longer need to worry about

the discreteness of the parameters since ηr is always continuous. Similar to the

traditional DIC, the model with the smallest DICR|y value is the most optimal

among all the models under consideration.

LPMLR|y. To assess the missing data mechanism, we adopt the conditional

LPML (Hanson, Branscum and Johnson (2011)), where the pseudomarginal prob-

ability,
∏n
i=1 P (RiT |yi, zi,xi,γ), is used to quantify the model’s predictive ability.

Let D
(−i∗)
obs = {RjT , j = 1, . . . , i − 1, i + 1, . . . , n} ∪ {(yj,obs, zj ,xj), j = 1, . . . , n}

denote the observed data with RiT deleted. Let ψ1 = (β, τ, ζ, α, ρ), and ψ =

(ψ1,γ). Then we have

π(ψ,ymis, ε|D(−i∗)
obs ) ∝


n∏
j=1

fy(yj |ψ, zj ,xj , εj)f(εj |α, ρ)


×
∏
j 6=i

fR|y(RjT |γ,yj , zj ,xj)π(ψ).

The simplified conditional predictive ordinate CPOi (Chen, Shao and Ibrahim

(2000); Hanson, Branscum and Johnson (2011)) can be written as

CPOi =

∫ ∑
yi,mis

fR|y(RiT |γ,yi, zi,xi)π(ψ,ymis, ε|D(−i∗)
obs )dεdψ

=
1∫ ∑

ymis
{1/fR|y(RiT |γ,yi, zi,xi)}π(ψ,ymis, ε|Dobs)dεdψ

,

and the logarithm of the pseudomarginal likelihood is given by

LPMLR|y =

n∑
i=1

log(CPOi).

Let {(ψb,ymis,b, εb), b = 1, . . . , B} denote a Gibbs sample of (ψ,ymis, ε) from (4.6)

and let b represent the bth iteration. A Monte Carlo estimate of CPOi is given
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by

CPOi =

(
1

B

B∑
b=1

1

fR|y(RiT |yi,obs, zi,xi,ψb,yi,mis,b, εi,b)

)−1
.

Similar to the conventional LPML, a larger value of LPMLR|y indicates a more

favorable model.

5. A Simulation Study

In this section, we report on a simulation study to investigate the empirical

performance of the proposed method. In the data generation, we first generated

n = 2,000 baseline covariates as follows: x1i ∼ N(0, 1), x2i|x1i ∼ Bernoulli[1/{1+

exp(−0.2− 0.2x1i)}], and the intervention indicator zi ∼ Bernoulli(0.5). Similar

to the HIV prevention behavioral data, we set the total number of visits equal

4. Let ε∗ in (3.1) follow a N(0, σ2Σ) distribution, where σ2 = 2 (α ≈ 0.667)

and Σ is a 4× 4 AR(1) correlation matrix with ρ = 0.8. The longitudinal binary

response variable yit was generated from a Bernoulli distribution with

P (yit = 1|zi, x1i, x2i,β∗t , ε∗it) = Φ(β∗0t + x1iβ
∗
1t + x2iβ

∗
2t + ziβ

∗
3t + ε∗it),

where β∗t = (β∗0t, β
∗
1t, β

∗
2t, β

∗
3t)
′ for t = 0, 1, 2, 3. To reproduce the longitudinal

binary response data pattern of the HIV prevention behavioral data, we set
β∗0
′

β∗1
′

β∗2
′

β∗3
′

 =


−1.0 0.5 1.0 0.4

−1.0 0.5 1.0 −0.2

−1.0 0.5 1.0 −0.4

−1.0 0.5 1.0 −0.6

 . (5.1)

We then generated the missing data indicator Rit ∼ Bernoulli(Pit), where Pit is

given by

logit(Pit) = γ0t + x1iγ1t + x2iγ2t + ziγ3t +

t−1∑
j=0

Rijγ4t + yit−1γ5t + yitγ6t. (5.2)

The missing data mechanism is, therefore, nonignorably missing since Pit in

(5.2) depends on the unobserved data yit−1 and yit when Ri,t−1 = Rit = 1. Let

γt = (γ0t, γ1t, γ2t, γ3t, γ4t, γ5t, γ6t)
′ for t = 0, 1, 2, 3. We set

γ0
′

γ1
′

γ2
′

γ3
′

 =


−2.50 0.50 −0.50 −0.50 0.00 0.00 0.00

−2.00 0.50 −0.50 −0.25 −0.25 0.50 0.40

−2.80 0.50 −0.50 0.25 −0.60 1.30 1.70

−2.80 0.50 −0.50 0.50 0.60 −0.50 1.70

 . (5.3)

Under this setting, the average missingness percentages across the 250 simulated
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data sets were 5.37%, 10.52%, 11.94%, and 14.18% at t = 0, 1, 2, 3, respectively.

To further examine the performance of the proposed method, we also con-

sidered another scenario, in which the missingness percentage of the last visit

(t = 3) was set to 47.14% and the missingness percentages at the other time

points remained the same. This was achieved by setting γ03 in (5.3) equal to

−0.50. In the simulation, we assigned the true values to the initial values for

each parameter. After discarding the first 500 iterations of the sampler, we used

the subsequent 5,000 iterations for computing the posterior summaries.

We fit both the ignorable and nonignorable models to the simulated data

generated from the nonignorable model. For the ignorable model, we set γ5t and

γ6t in (5.2) equal to 0 so that Pit depends only on the intervention indicator,

the covariates x2, as well as the cumulative number of missing visits, which all

were observed. For the nonignorable model, we considered Jeffreys prior for γt
in (4.5), as well as a N(0, σ2prior) prior for γ6t, where σ2prior = 1, 2, . . . , 10.

When the missingness percentage was low (similar to the data), the median

(IQR) of DICR|y under the ignorable model was 4,562.49 (4,490.64, 4,641.60).

The nonignorable model with a N(0, 10) prior had the smallest median value

of DICR|y (4,473.76 (4,381.28, 4,465.02)). The median (IQR) of LPMLR|y un-

der the ignorable model was −2,281.40 (−2,320.90, −2,245.39). Among all the

normal priors, the nonignorable model with a N(0, 6) prior had the largest me-

dian value of LPMLR|y (−2,273.04 (−2,313.26, −2,234.85)), and the nonignor-

able model with the Jeffreys prior had the largest value (−2,272.85 (−2,311.38,

−2,235.87)) of LPMLR|y among all the models under consideration.

For the high missingness percentage scenario (47.14% missing at the last

visit), the median (IQR) of DICR|y under the ignorable model was 5,673.07

(5,605.66, 5,741.60). The nonignorable model with a N(0, 10) prior still had

the smallest median value of DICR|y (5,559.20 (5,471.43, 5,644.64)). The me-

dian (IQR) of LPMLR|y under the ignorable model was −2,836.63 (−2,870.99,

−2,802.92). Among all the normal priors, the nonignorable model with a N(0, 8)

prior had the largest median value of LPMLR|y (−2,816.79 (−2,858.90,

−2,781.31)), and the nonignorable model with the Jeffreys prior had the largest

value (−2,815.01 (−2,849.76, −2,780.99)) among all the models under consider-

ation.

Let the “DIC Difference” be the DICR|y under the nonignorable model mi-

nus the DICR|y under the ignorable model. Similarly, let the “LPML Difference”

be the LPMLR|y under the nonignorable model minus the LPMLR|y under the

ignorable model. Figure 2 shows the plots of the DIC differences and the LPML
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σ σ

σ σ

Figure 2. Plots of the DIC differences (a) and the LPML differences (b) when the
missingness percentages were 5.37%, 10.52%, 11.94%, and 14.18%; and plots of the DIC
differences (c) and the LPML differences (d) when the missingness percentages were
5.37%, 10.52%, 11.94%, and 47.14%.

differences versus different priors (N(0, σ2prior)’s or Jeffreys) specified under the

nonignorable model under the two scenarios with different missingness percent-

ages. From Figure 2, we see that the DIC differences first decrease and then

slightly increase as σ2prior increases (Figure 2(a) and Figure 2(c)) and that the

LPML differences first increase and then slightly decrease as σ2prior increases

(Figure 2(b) and Figure 2(d)) under both scenarios. Based on Figure 2(a) and

Figure 2(b), when the missingness percentage is low, the nonignorable model

with N(0, 6) seemed to have the best relative performance. For the high missing-

ness percentage case (Figure 2(c) and Figure 2(d)), the nonignorable model with

N(0, 9) tended to perform comparatively better. Moreover, all of the boxes for

the “DIC Difference” were below 0, and all of the boxes for the “LPML Differ-

ence” were above 0, indicating that both DICR|y and LPMLR|y were in favor of

the nonignorable model over the ignorable model. Also, as the missingness per-

centage increases, the boxes for both “DIC Difference” and “LPML Difference”

become further away from the horizontal line (y = 0), implying that the power

of the two criteria increased as the missingness percentage increased.

Tables 2 and 3 show the true value of the parameter (True), the posterior

mean (Est), the standard deviation of the estimate (SD), the average of the
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posterior standard deviations (SE), the root of the mean squared error of the

posterior mean (RMSE), and the coverage probability (CP) of the 95% highest

posterior density (HPD) interval for each parameter across 250 simulations under

the nonignorable models with the N(0, 6) prior and Jeffreys prior for the low

missingness percentage case and the nonignorable models with the N(0, 8) prior

and Jeffreys prior for the high missingness percentage case. From these tables,

all of the posterior estimates were close to the true values, SDs, SEs, and RMSEs

were close to each other, and CPs for most of the parameters were approximately

95%, except for some of the γ5t and γ6t. The posterior estimates under the other

priors are given in Tables S1 and S2 in the Supplemental Materials. From these

tables, we see that the posterior estimates were quite robust to the specification

of the N(0, σ2prior) prior under the nonignorable model.

6. Analysis of the HIV Prevention Behavioral Data

In this section, we consider a detailed analysis of the HIV prevention behav-

ioral data discussed in Section 2. The baseline covariates in the response model

and missing data mechanism include Gender (1 = female), City (1 = Lives in city

or township), Cohabit (1 = Cohabitates with sex partner), Counselor (1 = Meets

with a counselor at least every 3 months), Drink (1 = Reported drinking alcohol

weekly or more frequently), and Age. Except for Age, which is continuous, all

other covariates are binary. Due to the rare events of Drink in the “missing”

group of patients, the Drink covariate is not identifiable, and was therefore ex-

cluded in the missing data mechanism. For the missing data mechanism, we also

considered covariates yt, and
∑t−1

j=0Rj at the tth visit. For the HIV prevention

behavioral data, we had K = 16 health districts and T = 3, where t = 0 denotes

“baseline”, and visits t = 1 to t = 3 correspond to the three follow-up visits at 6,

12, and 18 months. The continuous covariate Age was standardized for numerical

stability in the posterior computations.

In all the Bayesian computations, we used 20,000 MCMC samples, taken

from every fifth iteration, after a burn-in of 10,000 iterations for each model to

compute all posterior summaries, including posterior means (ESTs), posterior

standard deviations (SDs), 95% HPD intervals, DIC, and LPML. The code was

written in FORTRAN 95 using IMSL subroutines with double-precision accuracy.

The convergence of the Gibbs sampler was checked by the R package “mcmc-

plots” using R version 3.3.0. Approximate convergence was reached after 10,000

iterations.
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Table 2. Posterior summaries under the nonignorable model with a N(0, 6) prior and Jef-
freys prior when the missingness percentages were 5.37%, 10.52%, 11.94%, and 14.18%.

N(0, 6) Prior Jeffreys Prior
TRUE EST SD SE RMSE CP EST SD SE RMSE CP

t=0
β∗
00 −1.000 −1.008 0.134 0.125 0.125 0.976 −1.011 0.135 0.125 0.125 0.972
β∗
10 0.500 0.505 0.068 0.068 0.068 0.960 0.506 0.069 0.069 0.070 0.960
β∗
20 1.000 1.002 0.132 0.129 0.129 0.952 1.006 0.133 0.129 0.129 0.952
β∗
30 0.400 0.402 0.110 0.098 0.098 0.976 0.403 0.110 0.099 0.098 0.980

γ00 −2.500 −2.669 0.355 0.372 0.408 0.960 −2.666 0.354 0.495 0.521 0.960
γ10 0.500 0.502 0.125 0.120 0.120 0.960 0.499 0.125 0.120 0.119 0.964
γ20 −0.500 −0.485 0.250 0.245 0.245 0.960 −0.480 0.248 0.242 0.242 0.956
γ30 −0.500 −0.499 0.217 0.204 0.203 0.968 −0.493 0.215 0.200 0.200 0.968
γ60 0.000 −0.011 0.845 0.804 0.803 0.972 −0.004 0.878 0.921 0.919 0.960

t=1
β∗
01 −1.000 −0.994 0.165 0.179 0.179 0.924 −1.002 0.163 0.169 0.169 0.940
β∗
11 0.500 0.499 0.073 0.068 0.068 0.980 0.500 0.073 0.069 0.069 0.960
β∗
21 1.000 0.982 0.143 0.145 0.146 0.940 0.988 0.143 0.140 0.140 0.932
β∗
31 −0.200 −0.195 0.110 0.104 0.104 0.944 −0.196 0.110 0.105 0.105 0.940

γ01 −2.000 −2.173 0.340 0.358 0.397 0.956 −2.130 0.306 0.359 0.381 0.960
γ11 0.500 0.505 0.094 0.096 0.096 0.924 0.504 0.092 0.097 0.097 0.920
γ21 −0.500 −0.513 0.191 0.201 0.201 0.932 −0.508 0.188 0.193 0.192 0.940
γ31 −0.250 −0.262 0.163 0.157 0.157 0.964 −0.262 0.162 0.153 0.153 0.968
γ41 0.400 0.390 0.295 0.301 0.300 0.944 0.375 0.292 0.300 0.301 0.944
γ51 −0.250 −0.257 0.297 0.297 0.297 0.924 −0.246 0.290 0.288 0.287 0.940
γ61 0.500 0.550 0.874 0.918 0.917 0.932 0.495 0.848 0.937 0.935 0.956

t=2
β∗
02 −1.000 −1.014 0.152 0.162 0.162 0.952 −1.024 0.152 0.156 0.158 0.956
β∗
12 0.500 0.497 0.071 0.067 0.067 0.964 0.498 0.072 0.068 0.068 0.960
β∗
22 1.000 1.004 0.145 0.141 0.141 0.956 1.012 0.145 0.138 0.138 0.960
β∗
32 −0.400 −0.395 0.114 0.110 0.110 0.944 −0.398 0.115 0.110 0.110 0.944

γ02 −2.800 −2.952 0.323 0.382 0.411 0.932 −2.899 0.301 0.348 0.361 0.920
γ12 0.500 0.502 0.090 0.097 0.097 0.956 0.499 0.089 0.096 0.096 0.944
γ22 −0.500 −0.523 0.188 0.181 0.182 0.968 −0.515 0.186 0.177 0.177 0.960
γ32 0.250 0.268 0.165 0.179 0.179 0.932 0.262 0.163 0.175 0.175 0.932
γ42 1.700 1.761 0.180 0.195 0.204 0.936 1.738 0.176 0.188 0.191 0.944
γ52 −0.600 −0.616 0.270 0.316 0.316 0.916 −0.602 0.267 0.303 0.303 0.904
γ62 1.300 1.383 0.617 0.722 0.725 0.920 1.335 0.585 0.662 0.661 0.940

t=3
β∗
03 −1.000 −1.004 0.142 0.142 0.141 0.948 −1.007 0.143 0.142 0.141 0.952
β∗
13 0.500 0.502 0.076 0.080 0.080 0.936 0.504 0.077 0.081 0.081 0.936
β∗
23 1.000 1.006 0.141 0.131 0.131 0.956 1.010 0.142 0.132 0.132 0.956
β∗
33 −0.600 −0.604 0.122 0.121 0.121 0.948 −0.606 0.123 0.121 0.121 0.948

γ03 −2.800 −2.892 0.189 0.202 0.221 0.932 −2.865 0.186 0.197 0.207 0.940
γ13 0.500 0.500 0.092 0.098 0.098 0.940 0.496 0.091 0.096 0.096 0.936
γ23 −0.500 −0.499 0.174 0.171 0.171 0.956 −0.496 0.173 0.170 0.170 0.952
γ33 0.500 0.518 0.165 0.173 0.174 0.936 0.512 0.164 0.171 0.171 0.940
γ43 1.700 1.748 0.119 0.122 0.131 0.944 1.736 0.117 0.121 0.126 0.968
γ53 0.600 0.580 0.261 0.255 0.255 0.948 0.575 0.258 0.250 0.250 0.952
γ63 −0.500 −0.495 0.562 0.595 0.594 0.940 −0.485 0.548 0.581 0.580 0.916

ρ 0.800 0.795 0.038 0.036 0.037 0.948 0.794 0.038 0.036 0.036 0.948
α 0.667 0.662 0.046 0.044 0.044 0.956 0.663 0.046 0.044 0.044 0.956
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Table 3. Posterior summaries under the nonignorable model with a N(0, 8) prior and Jef-
freys prior when the missingness percentages were 5.37%, 10.52%, 11.94%, and 47.14%.

N(0, 8) Prior Jeffreys Prior
TRUE EST SD SE RMSE CP EST SD SE RMSE CP

t=0
β∗
00 −1.000 −1.004 0.148 0.131 0.131 0.972 −1.012 0.146 0.134 0.134 0.972
β∗
10 0.500 0.504 0.073 0.071 0.071 0.960 0.506 0.074 0.073 0.073 0.968
β∗
20 1.000 1.000 0.143 0.135 0.135 0.952 1.006 0.143 0.137 0.137 0.968
β∗
30 0.400 0.400 0.113 0.101 0.100 0.976 0.403 0.113 0.101 0.101 0.980

γ00 −2.500 −2.715 0.442 0.417 0.468 0.960 −2.648 0.348 0.411 0.436 0.960
γ10 0.500 0.499 0.128 0.118 0.118 0.972 0.501 0.125 0.118 0.118 0.972
γ20 −0.500 −0.490 0.255 0.247 0.246 0.952 −0.476 0.248 0.239 0.240 0.968
γ30 −0.500 −0.502 0.218 0.204 0.203 0.972 −0.492 0.215 0.202 0.202 0.972
γ60 0.000 0.041 0.960 0.835 0.834 0.964 −0.047 0.892 0.877 0.877 0.972

t=1
β∗
01 −1.000 −0.982 0.182 0.192 0.193 0.924 −0.997 0.178 0.190 0.189 0.920
β∗
11 0.500 0.499 0.078 0.074 0.074 0.972 0.500 0.078 0.076 0.076 0.956
β∗
21 1.000 0.974 0.155 0.152 0.154 0.932 0.984 0.155 0.153 0.154 0.940
β∗
31 −0.200 −0.197 0.111 0.105 0.105 0.944 −0.196 0.112 0.104 0.104 0.952

γ01 −2.000 −2.258 0.429 0.485 0.549 0.952 −2.173 0.346 0.395 0.430 0.952
γ11 0.500 0.501 0.096 0.100 0.100 0.912 0.503 0.094 0.100 0.100 0.916
γ21 −0.500 −0.525 0.196 0.208 0.209 0.936 −0.512 0.192 0.197 0.197 0.952
γ31 −0.250 −0.257 0.165 0.158 0.158 0.964 −0.260 0.163 0.155 0.155 0.968
γ41 0.400 0.396 0.300 0.305 0.304 0.948 0.377 0.295 0.302 0.302 0.944
γ51 −0.250 −0.278 0.310 0.324 0.324 0.924 −0.254 0.299 0.317 0.316 0.936
γ61 0.500 0.644 1.019 1.127 1.134 0.928 0.507 0.961 1.124 1.122 0.908

t=2
β∗
02 −1.000 −1.010 0.169 0.167 0.167 0.948 −1.025 0.167 0.165 0.167 0.936
β∗
12 0.500 0.496 0.077 0.071 0.071 0.960 0.496 0.078 0.075 0.075 0.956
β∗
22 1.000 0.999 0.156 0.149 0.149 0.968 1.010 0.157 0.150 0.150 0.948
β∗
32 −0.400 −0.395 0.117 0.112 0.112 0.948 −0.397 0.118 0.113 0.113 0.952

γ02 −2.800 −2.987 0.361 0.437 0.475 0.924 −2.920 0.331 0.402 0.418 0.924
γ12 0.500 0.501 0.092 0.101 0.101 0.932 0.500 0.090 0.098 0.098 0.940
γ22 −0.500 −0.527 0.195 0.186 0.187 0.964 −0.513 0.191 0.182 0.182 0.960
γ32 0.250 0.268 0.168 0.181 0.181 0.928 0.260 0.165 0.178 0.178 0.928
γ42 1.700 1.772 0.185 0.199 0.211 0.948 1.746 0.179 0.188 0.193 0.944
γ52 −0.600 −0.614 0.287 0.326 0.326 0.916 −0.589 0.282 0.324 0.323 0.912
γ62 1.300 1.404 0.710 0.829 0.833 0.940 1.321 0.668 0.781 0.780 0.916

t=3
β∗
03 −1.000 −0.970 0.219 0.242 0.243 0.904 −0.973 0.219 0.234 0.236 0.908
β∗
13 0.500 0.508 0.103 0.102 0.102 0.944 0.511 0.104 0.103 0.103 0.944
β∗
23 1.000 0.988 0.174 0.165 0.165 0.952 0.994 0.177 0.167 0.167 0.956
β∗
33 −0.600 −0.598 0.152 0.156 0.156 0.952 −0.599 0.153 0.157 0.157 0.948

γ03 −0.500 −0.547 0.133 0.147 0.155 0.912 −0.545 0.132 0.139 0.146 0.936
γ13 0.500 0.503 0.064 0.065 0.065 0.960 0.500 0.063 0.064 0.064 0.968
γ23 −0.500 −0.504 0.118 0.127 0.127 0.924 −0.504 0.118 0.124 0.124 0.940
γ33 0.500 0.511 0.109 0.115 0.115 0.936 0.509 0.109 0.113 0.113 0.948
γ43 1.700 1.733 0.137 0.142 0.146 0.952 1.727 0.137 0.141 0.143 0.956
γ53 0.600 0.578 0.188 0.203 0.204 0.952 0.573 0.187 0.199 0.200 0.940
γ63 −0.500 −0.466 0.443 0.511 0.511 0.888 −0.452 0.438 0.480 0.482 0.916

ρ 0.800 0.796 0.044 0.041 0.041 0.948 0.796 0.044 0.041 0.041 0.952
α 0.667 0.658 0.052 0.048 0.049 0.964 0.660 0.052 0.049 0.049 0.968



1952 WU ET AL.

Table 4. Values of DICR|y (pD) and LPMLR|y under ignorable missingness and nonig-
norable missingness with various priors for the HIV prevention behavioral data.

Fitted Model pD DICR|y LPMLR|y
Ignorable 30.85 4793.16 −2397.24
Nonignorable N(0, 1) 89.82 4769.73 −2398.26
Nonignorable N(0, 2) 107.06 4755.71 −2397.44
Nonignorable N(0, 3) 114.95 4757.82 −2397.86
Nonignorable N(0, 4) 112.99 4751.86 −2397.70
Nonignorable N(0, 5) 126.66 4748.78 −2397.28
Nonignorable N(0, 6) 132.95 4746.74 −2397.23
Nonignorable N(0, 7) 132.67 4747.22 −2397.23
Nonignorable N(0, 8) 132.94 4737.61 −2396.32
Nonignorable N(0, 9) 133.47 4745.62 −2397.29
Nonignorable N(0, 10) 140.61 4749.97 −2398.21
Nonignorable Jeffreys Prior 120.18 4750.08 −2396.64

We fit the ignorable and nonignorable models to the HIV prevention behav-

ioral data. For the ignorable model, we simply set h(yt,γ4t) = 0 in (3.8). For the

nonignorable model, we assumed that h(yt,γ4t) = γ4t1yt−1 + γ4t2yt in (3.8) and

considered a N(0, σ2prior) prior for γ4t2 as well as Jeffreys prior for γt in (4.5). We

specified uniform priors for all other parameters. We then computed DIC and

LPML under the ignorable model, the nonignorable model using a N(0, σ2prior)

prior, and the nonignorable model using Jeffreys prior. The values of DIC and

LPML are shown in Table 4. As exhibited in Table 4, the effective number of

parameters under the ignorable model (pD = 30.85) was the smallest among all

the models we considered, and approximately equal to the number of parameters.

Under the nonignorable model with a N(0, σ2prior) prior, the effective number of

parameters increased with σ2prior. Moreover, pD under the Jeffreys prior was

midway between pD under the N(0, 4) and N(0, 5) priors. We also see from Ta-

ble 4 that the DIC value was 4,793.16 under the ignorable model, that under

the nonignorable model with a N(0, σ2prior) prior, the value of DIC first tended

to decrease and then increase as σ2prior increased, and that the DIC attained the

local minimum with DIC = 4,737.61 at σ2prior = 8 among all the models under

consideration (10 values of σ2prior and Jeffreys Prior). The results indicated by

LPML were consistent with the results by the DIC criterion. The nonignorable

model with a N(0, 8) prior had the largest value of LPML (LPML = −2,396.32)

among all the models under consideration. The nonignorable model with Jeffreys

prior had the second largest value of LPML (LPML = −2,396.64). These results

indicate that for the HIV prevention behavioral data, the missing longitudinal
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Table 5. Posterior summaries under the ignorable model for the HIV prevention behav-
ioral data.

Binary Response Model Missing Data Mechanism
EST SD 95% HPD Interval EST SD 95% HPD Interval

Baseline Baseline
Intercept −0.694 0.196 (−1.063, −0.291) Intercept −3.490 0.411 (−4.296, −2.689)
Gender 0.379 0.132 (0.114, 0.634) Gender 0.115 0.237 (−0.336, 0.591)
City 0.123 0.157 (−0.186, 0.432) City −0.334 0.328 (−0.986, 0.290)
Cohabit 0.720 0.140 (0.455, 1.002) Cohabit 0.229 0.227 (−0.242, 0.654)
Counselor 0.433 0.158 (0.127, 0.749) Counselor 0.664 0.367 (−0.057, 1.380)
Drink 0.435 0.350 (−0.243, 1.129) Age 0.083 0.111 (−0.129, 0.305)
Age −0.372 0.073 (−0.516, −0.234) — — — —

6-Month 6-Month
Intercept −1.756 0.268 (−2.274, −1.246) Intercept −2.101 0.227 (−2.537, −1.651)
Gender 0.151 0.137 (−0.124, 0.415) Gender −0.397 0.149 (−0.690, −0.107)
City 0.112 0.167 (−0.211, 0.445) City 0.030 0.183 (−0.314, 0.395)
Cohabit 0.638 0.145 (0.354, 0.923) Cohabit 0.220 0.144 (−0.065, 0.500)
Counselor 0.574 0.179 (0.227, 0.917) Counselor 0.274 0.196 (−0.080, 0.691)
Drink 0.987 0.372 (0.273, 1.726) Age −0.101 0.075 (−0.252, 0.042)
Age −0.463 0.083 (−0.630, −0.310) R0 0.364 0.302 (−0.234, 0.949)

12-Month 12-Month
Intercept −1.811 0.281 (−2.371, −1.289) Intercept −1.953 0.211 (−2.351, −1.522)
Gender 0.331 0.150 (0.051, 0.636) Gender −0.482 0.144 (−0.760, −0.199)
City −0.005 0.173 (−0.337, 0.345) City −0.117 0.183 (−0.465, 0.249)
Cohabit 0.638 0.151 (0.344, 0.935) Cohabit −0.107 0.141 (−0.385, 0.167)
Counselor 0.275 0.182 (−0.078, 0.627) Counselor −0.249 0.175 (−0.591, 0.094)
Drink 0.594 0.366 (−0.131, 1.293) Age −0.160 0.074 (−0.309, −0.019)

Age −0.488 0.088 (−0.662, −0.323)
∑1

j=0Rj 1.644 0.140 (1.369, 1.918)

18-Month 18-Month
Intercept −1.750 0.275 (−2.273, −1.219) Intercept −2.641 0.238 (−3.111, −2.187)
Gender 0.241 0.148 (−0.046, 0.534) Gender −0.381 0.153 (−0.676, −0.079)
City −0.143 0.182 (−0.510, 0.201) City 0.403 0.181 (0.051, 0.763)
Cohabit 0.493 0.146 (0.209, 0.786) Cohabit 0.081 0.149 (−0.212, 0.370)
Counselor 0.408 0.185 (0.047, 0.771) Counselor 0.076 0.194 (−0.310, 0.452)
Drink 0.585 0.379 (−0.148, 1.327) Age −0.127 0.078 (−0.282, 0.021)

Age −0.398 0.084 (−0.563, −0.237)
∑2

j=0Rj 1.776 0.103 (1.575, 1.976)

z z
Baseline 0.086 0.122 (−0.154, 0.328) Baseline −0.633 0.231 (−1.080, −0.173)
6-Month −0.155 0.130 (−0.410, 0.100) 6-Month −0.073 0.141 (−0.357, 0.198)
12-Month −0.427 0.140 (−0.702, −0.158) 12-Month 0.456 0.142 (0.175, 0.736)
18-Month −0.372 0.141 (−0.654, −0.105) 18-Month 0.133 0.148 (−0.149, 0.430)

ρ 0.792 0.036 (0.722, 0.860) — — — —
α 0.742 0.046 (0.652, 0.831) — — — —
τ 1.074 1.241 (0.000, 3.661) — — — —

binary responses were potentially nonignorably missing.

Tables 5–7 show the ESTs, SDs, and 95% HPD intervals under the ignor-

able model, the nonignorable model with the N(0, 8) prior, and the nonignorable
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Table 6. Posterior summaries under the nonignorable model with a N(0, 8) prior for the
HIV prevention behavioral data.

Binary Response Model Missing Data Mechanism
EST SD 95% HPD Interval EST SD 95% HPD Interval

Baseline Baseline
Intercept −0.678 0.193 (−1.062, −0.305) Intercept −3.632 0.740 (−4.870, −2.450)
Gender 0.375 0.129 (0.129, 0.639) Gender 0.114 0.239 (−0.357, 0.578)
City 0.118 0.152 (−0.187, 0.409) City −0.329 0.325 (−0.986, 0.290)
Cohabit 0.702 0.139 (0.438, 0.980) Cohabit 0.226 0.248 (−0.254, 0.719)
Counselor 0.422 0.157 (0.108, 0.724) Counselor 0.655 0.369 (−0.056, 1.379)
Drink 0.416 0.345 (−0.252, 1.104) Age 0.085 0.122 (−0.146, 0.333)
Age −0.359 0.070 (−0.491, −0.217) y0 0.117 0.979 (−1.567, 1.934)

6-Month 6-Month
Intercept −1.630 0.288 (−2.225, −1.099) Intercept −2.209 0.332 (−2.820, −1.600)
Gender 0.111 0.142 (−0.180, 0.383) Gender −0.390 0.150 (−0.673, −0.083)
City 0.101 0.162 (−0.215, 0.415) City 0.032 0.186 (−0.333, 0.396)
Cohabit 0.628 0.142 (0.344, 0.900) Cohabit 0.190 0.160 (−0.127, 0.505)
Counselor 0.573 0.176 (0.226, 0.914) Counselor 0.238 0.207 (−0.174, 0.634)
Drink 0.967 0.355 (0.301, 1.690) Age −0.069 0.095 (−0.248, 0.126)
Age −0.451 0.081 (−0.606, −0.293) R0 0.344 0.313 (−0.278, 0.950)
— — — — y0 −0.262 0.333 (−0.938, 0.347)
— — — — y1 0.521 0.952 (−1.404, 2.367)

12-Month 12-Month
Intercept −1.501 0.304 (−2.093, −0.905) Intercept −2.331 0.385 (−3.060, −1.646)
Gender 0.216 0.152 (−0.069, 0.525) Gender −0.574 0.160 (−0.884, −0.255)
City −0.037 0.170 (−0.369, 0.291) City −0.121 0.194 (−0.505, 0.255)
Cohabit 0.609 0.148 (0.318, 0.896) Cohabit −0.194 0.158 (−0.501, 0.117)
Counselor 0.263 0.178 (−0.080, 0.611) Counselor −0.260 0.187 (−0.615, 0.113)
Drink 0.518 0.356 (−0.177, 1.208) Age −0.100 0.089 (−0.272, 0.072)

Age −0.493 0.087 (−0.667, −0.330)
∑1

j=0Rj 1.765 0.183 (1.408, 2.120)

— — — — y1 −0.653 0.317 (−1.239, −0.015)
— — — — y2 1.437 0.714 (0.035, 2.822)

18-Month 18-Month
Intercept −1.705 0.275 (−2.250, −1.192) Intercept −2.726 0.258 (−3.243, −2.234)
Gender 0.243 0.148 (−0.043, 0.535) Gender −0.403 0.156 (−0.699, −0.093)
City −0.145 0.175 (−0.497, 0.196) City 0.404 0.185 (0.046, 0.770)
Cohabit 0.472 0.144 (0.188, 0.752) Cohabit 0.049 0.152 (−0.251, 0.344)
Counselor 0.387 0.179 (0.031, 0.736) Counselor 0.087 0.197 (−0.296, 0.478)
Drink 0.569 0.364 (−0.127, 1.301) Age −0.107 0.082 (−0.269, 0.053)

Age −0.386 0.082 (−0.551, −0.229)
∑2

j=0Rj 1.754 0.111 (1.532, 1.966)

— — — — y2 0.604 0.291 (0.043, 1.169)
— — — — y3 −0.4944 0.5608 (−1.562, 0.640)

z z
Baseline 0.084 0.119 (−0.147, 0.326) Baseline −0.637 0.233 (−1.111, −0.202)
6-Month −0.158 0.127 (−0.410, 0.090) 6-Month −0.049 0.149 (−0.349, 0.235)
12-Month −0.372 0.140 (−0.646, −0.100) 12-Month 0.579 0.166 (0.269, 0.917)
18-Month −0.357 0.137 (−0.631, −0.100) 18-Month 0.147 0.153 (−0.158, 0.443)
ρ 0.789 0.037 (0.716, 0.860) — — — —
α 0.727 0.048 (0.635, 0.825) — — — —
τ 1.117 1.280 (0.000, 3.825) — — — —
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Table 7. Posterior summaries under the nonignorable model with Jeffreys prior for the
HIV prevention behavioral data.

Binary Response Model Missing Data Mechanism
EST SD 95% HPD Interval EST SD 95% HPD Interval

Baseline Baseline
Intercept −0.675 0.195 (−1.059, −0.300) Intercept −3.559 0.639 (−4.880, −2.446)
Gender 0.373 0.130 (0.113, 0.623) Gender 0.106 0.236 (−0.348, 0.568)
City 0.123 0.151 (−0.161, 0.431) City −0.301 0.319 (−0.939, 0.314)
Cohabit 0.704 0.141 (0.430, 0.973) Cohabit 0.214 0.246 (−0.252, 0.711)
Counselor 0.422 0.155 (0.119, 0.723) Counselor 0.608 0.355 (−0.074, 1.313)
Drink 0.430 0.345 (−0.236, 1.109) Age 0.093 0.120 (−0.142, 0.327)
Age −0.363 0.068 (−0.497, −0.230) y0 0.147 0.907 (−1.615, 2.037)

6-Month 6-Month
Intercept −1.650 0.287 (−2.223, −1.120) Intercept −2.147 0.280 (−2.690, −1.603)
Gender 0.117 0.142 (−0.169, 0.385) Gender −0.391 0.147 (−0.690, −0.114)
City 0.103 0.160 (−0.218, 0.406) City 0.038 0.185 (−0.326, 0.393)
Cohabit 0.630 0.147 (0.353, 0.921) Cohabit 0.191 0.159 (−0.117, 0.504)
Counselor 0.570 0.181 (0.210, 0.924) Counselor 0.230 0.206 (−0.166, 0.641)
Drink 0.983 0.361 (0.277, 1.697) Age −0.073 0.092 (−0.250, 0.110)
Age −0.454 0.079 (−0.610, −0.303) R0 0.333 0.311 (−0.288, 0.930)
— — — — y0 −0.237 0.304 (−0.814, 0.363)
— — — — y1 0.431 0.901 (−1.262, 2.011)

12-Month 12-Month
Intercept −1.546 0.313 (−2.172, −0.964) Intercept −2.243 0.313 (−2.864, −1.657)
Gender 0.232 0.153 (−0.066, 0.532) Gender −0.556 0.159 (−0.861, −0.235)
City −0.030 0.173 (−0.362, 0.303) City −0.112 0.192 (−0.491, 0.260)
Cohabit 0.616 0.151 (0.337, 0.921) Cohabit −0.183 0.156 (−0.487, 0.123)
Counselor 0.268 0.182 (−0.091, 0.621) Counselor −0.263 0.186 (−0.621, 0.112)
Drink 0.541 0.363 (−0.175, 1.255) Age −0.103 0.087 (−0.270, 0.071)

Age −0.500 0.085 (−0.672, −0.339)
∑1

j=0Rj 1.731 0.171 (1.399, 2.067)

— — — — y1 −0.602 0.301 (−1.182, −0.002)
— — — — y2 1.2918 0.6383 (0.011, 2.532)

18-Month 18-Month
Intercept −1.732 0.288 (−2.288, −1.191) Intercept −2.688 0.252 (−3.190, −2.191)
Gender 0.248 0.151 (−0.046, 0.553) Gender −0.396 0.154 (−0.684, −0.082)
City −0.140 0.182 (−0.494, 0.217) City 0.408 0.184 (0.047, 0.766)
Cohabit 0.471 0.141 (0.194, 0.750) Cohabit 0.055 0.152 (−0.233, 0.359)
Counselor 0.401 0.182 (0.054, 0.771) Counselor 0.083 0.199 (−0.310, 0.475)
Drink 0.582 0.378 (−0.141, 1.352) Age −0.108 0.082 (−0.267, 0.052)

Age −0.388 0.081 (−0.545, −0.228)
∑2

j=0Rj 1.741 0.109 (1.528, 1.955)

— — — — y2 0.563 0.289 (−0.010, 1.111)
— — — — y3 −0.473 0.550 (−1.554, 0.573)

z z
Baseline 0.084 0.120 (−0.149, 0.322) Baseline −0.623 0.227 (−1.085, −0.194)
6-Month −0.155 0.125 (−0.406, 0.084) 6-Month −0.052 0.147 (−0.336, 0.237)
12-Month −0.379 0.136 (−0.657, −0.123) 12-Month 0.558 0.159 (0.245, 0.867)
18-Month −0.357 0.140 (−0.641, −0.093) 18-Month 0.145 0.153 (−0.150, 0.446)
ρ 0.788 0.036 (0.718, 0.859) — — — —
α 0.731 0.047 (0.640, 0.826) — — — —
τ 1.059 1.211 (0.000, 3.567) — — — —
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model with Jeffreys prior. We took a posterior estimate to be “statistically sig-

nificant at a significance level of 0.05” if the corresponding 95% HPD interval did

not contain 0. Under the ignorable model, based on the posterior estimates of the

intervention effect (z) in Table 5, the counseling intervention significantly reduced

HIV risk behavior after 6-Month. The covariate Cohabit was always significant

(at each visit), indicating that people who cohabitated with their primary sex

partner were more likely to experience unprotected sex acts. Gender (at Base-

line and 12-Month), Cohabit (at each visit), Counselor (at baseline, 6-Month,

and 18-Month), and Drink (at 6-Month) all had significant positive posterior

estimates, which means females, people visiting counselors more frequently, and

people who drank more often tended to have more HIV behavior risks. Age (at

each visit) had a strong negative effect on the HIV behavior risk, indicating that

older people may have better knowledge of safe sexual behavior. For the missing

data mechanism, the posterior estimates of Condition varied from negative to

positive values as time progressed, indicating that people in the intervention arm

tended to participate in the study at the very beginning and then became more

likely to leave the study later. This behavior could possibly be explained by the

conjecture that people who have already accumulated enough behavioral knowl-

edge may consider it unnecessary to continue the risk prevention study. Females

(at 6-Month, 12-Month and 18-Month) and older people (at 12-Month) were less

likely to miss their visits, while people who lived in a city or town (18-Month)

were likely to drop out at the last visit. Moreover, people who frequently skipped

the previous visits had higher odds of missingness in the future, as indicated by

the cumulative number of missing data indicators (
∑t

j=0Rj).

The posterior estimates in Table 6 were similar to those given in Table 5.

However, Gender (at 12-Month), which is a covariate in the response model,

was significant with 95% HPD interval = (0.051, 0.636) under the ignorable

model but not significant with 95% HPD interval = (−0.069, 0.525) under the

nonignorable model with a N(0, 8) prior. Similarly, Age (at 12-Month), which is a

covariate in the missing data mechanism, was significant with 95% HPD interval

= (−0.309, −0.019) in the ignorable case but not significant with 95% HPD

interval = (−0.272, 0.072) in Table 6. However, the covariates in the missing

data mechanism, y1 (95% HPD interval = (−1.239, −0.015)) and y2 (95% HPD

interval = (0.035, 2.822)) at 12-Month, and y2 at 18-Month (95% HPD interval

= (0.043, 1.169)) were all significant, indicating that missingness of the binary

responses may be nonignorable. This result was consistent with the DIC and

LPML.
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In addition, the posterior standard deviations in Table 6 were similar to

those given in Table 5 in the binary model. For the covariates in the miss-

ing data mechanism shared in both the ignorable and nonignorable models, the

posterior standard deviations in Table 6 in the missing data mechanism, were

generally larger than those given in Table 5. The standard deviation of γ4t2
corresponding to the missing response covariate yt increased as σ2prior increased,

implying that γ4t2 could not be estimated under an improper uniform prior. It

is apparent that the posterior estimates under the nonignorable model were dif-

ferent than those under the ignorable model. The posterior estimates under the

nonignorable model with Jeffreys prior (in Table 7) were similar to those under

the nonignorable model with a N(0, 8) prior (in Table 6) for both the binary re-

sponse model and missing data mechanism, except that the standard deviations

for the missing data mechanism in Table 7 were slightly smaller. The posterior

estimates of ρ, α and τ were similar under the three models.

7. Discussion

In this paper, we developed Bayesian methods for resolving the challenges

in estimation and Bayesian computation of the longitudinal binary probit model

with nonignorably missing response data. An alternative longitudinal binary

probit model is given by Chib and Greenberg (1998), in which identifiability

of the variance of random effects in (3.3) is avoided by setting σ2 equal to 1.

However, this approach requires integrating out the high-dimensional truncated

multivariate normal latent variables w when sampling the missing responses. For

the missing data mechanism in (3.8), one can modify the model by relaxing the

linear assumptions on g and h. Even in the same formulation, the model can be

extended by including interaction terms between treatment and other covariates.

If the missing data mechanism has too many covariates, however, it may lead

to the problem of overfitting and may require a larger dataset to be identifiable.

Thus, it is more desirable to develop a simple and identifiable model that leads

to a good fit.

We constructed the Jeffreys prior in (4.5) using a subset of the data that is

completely observed. Based on our simulation study in Section 5, the Jeffreys

prior in (4.5) does yield quite good frequentist properties of the posterior esti-

mates. As empirically investigated in Wu et al. (2017), the posterior estimates

under the Jeffreys prior using the all available data are similar to those under

the Jeffreys prior using a subset of the data as long as the design matrix is of full
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rank. We expect that the posterior estimates are quite robust to the selection of

the subset used in constructing the Jeffreys prior.

We currently use the DIC (DICR|y) and conditional LPML (LPMLR|y) cri-

teria to assess fit of the missing data mechanism. Our DIC (DICR|y) is a part

of the “conditional DIC” in Mason, Richardson and Best (2012); Zhang et al.

(2015), since the deviance function is defined based on the distribution of the

missing data indicators conditional on the missing responses. Since our interest

lies in the missing data mechanism, DICR|y may be more suitable in our applica-

tion. As shown in Section 5, DICR|y has good empirical performance according

to our simulation study. We also investigated the DIC and LPML of the joint

model after integrating out the missing responses. However, the DIC and LPML

of the joint model failed to assess the fit of the missing data mechanism in both

the simulation study and the data analysis. Similar results were also observed

in Mason, Richardson and Best (2012). Future research, currently under inves-

tigation, involves extending the current DIC and conditional LPML criteria to

assess fit of the joint model via the decomposition of DIC and LPML (Zhang et

al. (2015)).

Supplementary Materials

The posterior summaries under the other priors are given in Tables S1 and

S2 in the online supplementary materials.
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Appendix: Proofs

Proof of Proposition 1

If we assume π(γ) = 1

π∗(θ|Dobs)

= L(θ|Dobs)π(β, α, τ, ρ)
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=
∑
ymis

n∏
i=1

K∏
k=1

{∫
fy(yi|zi,x1i, εi,θ)f(εi|α, ρ)dεf(ζk|τ)dζ

fR|y(RiT |yi, zi,x2i,γt)π(β, α, ρ)

}
.

Define y∗it = yit if rit = 0, and y∗it = 0 if rit = 1. If y∗i = (y∗i0, . . . , y
∗
iT ), it can be

shown that

π∗(θ|Dobs) ≥
n∏
i=1

K∏
k=1

{∫
fy(y

∗
i |zi,x1i, εi,θ)f(εi|α, ρ)dεf(ζk|τ)dζ

T∏
t=0

fR|y(Rit|Rit−1,y
∗
i , zi,x2i,γt)π(β, α, τ, ρ)

}
.

For each t, the unnormalized marginal posterior density of γt with π(γt) = 1 is∏n
i=1 f(Rit|Rit−1,y

∗
i , zi,x2i,γt), which corresponds to a binary regression model

with response equal to Rit. Due to the construction of y∗i and Proposition A.1

(Huang, Chen and Ibrahim (2005)), the posterior density of γt is improper and

thus the joint posterior π∗(θ|Dobs) is also improper.

Proof of Proposition 2

Because fR|y(RiT |yi, zi,x2i,γt) ≤ 1, π(γ) and π(τ) are proper, and we as-

sume π(β,α, ρ) = 1, it suffices to show that∫ ∑
ymis

n∏
i=1

K∏
k=1

∫
fy(yi|zi,x1i, εi,θ)f(εi|α, ρ)dεf(ζk|τ)dζπ(τ)dτdβdαdρ <∞.

(A.1)

Let y∗ = (yobs,y
∗
mis

), where y∗
mis

is any combination of the possible values for the

missing responses. Due to the finite number of combinations of y∗mis, and by

Tonelli’s theorem, it suffices to show that for each k∏
i∈Ic

∫
fy(y

∗
i |zi,x1i, εi,θ)dβf(εi|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ <∞.

By Chen and Shao (2001), and under (C1) and (C2), there exists a constant

K0 depending only on X∗obs such that∏
i∈Ic

∫
fy(y

∗
i |zi,x1i, εi,θ)dβf(εi|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

= Eu

(∫
1(X∗

obs
β + τζ + ε ≤ u)dβf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

)
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= Eu

(∫
K0‖u− τζ − ε‖pdβf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

)
≤ Eu

(
K0‖u‖p

∫
f(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

)
+K0

∫
‖ζ‖pf(ζk|τ)dζτpπ(τ)dτf(ε|α, ρ)dεdαdρ

+K0

∫
‖ε‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ.

The first and second terms are finite since α ∈ (0, 1), ρ ∈ (−1, 1), π(τ) is proper

with a finite pth moment, ζk
i.i.d.∼ N(0, 1), and condition C3. Let Σ = ΓΓ, where

Γ = Γ′. To study the second term, we carry out a transformation on εi such that

ε∗i = (
√
αΓ)

−1
εi, i ∈ Ic. Write the second term as

K0

∫
‖ε‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

≤ K0

∫ ∑
i∈Ic

‖εi‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

= K0

∑
i∈Ic

∫
‖εi‖pf(ε|α, ρ)dεf(ζk|τ)dζπ(τ)dτdαdρ

= K0

∑
i∈Ic

∫
‖εi‖pf(εi|α, ρ)dεif(ζk|τ)dζπ(τ)dτdαdρ

=
K0√
2π

∑
i∈Ic

∫
‖εi‖p

1

|αΣ|1/2
exp

(
−ε
′
iΣ
−1εi

2α

)
dεif(ζk|τ)dζπ(τ)dτdαdρ

=
K0√
2π

∑
i∈Ic

∫ (
ε∗i
′αΣε∗i

)p/2
exp

(
−‖ε

∗
i ‖

2

2

)
dε∗i f(ζk|τ)dζπ(τ)dτdαdρ.

Let λmax denote the maximum eigenvalues of Σ and, when T +1 = 4, λmax <

4 given ρ ∈ (−1, 1). As ε∗i
′Σε∗i ≤ λmax‖ε∗i ‖

2,

LHS ≤ K√
2π

∑
i∈Ic

∫
αp/2

{
4‖ε∗i ‖

2
}p/2

exp

(
−‖ε

∗
i ‖

2

2

)
dε∗i f(ζk|τ)dζπ(τ)dτdαdρ

≤ K ′
∑
i∈Ic

T∑
t=0

∫
αp/2|ε∗it|p exp

(
−ε
∗
it
2

2

)
dε∗itf(ζk|τ)dζπ(τ)dτdαdρ,

where K ′ is some constant depending only on X∗
obs

. Again, since α ∈ (0, 1),

ρ ∈ (−1, 1), π(τ) is propoer, and ζk
i.i.d.∼ N(0, 1), the second term is also finite,

which together yields (A.1).
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