FUNCTIONAL LINEAR REGRESSION MODELS FOR NONIGNORABLE MISSING SCALAR RESPONSES

Tengfei Li^{1}, Fengchang Xie ${ }^{2}$, Xiangnan Feng ${ }^{3}$, Joseph G. Ibrahim ${ }^{4}$, Hongtu Zhu ${ }^{1,4}$ and the Alzheimers Disease Neuroimaging Initiative
${ }^{1}$ University of Texas MD Anderson Cancer Center, ${ }^{2}$ Nanjing Normal University, ${ }^{3}$ The Chinese University of Hong Kong and ${ }^{4}$ University of North Carolina at Chapel Hill

Abstract

As an important part of modern health care, medical imaging data, which can be regarded as densely sampled functional data, have been widely used for diagnosis, screening, treatment, and prognosis, such as for finding breast cancer through mammograms. The aim of this paper is to propose a functional linear regression model for using functional (or imaging) predictors to predict clinical outcomes (e.g., disease status), while addressing missing clinical outcomes. We introduce an exponential tilting semiparametric model to account for the nonignorable missing data mechanism. We develop a set of estimating equations and the associated computational methods for both parameter estimation and the selection of the tuning parameters. We also propose a bootstrap resampling procedure for carrying out statistical inference. We systematically establish the asymptotic properties (e.g., consistency and convergence rate) of the estimates calculated from the proposed estimating equations. Simulation studies and a data analysis are used to illustrate the finite sample performance of the proposed methods.

Key words and phrases: Estimating equation, exponential tilting, functional data, imaging data, nonignorable missing data, tuning parameters.

1. Introduction

Medical imaging data, such as Magnetic Resonance Imaging (MRI), have been widely used to extract useful biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, and prediction of response to treatment, among many others, since imaging data may contain important information associated with the pathophysiology of various diseases, such as breast cancer. A critical clinical question is how to translate medical images into clinically useful information that can facilitate better clinical decision making (Gillies, Kinahan and Hricak (2016)). Addressing it requires the development of statistical models that use medical imaging data to predict clinical scalar responses. Standard
functional linear model belongs to this type of statistical models (Ramsay and Silverman (2006)). There is an extensive literature on the development of various estimation and prediction methods for functional linear models. See, for example, Cardot, Ferraty and Sarda (2003), Yao, Müller and Wang (2005), Hall and Horowitz (2007), Crambes, Kneip and Sarda (2009), Cai and Yuan (2012), Crambes and Mas (2013), and Hall and Giles (2015), among many others. The aim of this paper is to propose a new functional linear regression model to deal with an important scenario in clinical practice, when some clinical responses are missing.

Missing data is common in surveys, clinical trials, and longitudinal studies, and statistical methods for handling it often depend on the mechanism that generated the missing values. Three types of missing-data mechanism-missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) - have been extensively studied in the literature (Baker and Laird (1988); Ibrahim, Lipsitz and Chen (1999); Wang and Chen (2009); Zhou, Wan and Wang (2008); Kang and Schafer (2007); Rotnitzky et al. (2012); Little and Rubin (2002); Shi, Zhu and Ibrahim (2009); Ibrahim et al. (2005); Ibrahim and Molenberghs (2009)). Among these mechanisms, MNAR is not only more technically challenging, but also more sensitive to model misspecification. Under MNAR, it is well known that common practices such as a complete case analysis or ad-hoc imputation of missing data can lead to seriously biased results in both estimation and prediction (Molenberghs and Kenward (2007); Ibrahim and Molenberghs (2009)). To deal with MNAR, Kim and Yu (2011) developed a novel exponential tilting semiparametric model for the missing data mechanism and proposed some nonparametric regression techniques to estimate the conditional expectation. Tang, Zhao and Zhu (2014) developed general estimating equations by using the empirical likelihood, whereas Zhao and Shao (2014) studied the identifiability issue for generalized linear models with nonignorable missing responses and covariates. These methods are limited to the joint modeling of scalar predictors and scalar responses under MNAR.

Little has been done on the joint modeling of functional predictors and missing scalar variables. Recently, Preda, Saporta and Hadj (2010) defined the missingness of functional data and proposed a method based on nonlinear iterative partial least squares (NIPALS). Ferraty, Sued and Vieu (2013) studied mean estimation for the functional predictors under MAR. Chiou et al. (2014) proposed a missing value imputation and an outlier detection approach for traffic monitoring data. All these methods are limited to functional linear models for MAR and
one-dimensional functional predictors.
The aim of this paper is to propose a new functional linear regression framework by integrating the exponential tilting model for MNAR and the standard functional linear model. We call it ETFLR hereafter. We derive estimating equations (EEs) for ETFLR by combining the nonparametric kernel approach and the Functional Principle Component Analysis (FPCA) approach. We further derive an explicit formula for the computational solution to EEs and a method for choosing the tuning parameters. Theoretically, we investigate the consistency and convergence rate of the proposed estimates under some regularity conditions. We also propose a bootstrap procedure for carrying out statistical inference. We have used simulations and data sets to demonstrate the advantage of the proposed approach over competing methods under MCAR and MAR. Finally, we will develop companion software for ETFLR and release it to the public through http://www.nitrc.org/ and http://odin.mdacc.tmc.edu/bigs2/.

The rest of the paper is organized as follows. Section 2 introduces the model setting for ETFLR and presents the estimation procedure. Section 3 establishes asymptotic properties of the proposed parameter estimates. Section 4 includes simulation studies to examine the finite sample performance of the proposed estimates. In Section 5, we apply ETFLR to investigate the predictability of brain images at baseline on learning ability scores at 18 months after baseline obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data.

2. Functional Linear Regression for Missing Responses

2.1. Model setup

Let $\left(\delta_{i}, Z_{i}, W_{i}, Y_{i}\right), i=1,2, \ldots, n$, be n independently and identically distributed realizations of the random vector (δ, Z, W, Y), where δ is an indicator, Z is a functional predictor (e.g., MRI data) belonging to a specific functional space \mathbb{H} endowed with an inner product $\langle\cdot, \cdot\rangle, W$ is a $p \times 1$ random vector, and Y is a random scalar subject to missingness. Define $\delta_{i}=1$ if Y_{i} is observed and $\delta_{i}=0$ if Y_{i} is missing for $i=1, \ldots, n$. It is assumed that δ_{i} and δ_{j} are independent for any $i \neq j$, and that δ_{i} only depends on Z_{i}, W_{i} and Y_{i}. Let $O_{i}=\left(\delta_{i}, \delta_{i} Y_{i}, Z_{i}, W_{i}\right)$ denote the $i-$ th observation. For notational simplicity, we focus on one-dimensional functional data throughout. Without loss of generality, we assume

$$
\mathbb{H}=\left\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is continuous and }\langle f, f\rangle \triangleq \int_{t} f^{2}(t) d t<\infty\right\}
$$

For identification, it is assumed that the Z_{i} 's satisfy $\mathrm{E}(Z)=0$ (Crambes and Mas (2013)).

Our ETFLR consists of a functional linear model and an exponential tilting semiparametric model for the propensity score:

$$
\begin{align*}
Y & =\langle\boldsymbol{\theta}, Z\rangle+\boldsymbol{\beta}_{1}^{T} W+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right), \tag{2.1}\\
\operatorname{logit}\{\pi(Z, W, Y)\} & =G(Z, W)+\phi Y, \tag{2.2}
\end{align*}
$$

where $\pi(Z, W, Y) \triangleq \operatorname{Pr}(\delta=1 \mid Z, W, Y)$ is called the propensity score, $\phi \in \mathbb{R}$ is an unknown parameter that determines the amount of departure from the ignorability of the response mechanism, $\boldsymbol{\theta}(\cdot) \in \mathbb{H}$ is an unknown functional coefficient function, and $\boldsymbol{\beta}_{1} \in \mathbb{R}^{p}$ is a $p \times 1$ vector of unknown coefficients. Moreover, $G \in \mathbb{G}$ is a nonparametric function, where $\mathbb{G}=\left\{\right.$ all continuous functions $\left.\mathbb{H} \times \mathbb{R}^{p} \mapsto \mathbb{R}\right\}$. To include an intercept in (2.1), the first element of W_{i} is set to 1 .

The inclusion of $G(Z, W)$ in the propensity score extends the so-called exponential tilting (ET) model proposed by Kim and Yu (2011). Such an assumption is quite reasonable, since patients with severe or weak disease symptoms are more likely to be missing, and imaging data may be strongly correlated with clinical symptoms. If the domain of Z is limited to a set of d grid points, then Z is reduced to a d-dimensional vector and the logarithm of the propensity score in (2.2) reduces to the ET model. Therefore, ETFLR is a generalization of ET from a vector space to a functional space. Similar to ET, the nonparametric form $G(Z, W)$ in the model is expected to be more robust to possible model misspecification compared with such parametric forms as $G(Z, W)=\langle g, Z\rangle+W^{T} \boldsymbol{\beta}_{2}$ with a functional coefficient function $g(\cdot) \in \mathbb{H}$ and a vector $\boldsymbol{\beta}_{2} \in \mathbb{R}^{p}$.

For method development, we introduce the operators:

$$
\begin{aligned}
& \Gamma u=\mathrm{E}(\langle Z, u\rangle Z), \quad \hat{\Gamma}_{n} u=\frac{1}{n} \sum_{i=1}^{n}\left\langle Z_{i}, u\right\rangle Z_{i}, \\
& \Delta u=\mathrm{E}\left\{\langle Z, u\rangle\left(Y-\boldsymbol{\beta}_{1}^{T} W\right)\right\} \quad \text { and } \quad \hat{\Delta}_{n} u=\frac{1}{n} \sum_{i=1}^{n}\left\langle Z_{i}, u\right\rangle\left(Y_{i}-\boldsymbol{\beta}_{1}^{T} W_{i}\right)
\end{aligned}
$$

for any $u(\cdot) \in \mathbb{H}$. Due to the Hilbert-Schmidt theorem, it is commonly assumed that Γ and $\hat{\Gamma}_{n}$ have the sequences of eigenvalues $\left\{\lambda_{j}\right\}_{j \geq 1}$ and $\left\{\hat{\lambda}_{j}\right\}_{j \geq 1}$, with corresponding sequences of eigenfunctions $\left\{v_{j}(\cdot)\right\}_{j \geq 1}$ and $\left\{\hat{v}_{j}(\cdot)\right\}_{j \geq 1}$, respectively. Such a condition has been widely used in the FPCA literature.

2.2. Estimation method

2.2.1. Estimating equations

First, we consider the case when all responses are fully observed. In this case, parameter estimation is equivalent to solving a least squares (LS) problem. For ETFLR, we minimize the objective function given by

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left\langle\boldsymbol{\theta}, Z_{i}\right\rangle-\boldsymbol{\beta}_{1}^{T} W_{i}\right)^{2} \\
& =\left\langle\hat{\Gamma}_{n} \boldsymbol{\theta}, \boldsymbol{\theta}\right\rangle-2 \hat{\Delta}_{n} \boldsymbol{\theta}+\frac{1}{n} \sum_{i=1}^{n}\left\{\left(\boldsymbol{\beta}_{1}^{T} W_{i}\right)^{2}-2 Y_{i} \boldsymbol{\beta}_{1}^{T} W_{i}\right\}+\text { constant } \tag{2.3}
\end{align*}
$$

Using FPCA, we can estimate $\hat{\boldsymbol{\theta}}$ by minimizing (2.3) with respect to $\boldsymbol{\theta}$ over the linear span of $\left\{\hat{v}_{1}(\cdot), \ldots, \hat{v}_{k_{n}}(\cdot)\right\}$, where k_{n} is a positive integer. Therefore, by setting $\boldsymbol{\theta}=\sum_{j=1}^{k_{n}} r_{j} \hat{v}_{j}, \hat{\boldsymbol{\theta}}$ can be solved by minimizing

$$
\left\langle\hat{\Gamma}_{n} \boldsymbol{\theta}, \boldsymbol{\theta}\right\rangle-2 \hat{\Delta}_{n} \sum_{j=1}^{k_{n}} r_{j} \hat{v}_{j}+\frac{1}{n} \sum_{i=1}^{n}\left\{\left(\boldsymbol{\beta}_{1}^{T} W_{i}\right)^{2}-2 Y_{i} \boldsymbol{\beta}_{1}^{T} W_{i}\right\}
$$

with respect to $r=\left(r_{1}, \ldots, r_{k_{n}}\right)^{T}$. Furthermore, it follows from the HilbertSchmidt theorem that we have

$$
\left\langle\hat{\Gamma}_{n} \boldsymbol{\theta}, \boldsymbol{\theta}\right\rangle \approx \sum_{j=1}^{k_{n}} \hat{\lambda}_{j}\left[\left\langle\hat{v}_{j}, \boldsymbol{\theta}\right\rangle\right]^{2}=\sum_{j} \hat{\lambda}_{j} r_{j}^{2} \triangleq \boldsymbol{r}^{T} \hat{\Lambda} \boldsymbol{r} .
$$

Finally, minimizing (2.3) is equivalent to solving the estimating equation (EE) given by

$$
\left\{\begin{array}{l}
-\frac{1}{n} \sum_{i=1}^{n}\left\langle Z_{i}, \hat{v}_{j}\right\rangle\left(Y_{i}-\boldsymbol{\beta}_{1}^{T} W_{i}\right)+\hat{\lambda}_{j} r_{j}=0 \quad \text { for } \quad j=1, \ldots, k_{n} \tag{2.4}\\
-\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{\beta}_{1}^{T} W_{i}\right) W_{i}+\frac{1}{n} \sum_{j=1}^{k_{n}} r_{j} \sum_{i=1}^{n}\left\langle Z_{i}, \hat{v}_{j}\right\rangle W_{i}=0
\end{array}\right.
$$

Second, we consider the case when some responses are missing not at random. We take $\gamma=-\phi$ and for $j=1, \ldots, k_{n}$,

$$
\begin{aligned}
& \boldsymbol{\psi}_{1, j}\left(Y_{i}, Z_{i}, W_{i}, v_{j}, \lambda_{j} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)=n^{-1} \sum_{i=1}^{n}\left\langle Z_{i}, v_{j}\right\rangle\left(Y_{i}-\boldsymbol{\beta}_{1}^{T} W_{i}\right)-\lambda_{j} r_{j}, \\
& \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i},\left\{\hat{v}_{j}\right\}_{j \leq k_{n}},\left\{\hat{\lambda}_{j}\right\}_{j \leq k_{n}} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)=\left\{\boldsymbol{\psi}_{1}^{T}(\cdots), \boldsymbol{\psi}_{2}^{T}(\cdots)\right\}^{T}, \\
& \boldsymbol{\psi}_{1}(\cdots)=\left\{\psi_{1,1}\left(Y_{i}, Z_{i}, W_{i}, v_{1}, \lambda_{1} ; r, \boldsymbol{\beta}_{1}\right), \ldots, \psi_{1, k_{n}}\left(Y_{i}, Z_{i}, W_{i}, v_{k_{n}}, \lambda_{k_{n}} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)\right\}^{T},
\end{aligned}
$$

$$
\psi_{2}(\cdots)=\left\{Y_{i}-\boldsymbol{\beta}_{1}^{T} W_{i}-\sum_{j=1}^{k_{n}} r_{j}\left\langle Z_{i}, v_{j}\right\rangle\right\} W_{i} .
$$

Then, (2.4) is equivalent to

$$
\begin{equation*}
n^{-1} \sum_{i=1}^{n} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i},\left\{\hat{v}_{j}\right\}_{j \leq k_{n}},\left\{\hat{\lambda}_{j}\right\}_{j \leq k_{n}} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)=0 \tag{2.5}
\end{equation*}
$$

The law of large numbers ensures that the expectation of the left side of (2.5) converges to zero as $k_{n} \rightarrow \infty$, but this EE depends on missing data. By following the reasoning in Tang, Zhao and Zhu (2014), we have

$$
\begin{aligned}
& \mathrm{E}\left\{\boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right)\right\} \\
& =\operatorname{Pr}\left(\delta_{i}=1\right) \mathrm{E}\left\{\boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid \delta_{i}=1\right\}+\operatorname{Pr}\left(\delta_{i}=0\right) \mathrm{E}\left\{\boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid \delta_{i}=0\right\} \\
& =\mathrm{E}\left[\delta_{i} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right)+\left(1-\delta_{i}\right) \mathrm{E}\left\{\boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid \delta_{i}=0, Z_{i}, W_{i}\right\}\right] \\
& \\
& \mathrm{E}\left\{\boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid \delta_{i}=0, Z_{i}, W_{i}\right\} \\
& = \\
& \frac{\mathrm{E}\left\{\left(1-\delta_{i}\right) \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\left(1-\delta_{i}\right) \mid Z_{i}, W_{i}\right\}} \\
& =\frac{\mathrm{E}\left\{\operatorname{Pr}\left(\delta_{i}=0 \mid Y_{i}, Z_{i}, W_{i}\right) \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\operatorname{Pr}\left(\delta_{i}=0 \mid Y_{i}, Z_{i}, W_{i}\right) \mid Z_{i}, W_{i}\right\}} \\
& =\frac{\mathrm{E}\left\{\exp \left(\gamma Y_{i}\right) \operatorname{Pr}\left(\delta_{i}=1 \mid Y_{i}, Z_{i}, W_{i}\right) \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\exp \left(\gamma Y_{i}\right) \operatorname{Pr}\left(\delta_{i}=1 \mid Y_{i}, Z_{i}, W_{i}\right) \mid Z_{i}, W_{i}\right\}} \\
& = \\
& \frac{\mathrm{E}\left\{\delta_{i} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}} .
\end{aligned}
$$

Therefore, the original $\operatorname{EE} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right)$ shares the same expectation with

$$
\delta_{i} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right)+\left(1-\delta_{i}\right) \frac{\mathrm{E}\left\{\delta_{i} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i}, \ldots\right) \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}} .
$$

Finally, we propose to solve the equation

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n}\left\{\delta_{i} \boldsymbol{\psi}\left(Y_{i}, Z_{i}, W_{i},\left\{\hat{v}_{j}\right\}_{j \leq k_{n}},\left\{\hat{\lambda}_{j}\right\}_{j \leq k_{n}} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)\right. \\
& \left.+\left(1-\delta_{i}\right) m_{\boldsymbol{\psi}, i, \gamma}^{0}\left(Y_{i}, Z_{i}, W_{i},\left\{\hat{v}_{j}\right\}_{j \leq k_{n}},\left\{\hat{\lambda}_{j}\right\}_{j \leq k_{n}} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)\right\}=0 \tag{2.6}
\end{align*}
$$

where for any $f(\cdot), i$ and $\gamma, m_{f, i, \gamma}^{0}(\cdot)$ is defined by

$$
\begin{equation*}
m_{f, i, \gamma}^{0}(\cdot)=\frac{\mathrm{E}\left\{\delta_{i} f(\cdot) \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}} . \tag{2.7}
\end{equation*}
$$

To calculate 2.6), we need to know both ϕ and k_{n} and then approximate the conditional expectations in $m_{\psi, i, \gamma}^{0}$. We now discuss how to calculate them. We introduce a kernel function $K(\cdot)$ and let $K_{h}(u)=K(u / h)$, where h is a
bandwidth. We use

$$
\hat{m}_{\boldsymbol{\psi}, i, \gamma}(\cdots)=\sum_{l=1}^{n} w_{l, 0}\left(Z_{i}, W_{i} ; \gamma\right) \boldsymbol{\psi}\left(Y_{l}, Z_{l}, W_{l},\left\{\hat{v}_{j}\right\}_{j \leq k_{n}},\left\{\hat{\lambda}_{j}\right\}_{j \leq k_{n}} ; \boldsymbol{r}, \boldsymbol{\beta}_{1}\right)
$$

as a nonparametric estimate of $m_{\psi, i, \gamma}^{0}(\cdots)$, where

$$
w_{l, 0}\left(Z_{i}, W_{i} ; \gamma\right)=\frac{\delta_{l} \exp \left(\gamma Y_{l}\right) K_{h}\left\{D_{l}\left(Z_{i}, W_{i}\right)\right\}}{\sum_{k=1}^{n} \delta_{k} \exp \left(\gamma Y_{k}\right) K_{h}\left\{D_{k}\left(Z_{i}, W_{i}\right)\right\}},
$$

in which $D_{l}(Z, W)$ is equal to the sum of $w_{0} \sqrt{\sum_{j=1}^{k_{n}}\left\langle Z-Z_{l}, \hat{v}_{j}\right\rangle^{2}}$ and $(1-$ $\left.w_{0}\right)\left\|W-W_{l}\right\|$. The notation $\|v\|$ is used to denote the l_{2} norm of a vector v or the L_{2} norm of a function $v(\cdot)$. Moreover, w_{0} is a scalar introduced to balance the functional and nonfunctional parts of $D_{l}(\cdot, \cdot)$.

2.2.2. Computational method

We develop a computational method for our proposed estimating equation as follows. Let $D=\operatorname{diag}\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\}, \mathbf{W}=\left[W_{1}, \ldots, W_{n}\right]^{T}, \mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}$, $\mathbf{1}_{n}$ be an $n \times 1$ vector of ones, and $\Xi=\left(w_{i, j}\right)$ with $w_{i, j}=w_{i, 0}\left(Z_{j}, W_{j} ; \gamma\right)$. We then discretize the observed function Z_{i} to a fine grid of K equally spaced values t_{k} that span the interval $[0,1]$ (Ramsay and Silverman (2006)). Denote the K equallyspaced discrete points by $\mathbf{t}=\left(t_{0}=0, t_{1}, \ldots, t_{K}=1\right)$, and then approximate the inner product $\langle Z, \boldsymbol{\theta}\rangle$ by $\sum_{k=1}^{K} \boldsymbol{\theta}\left(t_{k}\right) Z\left(t_{k}\right)\left(t_{k}-t_{k-1}\right)$. We introduce an $n \times K$ matrix $\bar{Z}=\left(\bar{Z}_{i, k}\right)$, a $K \times k_{n}$ matrix $\bar{V}_{k_{n}}=\left(\hat{V}_{1}, \ldots, \hat{V}_{k_{n}}\right)$, and $\boldsymbol{\theta}=\bar{V}_{k_{n}} \boldsymbol{r}$ such that $Z^{*}=\bar{Z} \bar{V}_{k_{n}}$ is an $n \times k_{n}$ matrix, where $\bar{Z}_{i, k}=Z_{i}\left(t_{k}\right)\left(t_{k}-t_{k-1}\right)$. Then solving (2.6) is equivalent to minimizing

$$
\begin{equation*}
\left(\mathbf{Y}-Z^{*} \boldsymbol{r}-\mathbf{W} \boldsymbol{\beta}\right)^{T} \Sigma\left(\mathbf{Y}-Z^{*} \boldsymbol{r}-\mathbf{W} \boldsymbol{\beta}\right)+\left(Z^{*} \boldsymbol{r}\right)^{T}\left(I_{n}-\Sigma\right) Z^{*} \boldsymbol{r} \tag{2.8}
\end{equation*}
$$

where $\Sigma=\left[D+\operatorname{diag}\left\{\Xi\left(I_{n}-D\right) \mathbf{1}_{n}\right\}\right]$. If ϕ and k_{n}, w_{0} and h are given, the solution to (2.8) has the explicit form

$$
\begin{equation*}
\binom{\hat{\boldsymbol{r}}}{\hat{\boldsymbol{\beta}}}=\left\{\left(\bar{Z}^{*}\right)^{T} \Sigma\left(\bar{Z}^{*}\right)+\left(\tilde{Z}^{*}\right)^{T}\left(I_{n}-\Sigma\right)\left(\tilde{Z}^{*}\right)\right\}^{-1}\left(\bar{Z}^{*}\right)^{T} \Sigma \mathbf{Y}, \tag{2.9}
\end{equation*}
$$

where $\bar{Z}^{*}=(\bar{Z}, \mathbf{W})$ and $\tilde{Z}^{*}=(\bar{Z}, 0)$.

2.2.3. Selection of smoothing and tilting parameters

When ϕ is given, similar to Crambes and Henchiri (2015), the smoothing tuning parameters can be achieved by using the generalized cross-validation (GCV) criterion given by

$$
\begin{equation*}
\operatorname{GCV}\left(k_{n}\right)=\frac{1}{n} \frac{\left\|\mathbf{Y}-\Sigma^{*} \mathbf{Y}\right\|^{2}}{\left\{\operatorname{trace}\left(\left(I-\Sigma^{*}\right) \circ D\right) / n\right\}^{2}}, \tag{2.10}
\end{equation*}
$$

where $\Sigma^{*}=\bar{Z}^{*}\left\{\left(\bar{Z}^{*}\right)^{T} \Sigma\left(\bar{Z}^{*}\right)+\left(\tilde{Z}^{*}\right)^{T}\left(I_{n}-\Sigma\right)\left(\tilde{Z}^{*}\right)\right\}^{-1}\left(\bar{Z}^{*}\right)^{T} \Sigma$ depends on k_{n} and 'o' denotes the element-wise product. To select h and w_{0}, we generate L random divisions and denote \mathcal{T}_{ℓ} as the test set of the ℓ-th random division for $\ell=$ $1, \ldots, L$. See the detailed algorithm in Section 4. Then, we use Repeated Random Sub-sampling Validation (RRSV) by minimizing

$$
\begin{equation*}
\operatorname{RRSV}\left(h, w_{0}\right)=\frac{1}{L} \sum_{\ell=1}^{L} \operatorname{Loss}\left(\mathbf{Y}_{\mathcal{T}_{\ell}}, \hat{\mathbf{Y}}_{\mathcal{T}_{\ell}}\right) \tag{2.11}
\end{equation*}
$$

where $\operatorname{Loss}(\cdot, \cdot)$ is the negative Pearson correlation between the true responses $\mathbf{Y}_{\mathcal{T}_{e}}$ and the predicted responses $\hat{\mathbf{Y}}_{\mathcal{T}_{e}}$.

Following Kim and Yu (2011), we use an external validation sample, a followup subset of nonrespondents, chosen for further investigation to retrieve missing responses. We propose two approaches. The first is the Missing Not At Random for Nonparametric (MNARN) method. Here the validation sample is assumed to be randomly selected. Similar to Kim and Yu (2011), $\phi=-\gamma$ can be determined by the estimating equation

$$
\begin{equation*}
\sum_{i=1}^{n}\left(1-\delta_{i}\right) \delta_{i}^{*}\left\{Y_{i}-m_{e, i, \gamma}^{0}\left(Y_{i}\right)\right\}=0 \tag{2.12}
\end{equation*}
$$

where $m_{e, i, \gamma}^{0}\left(Y_{i}\right)$ is defined in (2.7) for the identity function $e(y)=y$ and $\delta_{i}^{*}=1$ if the i th subject belongs to the follow-up sample and 0 otherwise. It is easy to show that the expectation of the left-hand side of (2.12) is zero. Specifically, it follows from $m_{e, i, \gamma}^{0}\left(Y_{i}\right)=\mathrm{E}\left(Y_{i} \mid \delta_{i}=0, Z_{i}, W_{i}\right)$ that

$$
\begin{aligned}
& \mathrm{E}\left[\left(1-\delta_{i}\right) \delta_{i}^{*}\left\{Y_{i}-m_{e, i, \gamma}^{0}\left(Y_{i}\right)\right\}\right]=\mathrm{E} \delta_{i}^{*} \mathrm{E}\left(1-\delta_{i}\right)\left\{Y_{i}-m_{e, i, \gamma}^{0}\left(Y_{i}\right)\right\} \\
& =\mathrm{E} \delta_{i}^{*} \mathrm{E}\left[\left\{Y_{i}-\mathrm{E}\left(Y_{i} \mid \delta_{i}=0, Z_{i}, W_{i}\right)\right\} \mid \delta_{i}=0\right]=0 .
\end{aligned}
$$

Computationally, we approximate $m_{e, i, \gamma}^{0}\left(Y_{i}\right)$ by $\hat{m}_{e, i, \gamma}\left(Y_{i}\right)=\sum_{l=1}^{n} w_{l, 0}\left(Z_{i}, W_{i} ; \gamma\right) Y_{l}$.
The second approach is the Missing Not At Random for Parametric (MNARP) method. In it, if G is specified to be a linear function of Z and W by $G(Z, W)=$ $\langle Z, g\rangle+\boldsymbol{\beta}_{2}^{T} W$ for $g(\cdot) \in \mathbb{H}$ and $\boldsymbol{\beta}_{2} \in \mathbb{R}^{p}$, we estimate ϕ by maximizing the likelihood function of the logistic model (2.2) given by

$$
\begin{align*}
& \prod_{i=1}^{n}\left\{\frac{\exp \left(\sum_{j=1}^{k_{n}^{*}}\left\langle Z_{i}, \hat{v}_{j}\right\rangle s_{j}+W_{i}^{T} \boldsymbol{\beta}_{2}+\phi y_{i}\right)}{1+\exp \left(\sum_{j=1}^{k_{n}^{*}}\left\langle Z_{i}, \hat{v}_{j}\right\rangle s_{j}+W_{i}^{T} \boldsymbol{\beta}_{2}+\phi y_{i}\right)}\right\}^{\delta_{i}} \\
& \times\left\{\frac{\exp \left(\sum_{j=1}^{k_{n}^{*}}\left\langle Z_{i}, \hat{v}_{j}\right\rangle s_{j}+W_{i}^{T} \boldsymbol{\beta}_{2}+\phi y_{i}\right)}{1+\exp \left(\sum_{j=1}^{k_{n}^{*}}\left\langle Z_{i}, \hat{v}_{j}\right\rangle s_{j}+W_{i}^{T} \boldsymbol{\beta}_{2}+\phi y_{i}\right)}\right\}^{\left(1-\delta_{i}\right) \delta_{i}^{*}} \tag{2.13}
\end{align*}
$$

with respect to $\left(\phi, \boldsymbol{\beta}_{2}, s_{j}: j=1, \ldots, k_{n}^{*}\right)$. The tuning parameter k_{n}^{*} denotes the
number of eigenfunctions used for estimating ϕ. When the validation set is not large, we also add a penalty term, such as the LASSO, to the likelihood function. For a fixed k_{n}^{*}, this optimization procedure can be directly implemented by the 'glmnet' R package (Friedman, Hastie and Tibshirani (2009)). The optimal k_{n}^{*} can be further determined by minimizing its corresponding cross-validation error.

3. Theoretical Results

To facilitate the theoretical development, some assumptions are needed. Prior to presenting assumptions, we list some notation. True values of $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$, and $\boldsymbol{\theta}(\cdot)$ are denoted by $\boldsymbol{\beta}_{1,0}, \boldsymbol{\beta}_{2,0}$, and $\boldsymbol{\theta}_{0}(\cdot)$, respectively. Let $\mathbf{a}^{\otimes 2}=\mathbf{a}^{T} \mathbf{a}$ for any vector or matrix a and $\|\Sigma\|=\sqrt{\operatorname{tr}\left(\Sigma^{T} \Sigma\right)}$ be the Frobenius norm of a matrix Σ.

Define $\widetilde{M}\left(Y_{i}, W_{i} ; \boldsymbol{\beta}_{1}\right)=\left(Y_{i}-\boldsymbol{\beta}_{1}^{T} W_{i}\right) W_{i}, M_{j}\left(Y_{i}, Z_{i}, W_{i}, v_{j} ; \boldsymbol{\beta}_{1}\right)=\left\langle Z_{i}, v_{j}\right\rangle\left(Y_{i}-\right.$ $\boldsymbol{\beta}_{1}^{T} W_{i}$), and

$$
r_{j}=\sum_{i=1}^{n} \frac{\left\{\delta_{i} M_{j}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)+\left(1-\delta_{i}\right) m_{M_{j}, i, \gamma}^{0}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)\right\}}{\left(n \hat{\lambda}_{j}\right)} .
$$

Solving (2.6) is equivalent to solving $U\left(\boldsymbol{\beta}_{1}\right)=0$, where $U\left(\boldsymbol{\beta}_{1}\right)$ is given by

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_{n}} r_{j}\left[\delta_{i} W_{i}\left\langle Z_{i}, \hat{v}_{j}\right\rangle+\left.\left(1-\delta_{i}\right) \frac{\mathrm{E}\left\{\delta_{i}\left\langle Z_{i}, v_{j}\right\rangle W_{i} \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}}{\mathrm{E}\left\{\delta_{i} \exp \left(\gamma Y_{i}\right) \mid Z_{i}, W_{i}\right\}}\right|_{v_{j}=\hat{v}_{j}}\right] \\
& -\frac{1}{n} \sum_{i=1}^{n}\left\{\delta_{i} \widetilde{M}\left(Y_{i}, W_{i} ; \boldsymbol{\beta}_{1}\right)+\left(1-\delta_{i}\right) m_{\tilde{M}, i, \gamma}^{0}\left(Y_{i}, W_{i} ; \boldsymbol{\beta}_{1}\right)\right\} .
\end{aligned}
$$

Then, we have the theorem, whose assumptions and proofs can be found in the supplementary document.

Theorem 1. Suppose Assumptions (A.1)-(A.9) hold. Then, as $n \rightarrow \infty$, there exists a unique solution $\hat{\boldsymbol{\beta}}_{1}$ of $U\left(\boldsymbol{\beta}_{1}\right)=0$, which converges to $\boldsymbol{\beta}_{1,0}$ in probability, and $\hat{\boldsymbol{\theta}}=\sum_{j=1}^{k_{n}} r_{j}\left(\hat{\boldsymbol{\beta}}_{1}\right) \hat{v}_{j}$ satisfies $\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right\|_{L_{2}} \rightarrow 0$ in probability, where
$r_{j}\left(\boldsymbol{\beta}_{1}\right) \triangleq\left(n \hat{\lambda}_{j}\right)^{-1} \sum_{i=1}^{n}\left\{\delta_{i} M_{j}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)+\left(1-\delta_{i}\right) m_{M_{j}, i, \gamma}^{0}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)\right\}$.
Moreover, we have $\left\|\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1,0}\right\|=O_{p}\left(k_{n}^{2 a+1} n^{-1 / 2}+k_{n}^{1 / 2-b}\right)$ and $\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right\|_{L_{2}}=$ $O_{p}\left(k_{n}^{5 / 2 a+3 / 2} n^{-1 / 2}+k_{n}^{1+a / 2-b}\right)$.

Remark 1. Assumptions (A.1)-(A.9) have been widely used in the literature. Specifically, we can find assumptions similar to (A.1) and (A.2) in Crambes and Mas (2013), those similar to (A.3) and (A.4) in Hall and Horowitz (2007), those
similar to (A.5) in Hall and Hosseini-Nasab (2006), those similar to (A.7) in Kong et al. (2015), and those similar to Condition (A.9) in Tang, Zhao and Zhu (2014). Assumptions (A.6) and (A.8) are very weak since they require some mild conditions on $E\left(\|W\|^{2}\right)$ and $\mathrm{E}\left[W-\sum_{j=1}^{\infty} \mathrm{E}\left(W \xi_{j}\right) \xi_{j}\right]^{\otimes 2}=\mathrm{E} W W^{T}-$ $\sum_{j=1}^{\infty} \mathrm{E}\left(W \xi_{j}\right) \mathrm{E}\left(W^{T} \xi_{j}\right)$. In Assumption (A.7), $k_{n} \rightarrow \infty$ and $k_{n}^{5 a+3} n^{-1} \rightarrow 0$ ensure that both the bias and variance of $\hat{\boldsymbol{\theta}}$ asymptotically converge to 0 . For the selection of k_{n}, a small k_{n} may incur substantial information loss and cause bias, whereas a large k_{n} can increase variance due to insufficient number of observations.

Remark 2. Denote $\mathcal{M}=\left\{\left(y_{i}, Z_{i}, W_{i}\right), i=n+1, \ldots, n+N_{0}\right\}$ as a test set with N_{0} new observations. For $i \leq n+N_{0}$, by using $\hat{y}_{i}=\left\langle Z_{i}, \hat{\boldsymbol{\theta}}\right\rangle+\hat{\boldsymbol{\beta}}_{1}^{T} W$ as the predicted response of the i th observation, the squared prediction error can be bounded by

$$
\begin{aligned}
& \frac{1}{N_{0}} \sum_{i=n+1}^{n+N_{0}}\left|\hat{y}_{i}-y_{i}\right|^{2} \\
& =\frac{1}{N_{0}} \sum_{i=n+1}^{n+N_{0}}\left|\left(\left\langle\hat{\boldsymbol{\theta}}, Z_{i}\right\rangle+\hat{\boldsymbol{\beta}}_{1}^{T} W_{i}\right)-\left(\left\langle\boldsymbol{\theta}_{0}, Z_{i}\right\rangle+\boldsymbol{\beta}_{1,0}^{T} W_{i}+\epsilon_{i}\right)\right|^{2} \\
& \leq \frac{1}{N_{0}} \sum_{i=n+1}^{N_{0}}\left(\left\|Z_{i}\right\|^{2}\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|^{2}+W_{i} W_{i}^{T}\left\|\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1,0}\right\|^{2}\right)+\sigma^{2}+O_{p}\left(\frac{1}{\sqrt{N_{0}}}\right) \\
& =\sigma^{2}+O_{p}\left(k_{n}^{a+2-2 b}+\frac{k_{n}^{5 a+3}}{n}+\frac{1}{\sqrt{N_{0}}}\right) .
\end{aligned}
$$

In this case, we can obtain the optimal convergence rate $O_{p}\left(n^{(a+2-2 b) /(4 a+1+2 b)}+\right.$ $\left.1 / \sqrt{N_{0}}\right)$ by minimizing $k_{n}^{a+2-2 b}+k_{n}^{5 a+3} / n$, which leads to $k_{n}=O\left(n^{1 /(4 a+1+2 b)}\right)$ and $\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right\|=O\left(n^{(a / 2+1-b) /(4 a+2 b+1)}\right)$. Although these convergence rates are slower than those in Tang, Zhao and Zhu (2014) and Hall and Horowitz (2007), our ETFLR is much more complex due to the inclusion of $G(Z, W)$ in model (2.2).

We consider some approximations to the terms in (2.6) discussed in Subsection 2.2.1 and then solve $\tilde{U}\left(\boldsymbol{\beta}_{1}\right)=0$, where $\tilde{U}\left(\boldsymbol{\beta}_{1}\right)$ is given by

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k_{n}} \hat{r}_{j}\left\{\delta_{i} W_{i}\left\langle Z_{i}, \hat{v}_{j}\right\rangle+\left(1-\delta_{i}\right) \sum_{l=1}^{n} w_{l, 0}\left(Z_{i}, W_{i} ; \gamma\right) \delta_{l}\left\langle Z_{l}, \hat{v}_{j}\right\rangle W_{l}\right\} \\
& -\frac{1}{n} \sum_{i=1}^{n}\left\{\delta_{i} \widetilde{M}\left(Y_{i}, W_{i} ; \boldsymbol{\beta}_{1}\right)+\left(1-\delta_{i}\right) \hat{m}_{\tilde{M}, i, \gamma}\left(Y_{i}, W_{i} ; \boldsymbol{\beta}_{1}\right)\right\},
\end{aligned}
$$

in which \hat{r}_{j} is equal to

$$
\left(n \hat{\lambda}_{j}\right)^{-1} \sum_{i=1}^{n}\left\{\delta_{i} M_{j}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)+\left(1-\delta_{i}\right) \hat{m}_{M_{j}, i, \gamma}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)\right\}
$$

Additional assumptions (B.1)-(B.6) are listed in the Appendix.
Theorem 2. Suppose that Assumptions (A.1)-(A.9) and (B.1)-(B.6) hold. Then, as $n \rightarrow \infty$, there exists a unique solution $\widetilde{\boldsymbol{\beta}}_{1}$ of $\tilde{U}\left(\boldsymbol{\beta}_{1}\right)=0$, which converges to $\boldsymbol{\beta}_{1,0}$ in probability and $\widetilde{\boldsymbol{\theta}}=\sum_{j=1}^{k_{n}} \hat{r}_{j}\left(\hat{\boldsymbol{\beta}}_{1}\right) \hat{v}_{j}$ satisfies $\left\|\widetilde{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right\|_{L_{2}} \rightarrow 0$ in probability, where $\hat{r}_{j}\left(\boldsymbol{\beta}_{1}\right)$ is equal to

$$
\sum_{i=1}^{n} \frac{\left\{\delta_{i} M_{j}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)+\left(1-\delta_{i}\right) \hat{m}_{M_{j}, i, \gamma}\left(Y_{i}, Z_{i}, W_{i}, \hat{v}_{j} ; \boldsymbol{\beta}_{1}\right)\right\}}{\left(n \hat{\lambda}_{j}\right)}
$$

Moreover, we have $\left\|\widetilde{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1,0}\right\|=O_{p}\left(k_{n}^{1 / 2-b}+k_{n}^{2 a+1} n^{-1 / 2}+k_{n}^{(a+1) / 2}\{h+1 / \sqrt{n \psi(h)}\}\right)$ and $\left\|\widetilde{\boldsymbol{\theta}}-\boldsymbol{\theta}_{0}\right\|=O_{p}\left(k_{n}^{1+a / 2-b}+k_{n}^{5 a / 2+3 / 2} n^{-1 / 2}+k_{n}^{(a+1)}\{h+1 / \sqrt{n \psi(h)}\}\right)$.
Remark 3. Assumption (B.2) holds if $G(Z, W)$ is a bounded linear operator of (Z, W) such that $\|G\|=|G(Z, W)| /(\|Z\|+\|W\|) \leq C$ holds for a constant C. Assumption (B.3) is similar to Condition (C.2.19) of Martinez (2013). Assumption (B.4) is similar to and weaker than Condition (C.2.23) of Martinez (2013), and is equivalent to that the infimum $\inf _{(z, x) \in \mathbb{H}_{0}} \psi_{z, x}(\cdot) \triangleq \psi(\cdot)$ exists and is uniformly positive in its domain, where $\psi_{z, x}$ is usually called the small ball probability. More details about the small ball probability and $\psi_{x, z}(h)$ can be found in Li and Shao (2001) and Ferraty and Vieu (2006, 2011). Compared with $m_{\psi, i, \gamma}^{0}$, the nonparametric kernel estimate $\hat{m}_{\psi, i, \gamma}$ brings in additional bias and variance associated with the tuning parameter h. Assumption B. 5 ensures that such additional bias and variance are asymptotically negligible.
Corollary 1. Assume that either $\left(w_{0}, \boldsymbol{\beta}_{1,0}\right)=(1, \mathbf{0})$ or $\left(w_{0}, \boldsymbol{\theta}_{0}\right)=(0, \mathbf{0})$ holds, and $\psi(h)$ is equal to $\inf _{(z, x) \in H_{0}} \psi_{z, x}(h)$, where $\psi_{z, x}(\tau)=\operatorname{Pr}\left[(Z, W) \in\left\{(\tilde{z}, \tilde{x}) \mid w_{0} \| \tilde{z}\right.\right.$ $\left.\left.-z\left\|+\left(1-w_{0}\right)\right\| \tilde{x}-x \| \leq \tau\right\}\right]$. Under Assumptions (A.1)-(A.9) and (B.1)-(B.5), the conclusions in Theorem 2 remain valid.

We have a result that justifies the computational method in Subsection 2.2.2.
Theorem 3. If the tuning parameters h, w_{0}, and k_{n} and the tilting parameter ϕ are fixed, and for any f_{1} and $f_{2} \in H,\left\langle f_{1}, f_{2}\right\rangle$ is defined as $\sum_{k=1}^{K} f_{1}\left(t_{k}\right) f_{2}\left(t_{k}\right)\left(t_{k}-\right.$ $\left.t_{k-1}\right)$, then the solution to (2.6) is equal to the minimizer that minimizes (2.8).

4. Simulation Studies

Simulation results are given in the Appendix due to space limitations.

5. Application to the ADNI Dataset

Alzheimer's disease (AD) is the most common form of dementia and is an escalating national epidemic and a genetically complex, progressive, and fatal neurodegenetive disease. The ADNI study is a large scale multi-site study which has collected clinical, imaging, and laboratory data at multiple time points from cognitively normal controls (CN), individuals with significant memory concern (SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and subjects with AD. One of the goals of ADNI is to develop prediction methods to predict the longitudinal course of clinical outcomes (e.g., learning ability) based on imaging and biomarker data. More information about data acquisition can be found at the ADNI website (www.loni.usc.edu/ADNI).

To illustrate the empirical utility of our methods in imaging classification, we use a subset of the ADNI data that consists of 682 subjects (208 CN controls, 153 AD patients, and 321 LMCI patients), after removing missing or low quality imaging data. Among them, there are 395 males with average age 75.38 years old and standard deviation 6.48 years old, and 287 females with average age 74.81 years old and standard deviation 6.81 years old. The T1-weighted images for all subjects at baseline were preprocessed by standard steps including AC (anterior commissure) and PC (posterior commissure) correction, N2 bias field correction, skull-stripping, intensity inhomogeneity correction, cerebellum removal, segmentation, and registration (Wang et al. (2011). Afterwards, we generated RAVENS-maps (Davatzikos et al. (2001)) for the whole brain using the deformation field obtained during registration. We obtained the $256 \times 256 \times 256$ RAVENS-maps and then down-sampled them to $128 \times 128 \times 128$ for data analysis.

The development of ETFLR is motivated by using imaging and clinical variables at baseline to predict clinical outcomes after baseline. The covariates of interest at baseline include age, gender, education, marriage status (married, divorced, or widowed), APOE4 (risk from variations of the APOE gene), DX-bl (CN, SMC, EMCI, LMCI, and AD), as well as the RAVENS map. The learning ability of each subject was scored (the so-called Rey Auditory Verbal Learning Test Score) at $6,12,18,24$, and 30 months after baseline. The missingness rates of the test scores at the 18 th, 24 th and 30 th month are very high, e.g., the missingness rate at the 18 th month is 53.1%. We are interested in examining the learning ability at the 18th month, at which all LMCI and AD patients were tested for learning ability. We have 682 individuals in total, among which 362 individuals have missing data. It is necessary to model the missing responses
given the high missingness rate.
We applied ETFLR to this ADNI data set as follows. First, to determine the tilting parameter ϕ, we obtained a validation set by investigating the responses at months other than the 18th month for those observations with missing responses. We interpolated the responses at the 18th month by using those at other months by a linear regression, and then we calculated the p-value associated with month. The interpolations with p-values less than 0.05 were considered as the validation set, and their corresponding interpolated responses were approximately taken as the missing true responses. By using both MNARN and MNARP (named in Subsection 2.2.3), we calculated two estimates of ϕ. Second, given $\hat{\phi}$, the first k_{n} components (columns) of the functional covariate Z, together with the nonfunctional covariates W (age, gender, etc.), we calculated the estimates of all coefficients by optimizing the quadratic form 2.8). We used GCV to choose k_{n} as in (2.10).

Third, we used RRSV to choose the optimal $\left(h, w_{0}\right)$ as in 2.11). Given a grid of $\left(h, w_{0}\right)$ values, we used the average prediction on the test set to choose the optimal $\left(h, w_{0}\right)$. The criterion used is the Pearson correlation between the true and predicted responses. Specifically, we divided the dataset into half the test set and half the training set 500 times randomly, ensuring that both the missingness rate and the proportion of the validation set between the training set and the test set are the same. At each division, for every given h and w_{0}, we calculated Cor $_{\text {tr }}$ and Cor $_{\text {test }}$ for all approaches, where Cor $_{\text {tr }}$ is the correlation between the predicted responses and the true responses on the training dataset, and $\mathrm{Cor}_{\text {test }}$ is the correlation between the predicted responses and the true responses on the test dataset. After 500 divisions, we calculated their averages in comparison with MCAR and MAR approaches. See Table 1 for such results. We found that both MNARP and MNARN outperform in almost all tuning parameters $\left(h, w_{0}\right) \mathrm{s}^{\prime}$, and the best $\left(h, w_{0}\right)$ is achieved at $\left(1.1^{3} h_{\min }, 0.5\right)$ for MNARN. We also examined whether the functional covariate leads to better prediction. Specifically, by setting $\boldsymbol{\theta}_{0}=\mathbf{0}$, we repeated the same estimation procedure to calculate ($\mathrm{Cor}_{\text {test }}, \mathrm{Cor}_{\text {tr }}$) at $\left(1.1^{3} h_{\text {min }}, 0.5\right)$, leading to $\mathrm{Cor}_{\text {tr }}=0.257(0.054)$ and Cor $_{\text {test }}=0.127(0.059)$. Comparing such results with those in Table 1 reveals that RAVEN images can substantially improve prediction accuracy.

After fixing $h=1.1^{3} h_{\text {min }}$ and $w_{0}=0.5$, we calculated the estimates of the non-functional covariates in Table 2. The bootstrap resampling procedure was further utilized for inference. Specifically, we repeated the bootstrap resampling procedure 300 times. At each time, we calculated the parameter estimates and

Table 1. ADNI data analysis results: prediction accuracy scores.

	$\left(w_{0}, h\right)$	MCAR	MAR	MNARP	MNARN
$\mathrm{Cor}_{\text {tr }}$	$\left(0,1.1^{3} h_{\text {min }}\right)$	0.3238 (0.0695)	0.2984 (0.0658)	0.2994 (0.0654)	0.2970 (0.0619)
Cor ${ }_{\text {test }}$	$\left(0,1.1^{3} h_{\text {min }}\right)$	0.1161 (0.0605)	0.1384 (0.0609)	0.1388 (0.0623)	0.1377 (0.0629)
Cor ${ }_{\text {tr }}$	$\left(0,1.1^{4} h_{\text {min }}\right)$	0.3244 (0.0707)	0.2993 (0.0761)	0.3000 (0.0665)	0.2967 (0.0621)
Cor ${ }_{\text {test }}$	$\left(0,1.1^{4} h_{\text {min }}\right)$	0.1160 (0.0607)	0.1380 (0.0608)	0.1389 (0.0615)	0.1387 (0.0624)
$\mathrm{Cor}_{\text {tr }}$	$\left(0,1.1^{5} h_{\text {min }}\right)$	0.3243 (0.0701)	0.2997 (0.0672)	0.3013 (0.0674)	0.2984 (0.0633)
Cor ${ }_{\text {test }}$	$\left(0,1.1^{5} h_{\text {min }}\right)$	0.1150 (0.0616)	0.1373 (0.0603)	0.1384 (0.0616)	0.1377 (0.0619)
$\mathrm{Cor}_{\text {tr }}$	$\left(0,1.1^{6} h_{\text {min }}\right)$	0.3264 (0.0710)	0.3010 (0.0656)	0.3031 (0.0671)	0.3014 (0.0639)
Cortest	$\left(0,1.1^{6} h_{\text {min }}\right)$	0.1153 (0.0613)	0.1369 (0.0592)	0.1371 (0.0604)	0.1360 (0.0611)
$\mathrm{Cor}_{\text {tr }}$	$\left(0,1.1{ }^{7} h_{\text {min }}\right)$	0.3269 (0.0706)	0.3021 (0.0665)	0.3039 (0.0678)	0.3012 (0.0635)
Cor ${ }_{\text {t }}$	$\left(0,1.1^{7} h_{\text {min }}\right)$	0.1146 (0.0601)	0.1368 (0.0586)	0.1373 (0.0588)	0.1368 (0.0600)
Cor ${ }_{\text {tr }}$	$\left(1,1.1^{0} h_{\text {min }}\right)$	0.3266 (0.0724)	0.3023 (0.0645)	0.2949 (0.0617)	0.2900 (0.0611)
Cor ${ }_{\text {test }}$	$\left(1,1.1^{0} h_{\text {min }}\right)$	0.1146 (0.0620)	0.1394 (0.0586)	0.1435 (0.0593)	0.1419 (0.0598)
Cor ${ }_{\text {t }}$	$\left(1,1.1^{1} h_{\text {min }}\right)$	0.3255 (0.0695)	0.3055 (0.0672)	0.2972 (0.0627)	0.2911 (0.0633)
Cortest	$\left(1,1.1^{1} h_{\text {min }}\right)$	0.1152 (0.0625)	0.1404 (0.0580)	0.1459 (0.0593)	0.1447 (0.0594)
Cor	$\left(1,1.1^{2} h_{\text {min }}\right)$	0.3265 (0.0720)	0.3069 (0.0713)	0.3009 (0.0675)	0.2944 (0.0648)
Cor ${ }_{\text {test }}$	$\left(1,1.1^{2} h_{\text {min }}\right)$	0.1148 (0.0609)	0.1405 (0.0577)	0.1439 (0.0587)	0.1443 (0.0589)
Cor ${ }_{\text {tr }}$	$\left(1,1.1^{3} h_{\text {min }}\right)$	0.3266 (0.0731)	0.3063 (0.0720)	0.3020 (0.0695)	0.2947 (0.0647)
Cor ${ }_{\text {test }}$	$\left(1,1.1^{3} h_{\text {min }}\right)$	0.1139 (0.0614)	0.1393 (0.0589)	0.1438 (0.0593)	0.1447 (0.0593)
Cor ${ }_{\text {tr }}$	$\left(1,1.1^{4} h_{\text {min }}\right)$	0.3260 (0.0718)	0.3064 (0.0722)	0.3032 (0.0720)	0.2972 (0.0662)
Cor ${ }_{\text {test }}$	$\left(1,1.1^{4} h_{\text {min }}\right)$	0.1145 (0.0613)	0.1395 (0.0588)	0.1436 (0.0598)	0.1443 (0.0594)
Cor $_{\text {tr }}$	$\left(1,1.1^{5} h_{\text {min }}\right)$	0.3268 (0.0726)	0.3060 (0.0685)	0.3030 (0.0691)	0.2990 (0.0668)
$\mathrm{Cor}_{\text {tes }}$	$\left(1,1.1^{5} h_{\text {min }}\right)$	0.1147 (0.0621)	0.1398 (0.0593)	0.1433 (0.0597)	0.1445 (0.0597)
Cor ${ }_{\text {tr }}$	$\left(1,1.1^{6} h_{\text {min }}\right)$	0.3230 (0.0693)	0.2997 (0.0668)	0.2998 (0.0681)	0.2957 (0.0618)
Cor ${ }_{\text {test }}$	$\left(1,1.1^{6} h_{\text {min }}\right)$	0.1155 (0.0609)	0.1398 (0.0609)	0.1430 (0.0612)	0.1443 (0.0616)
Cor $_{\text {tr }}$	$\left(1,1.1{ }^{7} h_{\text {min }}\right)$	0.3277 (0.0720)	0.3055 (0.0689)	$0.3024(0.0688)$	0.2991 (0.0677)
Cor ${ }_{\text {test }}$	$\left(1,1.1{ }^{7} h_{\text {min }}\right)$	0.1139 (0.0615)	0.1363 (0.0594)	0.1404 (0.0603)	0.1405 (0.0604)
Cor ${ }_{\text {tr }}$	$\left(1,1.1^{8} h_{\text {min }}\right)$	0.3273 (0.0729)	0.3052 (0.0688)	0.3026 (0.0704)	0.2996 (0.0677)
Cortest	$\left(1,1.1^{8} h_{\text {min }}\right)$	0.1135 (0.0614)	0.1364 (0.0595)	0.1398 (0.0597)	0.1388 (0.0600)
Cor ${ }_{\text {tr }}$	$\left(0.5,1.1^{0} h_{\text {min }}\right)$	0.3236 (0.0692)	0.2999 (0.0614)	0.2908 (0.0568)	0.2888 (0.0555)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{0} h_{\text {min }}\right)$	0.1152 (0.0615)	0.1409 (0.0598)	0.1444 (0.0597)	0.1433 (0.0607)
Cor $_{\text {tr }}$	$\left(0.5,1.1^{1} h_{\text {min }}\right)$	0.3243 (0.0705)	0.3011 (0.0653)	0.2947 (0.0619)	0.2912 (0.0594)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{1} h_{\text {min }}\right)$	0.1150 (0.0610)	0.1413 (0.0591)	0.1443 (0.0604)	0.1436 (0.0621)
$\mathrm{Cor}_{\text {tr }}$	$\left(0.5,1.1^{2} h_{\text {min }}\right)$	0.3242 (0.0685)	0.3055 (0.0695)	0.3000 (0.0670)	0.2947 (0.0614)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{2} h_{\text {min }}\right)$	0.1157 (0.0602)	0.1415 (0.0599)	0.1462 (0.0597)	0.1462 (0.0616)
$\mathrm{Cor}_{\text {tr }}$	$\left(0.5,1.1^{3} h_{\text {min }}\right)$	0.3232 (0.0702)	0.3007 (0.0694)	0.2997 (0.0683)	0.2935 (0.0613)
Cortest	$\left(0.5,1.1^{3} h_{\text {min }}\right)$	0.1163 (0.0608)	0.1418 (0.0602)	0.1461 (0.0599)	0.1470 (0.0613)
Cor ${ }_{\text {tr }}$	$\left(0.5,1.1^{4} h_{\text {min }}\right)$	0.3234 (0.0700)	0.3004 (0.0704)	0.3015 (0.0692)	0.2961 (0.0630)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{4} h_{\text {min }}\right)$	0.1163 (0.0609)	0.1412 (0.0614)	0.1453 (0.0605)	0.1464 (0.0610)
Cor $_{\text {tr }}$	$\left(0.5,1.1^{5} h_{\text {min }}\right)$	0.3238 (0.0689)	0.3027 (0.0692)	0.3014 (0.0696)	0.2965 (0.0631)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{5} h_{\text {min }}\right)$	0.1161 (0.0601)	0.1412 (0.0607)	0.1447 (0.0606)	0.1462 (0.0613)
$\mathrm{Cor}_{\text {tr }}$	$\left(0.5,1.1^{6} h_{\text {min }}\right)$	0.3237 (0.0702)	0.2997 (0.0666)	0.3001 (0.0679)	0.2958 (0.0616)
Cortest	$\left(0.5,1.1^{6} h_{\text {min }}\right)$	0.1158 (0.0608)	0.1409 (0.0603)	0.1438 (0.0603)	0.1447 (0.0620)
Cor ${ }_{\text {tr }}$	$\left(0.5,1.1^{7} h_{\text {min }}\right)$	0.3239 (0.0698)	0.2993 (0.0648)	0.2984 (0.0651)	0.2945 (0.0596)
Cortest	$\left(0.5,1.1^{7} h_{\text {min }}\right)$	0.1163 (0.0607)	0.1411 (0.0604)	0.1442 (0.0601)	0.1449 (0.0599)
Cor ${ }_{\text {tr }}$	$\left(0.5,1.1^{8} h_{\text {min }}\right)$	0.3248 (0.0702)	0.2993 (0.0653)	0.2994 (0.0655)	0.2958 (0.0591)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{8} h_{\text {min }}\right)$	0.1149 (0.0606)	0.1390 (0.0605)	0.1422 (0.0606)	0.1423 (0.0605)
$\mathrm{Cor}_{\text {tr }}$	$\left(0.5,1.1^{9} h_{\text {min }}\right)$	0.3236 (0.0693)	0.3001 (0.0665)	0.2997 (0.0665)	0.2979 (0.0618)
Cor ${ }_{\text {test }}$	$\left(0.5,1.1^{9} h_{\text {min }}\right)$	0.1158 (0.0608)	0.1394 (0.0605)	0.1416 (0.0612)	0.1416 (0.0616)

Table 2. ADNI data analysis results: parameter estimates, 90% confidence intervals and p-values of regression coefficients.

Covariates	MCAR	MAR	MNARP	MNARN	P-value
Age	-0.0157	-0.0059	0.0023	0.0112	0.56
	$[-0.020,0.059]$	$[-0.028,0.021]$	$[-0.027,0.035]$	$[-0.029,0.044]$	-
Gender	0.0750	-0.1296	0.1014	0.2824	0.18
	$[-0.804,0.602]$	$[-0.546,0.559]$	$[-0.516,0.795]$	$[-0.546,0.969]$	-
Education	0.0717	0.0714	0.0980	0.1276	0.00
	$[-0.007,0.145]$	$[0.0004,0.140]$	$[0.010,0.201]$	$[0.005,0.209]$	$* * *$
Apoe4	-0.3857	-0.3567	-0.4180	-0.4563	0.02
	$[-0.551,-0.019]$	$[-0.594,-0.070]$	$[-0.728,-0.106]$	$[-0.817,-0.108]$	$* *$
if.widowed	0.3891	0.3874	0.2955	0.2287	0.32
(marriage)	$[-0.303,1.076]$	$[-0.191,1.035]$	$[-0.265,0.989]$	$[-0.316,0.980]$	-
if.divorced	1.2330	1.2590	1.4663	1.6364	0.04
(marriage)	$[0.405,2.225]$	$[0.321,2.201]$	$[0.418,2.556]$	$[0.452,2.768]$	$* *$
if.lmci	1.6478	1.7373	2.7110	3.4572	0.02
(DX-bl)	$[-0.135,2.731]$	$[0.945,3.069]$	$[1.309,3.921]$	$[1.531,4.100]$	$* *$
$\hat{\phi}$	-	0	-0.1367	-0.2224	
	-	0	$[-0.292,-0.061]$	$[-0.392,-0.061]$	

Table 3. ADNI: estimates for significant coefficients and their standard deviations in parentheses, and estimates for the top principle components.

	MCAR	MAR	MNARP	MNARN
Education	$0.069(0.046)$	$0.049(0.044)$	$0.1101(0.053)$	$0.120(0.055)$
Apoe4	$-0.379(0.176)$	$-0.323(0.169)$	$-0.3924(0.195)$	$-0.496(0.216)$
if.divorced (marriage)	$1.158(0.615)$	$1.118(0.650)$	$1.3431(0.724)$	$1.500(0.753)$
if.lmci (DX-bl)	$1.768(0.958)$	$1.651(0.556)$	$3.5929(0.613)$	$3.557(0.700)$
1st.Pcomp	-0.227	-0.201	-0.314	-0.338
2ed.Pcomp	0	0.136	0.027	0
3ed.Pcomp	0	-0.090	-0.141	0
4th.Pcomp	0	0.178	0.0284	0
5th.Pcomp	0	0.202	0.060	0
6th.Pcomp	0	0.128	0	0
7th.Pcomp	0	0.041	0	0
8th.Pcomp	0	0.038	0	0
9th.Pcomp	0	-0.015	0	0
10th.Pcomp	0	-0.007	0	0

$\hat{\phi}$. Subsequently, we calculated the 90% confidence intervals for ϕ and all other parameters and their associated p-values by using the Fast Double Bootstrap (Davidson and James (2007)). Table 2 also presents the bootstrap confidence intervals and their corresponding p-values based on MNARN. Table 3 presents the coefficient estimates for the four significant nonfunctional covariates and those for the principle components associated with the RAVEN images. Figure 1 presents the selected slices of the first two principle component images. We repeated the

Figure 1. The first Principle Component (positive loadings: top left; negative loadings: top right), the second principle component (positive loadings: middle left; negative loadings: middle right), and the functional coefficient images of MNARP (positive part: bottom left; negative part: bottom right) of RAVEN images of ADNI real data analysis. The slices are taken at: (top left) coronal $=62$, sagittal $=71$, axial $=50$; (top right) coronal $=66$, sagittal $=71$, axial $=39 ;($ middle left $)$ coronal $=62$, sagittal $=71$, axial $=50 ;($ middle right $)$ coronal $=62$, sagittal $=71$, axial $=50 ;($ bottom left $)$ coronal $=$ 62, sagittal $=76$, axial $=43 ;($ bottom right $)$ coronal $=62$, sagittal $=71$, axial $=50$, respectively.

RRSV procedure and calculated the prediction accuracy (standard deviation) based on the test set for MCAR, MAR, MNARP, and MNARN as 0.143(0.063), $0.154(0.062), 0.167(0.059)$, and $0.170(0.057)$, respectively. The results indicate that MNARN outperforms all other three methods.

We have the following findings. First, MNAR performs well in both training and test sets for most window widths h and k_{n}. Second, the four covariates, Education, Apoe4, whether the individual is divorced, and whether the DX-bl of the individual is the LMCI $(=1)$ or the $\mathrm{AD}(=0)$, strongly influence the learning test score. Such findings are clinically significant in that AD has a more serious effect on the intelligence behavior than LMCI. Third, the negative value of $\hat{\phi}$ in Table 2 implies that people with high learning test scores have the tendency to drop out of the study as expected. Finally, inspecting the functional coefficient image based on MNARN and MNARP (Table 3, Figures 1) reveals that estimates in most voxels are negative and relatively large in the regions of "lateral ventricle left" and "lateral ventricle right". Such regions (Color figure online) may have
negative effects on learning ability. These findings are consistent with the existing literature on the abnormal lateral ventricle (Nestor et al. (2008)) of AD patients.

Supplementary Materials

Available in the attached file include the simulations, the proofs of Lemmas $1-13$, Theorems $1-3$, and Corollary 1.

Acknowledgment

Dr. Ibrahim's research was partially supported by NIH grants \#GM 70335 and P01CA142538. The research of Dr. Zhu was supported by NSF grants SES1357666 and DMS-1407655, NIH grants MH086633, and a grant from Cancer Prevention Research Institute of Texas. The research was partially supported by NSFC to Dr. Xie (11271193). This material was based upon work partially supported by the NSF grant DMS-1127914 to the Statistical and Applied Mathematical Science Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We are grateful for the many valuable suggestions from referees, an associated editor, and Editor. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf.

References

Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. Journal of the American Statistical Association 83, 62-69.
Cai, T. T. and Yuan, M. (2012). Minimax and adaptive prediction for functional linear regression. Journal of the American Statistical Association 107, 1201-1216.
Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statistica Sinica 13, 571-591.
Chiou, J. M., Zhang, Y. C., Chen, W. H. and Chang, C. W. (2014). A functional data approach to missing value imputation and outlier detection for traffic flow data. Transportmetrica B: Transport Dynamics 2, 106-129.
Crambes, C. and Mas, A. (2013). Asymptotics of prediction in functional linear regression with functional outputs. Bernoulli 19, 2627-2651.

Crambes, C. and Henchiri, Y. (2015) Regression imputation in the functional linear model with missing values in the response. Manuscript.
Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. The Annals of Statistics 37, 35-72.
Crambes, C. and Yousri, H. (2017). Regression imputation in the functional linear model with missing values in the response. https://scholar.google.com/scholar?hl=en\&as_sdt= $0 \% 2 \mathrm{C} 44 \& \mathrm{q}=$ Regression+imputation+in+the+functional+linear+model+with+missing+ values+in+the+response\&btnG=
Davatzikos, C., Genc, A., Xu, D. and Resnick, S. M. (2001). Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage 14, 1361-1369.
Davidson, R. and James G. M. (2007). Improving the reliability of bootstrap tests with the fast double bootstrap. Computational Statistics \& Data Analysis 51, 3259-3281.
Ferraty, F., Sued, M. and Vieu, P. (2013). Mean estimation with data missing at random for functional covariates. Statistics: A Journal of Theoretical and Applied Statistics 47, 688706.

Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. Springer, New York.
Ferraty, F. and Vieu, P. (2011). Kernel regression estimation for functional data. In The Oxford Handbook of Functional Data Analysis, Oxford Handbooks in Mathematics (Edited by F. Ferraty and Y. Romain), 72-129.
Friedman, J., Hastie, T. and Tibshirani, R. (2009). glmnet: Lasso and elastic-net regularized generalized linear models. R package version, 1 .
Gillies, R. J., Kinahan, P. E. and Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology 278, 563-577.
Hall, P. and Giles H. (2015). Truncated linear models for functional data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). To appear.
Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics 35, 70-91.
Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 68, 109-126.
Hall, P. and Hosseini-Nasab, M. (2009). Theory for high-order bounds in functional principal components analysis. Mathematical Proceedings of the Cambridge Philosophical Society 146, 225-256.
Ibrahim, J. G., Chen, M. H., Lipsitz, S. R. and Herring, A. (2005). Missing-data methods for generalized linear models: a comparative review. Journal of the American Statistical Association 100, 332-346.
Ibrahim, J. G., Lipsitz, S. R. and Chen, M. (1999). Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61, 173-190.
Ibrahim, J. G. and Molenberghs, G. (2009). Missing data methods in longitudinal studies: a review. Test 18, 1-43.
Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22, 523-539.

Kim, J. K. and Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association 106, 157-165.
Kong, D., Joseph G. I., Lee, E. and Zhu, H. (2015). Functional linear Cox regression models. in submission.
Li, W. V. and Shao, Q. M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Handbook of Statistics, Stochastic Processes: Theory and Methods 19 (Edited by D. Shanbhag and C. Rao), 533-597.
Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis With Missing Data. Wiley, New York.
Martinez C. A. (2013). Estimates and bootstrap calibration for functional regression with scalar response. Ph.d dissertation. Universidade de Santiago de Compostela.
Molenberghs, G. and Kenward, M. G. (2007). Missing Data in Clinical Studies. Chichester: Wiley.
Nestor, S. M., Rupsingh, R., Borrie, M., Smith, M., Accomazzi, V., Wells, J.L., Fogarty, J., Bartha, R. and Alzheimer's Disease Neuroimaging Initiative. (2008) Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database. Brain 131(9), 2443-2454.
Preda, C., Saporta, G. and Hadj, M. M. H. (2010). The NIPALS algorithm for missing functional data. Revue Roumaine de Mathematique Pures et Appliquees 55, 315-326.
Ramsay, J. O. and Silverman, B.W. (2006). Functional Data Analysis. 2nd Edition. John Wiley and Sons, Inc.
Rotnitzky, A., Lei, Q., Sued, M. and Robins, J. M. (2012). Improved double robust estimation in missing data and causal inference models. Biometrika 99, 439-456.
Shi, X., Zhu, H. and Ibrahim, J. G. (2009). Local influence for generalized linear models with missing covariates. Biometrics 65, 1164-1174.
Stewart, G. W. (1969). On the continuity of the generalized inverse. SIAM Journal on Applied Mathematics 17, 33-45.
Tang, N., Zhao, P. and Zhu H. (2014). Empirical likelihood for estimating equations with nonignorably missing data. Statistica Sinica 24, 723-747.
Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equations with missing values. The Annals of Statistics 37, 490-517.
Wang, Y., Nie, J., Yap, P., Shi, F., Guo, L. and Shen, D. (2011), Robust deformable-surfacebased skull-stripping for large-scale studies. In Medical Image Computing and ComputerAssisted Intervention 6893 (Edited by G. Fichtinger, A. Martel and T. Peters), 635-642. Springer, Berlin/Heidelberg.
Yao, F., Müller, H. G. and Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. The Annals of Statistics 33, 2873-2903.
Zhao, J. and Shao, J. (2014). Semiparametric pseudo likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association 110, 15771590.

Zhou, Y., Wan, A. T. and Wang, X. (2008). Estimating equations inference with missing data. Journal of the American Statistical Association 103, 1187-1199.

Department of Biostatistics, University of Texas MD Anderson Cancer Center Houston TX 77030, USA
E-mail: tengfeili2006@gmail.com, hzhu5@mdanderson.org
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
E-mail: jibrahim@email.unc.edu/hzhu@bios.unc.edu
School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, CHINA.
E-mail: fcxie@njnu.edu.cn
Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China.
E-mail: fengxiangnan123@gmail.com
(Received July 2016; accepted April 2017)

