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Abstract: One of the existing sparse clustering approaches, `1-k-means, maximizes

the weighted between-cluster sum of squares subject to the `1 penalty. In this

paper, we propose a sparse clustering method based on an `∞/`0 penalty, which

we call `0-k-means. We design an efficient iterative algorithm for solving it. To

compare the theoretical properties of `1 and `0-k-means, we show that they can be

explained explicitly from a thresholding perspective based on different thresholding

functions. Moreover, `1 and `0-k-means are proven to have a screening consistent

property under Gaussian mixture models. Experiments on synthetic as well as real

data justify the outperforming results of `0 with respect to `1-k-means.
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k-means.

1. Introduction

Clustering is an unsupervised technique for discovering hidden group struc-

tures from data sets. It partitions a whole sample set into groups such that

each group has its own unique property. The commonly used approaches for

clustering include k-means clustering (MacQueen (1967)), hierarchical cluster-

ing (Hastie, Tibshirani and Friedman (2009)), model-based clustering (Bishop

(2006)) and spectral clustering (Von Luxburg (2007)). In the traditional cluster-

ing approaches, all features are treated with equal importance. In fact, only a

small portion of features is responsible for intrinsic cluster structures in many

applications (Wang et al. (2013)). Those features reflect main characteristics of

the data are known as relevant features, and the others are usually called noise

features. The proportion of noise features plays a crucial and negative role for

the performance of traditional clustering methods.

Currently, many efforts have been devoted to reduce the influence of noise

features on clustering. One common approach is to proceed through dimension
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reduction, such as principle components analysis (PCA) (Chang (1983)) or non-

negative matrix factorization (NMF) (Lee and Seung (1999)), before clustering

algorithms are applied. However, existing evidence has shown that these methods

do not provide reasonable partitions of the original data (Chang (1983)). Another

idea is to perform penalized model-based clustering. It assumes the data matrix

is generated from a mixture distribution with unknown parameters. The clusters

are uncovered by fitting data into a log-likelihood function with the `1 penalty

(Raftery and Dean (2006); Wang and Zhu (2008); Pan and Shen (2007)). The

obvious drawback here is the high computational cost of training the model when

the number of features is very large.

Witten and Tibshirani (2010) proposed a framework of sparse clustering

that optimizes a weighted cost objective using both the `1 penalty and `2 penalty

(`2/`1 penalty for short). When k-means is selected as the clustering method, they

adopted Between-Cluster Sum of Squares (BCSS) as the cost objective and de-

veloped a sparse k-means combined with the `2/`1 penalty. We call their method

`1-k-means for simplicity, since the `1 term dominates the final clustering perfor-

mance compared with the `2 penalty. Although the performance of `1-k-means

on synthetic data is often good, a considerable portion of noise features is still

kept in the final clustering result, as reported in Witten and Tibshirani (2010).

In this paper, we propose a sparse clustering framework for reducing noise

features more accurately. Our work starts from the following consensus, proved

in (Donoho (2006)), that the `1 penalty is an optimal convex relaxation of the `0
penalty. In this paper, therefore, we consider using the `0 penalty to obtain higher

sparsity. Direct application of the `0 penalty on the sparse clustering framework

(Witten and Tibshirani (2010)) results in a solution that cannot be interpreted

or explicitly analyzed. To address such challenges, we propose to jointly use the

`∞ and `0 penalty (`∞/`0 penalty for short) for performing clustering. We call

this method `0-k-means when the k-means method is used under our clustering

framework. We show the proposed `0-k-means can be not only explained ex-

plicitly from a thresholding perspective, but also analyzed rigorously. In order

to justify the effectiveness of our proposed method on clustering, we consioer

multiple groups of experiments on synthetic data, and on application data. We

show that `0-k-means exhibits much better noise feature detection capacity than

`1-k-means.

Another important research topic in high-dimensional statistics is analyzing

the model behavior when the number of features (variables) grows with the sam-

ple size. In the literature (Zhao and Yu (2006); Wainwright (2009)), one finds
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the variable selection consistency property of the Lasso. Negahban et al. (2012)

developed a unified framework for analyzing error bounds of M -estimators with

decomposable regularizers, and Fan and Lv (2010) reviewed the techniques about

variable selection for penalized regression approaches. Most of these can be cate-

gorized as in the supervised learning field. The analysis for the high-dimensional

data clustering method, an unsupervised learning method, is still limited (Pan

and Shen (2007); Witten and Tibshirani (2010)). We discuss theoretical proper-

ties of `1 and `0-k-means in this paper. We verify that they can be both inter-

preted from a thresholding perspective, and that they have screening consistent

properties under proper conditions when the data matrix is generated from a

high-dimensional Gaussian mixture model.

The rest of the paper is organized as follows. In Section 2, we introduce the

existing sparse framework and propose one that includes the `0-k-means. We give

an efficient iterative algorithm to solve for `0-k-means, and compare the theo-

retical properties of `1 and `0-k-means. In Section 3, we report the finite sample

performance of `0-k-means and other comparable methods on both synthetic data

and Allen Developing Mouse Brain Atlas data. We conclude the paper in Section

4. Proofs not included in the main text are presented in the online supplementary

material.

2. Sparse Clustering Framework with `∞/`0 Penalty

2.1. Existing sparse clustering framework

Let X ∈ Rn×p be the data matrix whose rows xi = (xi1, . . . , xip)
> ∈ Rp,

i = 1, . . . , n, are samples and columns Xj , j = 1, . . . , p are features. Standard

k-means clustering groups the data by finding a partition C = {C1, C2, . . . , CK}
such that the sum of distances between the empirical mean of each cluster and

the corresponding points it contains is minimized. This idea can be generally

formulated as an optimization problem,

min
C,µ

K∑
k=1

∑
xi∈Ck

d(xi, µk), (2.1)

where µk is the empirical mean of kth cluster and d : Rp×Rp → R is a dissimilar-

ity measure satisfying d(a, a) = 0, d(a, b) ≥ 0 and d(a, b) = d(b, a). The commonly

used measure d, is the square of Euclidean distance, d(xi,xj) = ‖xi − xj‖22 =∑p
l=1(xil − xjl)2. When Between-Cluster Sum of Squares (BCSS) is adopted as

the dissimilarity measure function, we can rewrite (2.1) as:
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max
C

p∑
j=1

(
1

n

n∑
i=1

n∑
i′=1

dii′j −
K∑
k=1

1

nk

∑
i,i′∈Ck

dii′j

)
, (2.2)

where nk = |Ck| is the cardinality of cluster Ck and dii′j = (xij − xi′j)2. If we

take

aj ,
1

n

n∑
i,i′

dii′j −
K∑
k=1

1

nk

∑
i,i′∈Ck

dii′j , j = 1, . . . , p, (2.3)

then aj is the jth component of BCSS, which can be considered as a function

of only the sample values of the jth feature and the partition C. We use aj to

denote aj(C) for simplicity. With the formulation (2.3), Witten and Tibshirani

(2010) generalized the optimization problem with BCSS (2.2) as

max
Θ(C)∈D

p∑
j=1

fj(Xj ,Θ(C)), (2.4)

where fj(Xj ,Θ(C)) is a function that involves only the jth feature of the data,

and Θ(C) is a parameter restricted to a set D. They further defined a sparse

clustering framework

max
w,Θ(C)∈D

p∑
j=1

wjfj(Xj ,Θ(C)) (2.5)

s.t. ‖w‖2 ≤ 1, ‖w‖1 ≤ s, wj ≥ 0, j = 1, . . . , p,

where s is a tunning parameter, ‖ · ‖2 is the `2-norm, ‖ · ‖1 is the `1-norm,

and w = (w1, w2, . . . , wp)
> is a weight vector. Here, wj can be interpreted as the

contribution of the jth feature to the objective function (2.5). When they replace

fj(Xj ,Θ(C)) by aj as at (2.3), then (2.5) is the `1-k-means model

max
C,w

p∑
j=1

wj

(
1

n

n∑
i=1

n∑
i′=1

dii′j −
K∑
k=1

1

nk

∑
i,i′∈Ck

dii′j

)
(2.6)

s.t. ‖w‖2 ≤ 1, ‖w‖1 ≤ s, wj ≥ 0, ∀j = 1, . . . , p.

Although `1-k-means have shown excellent performance on a sequence of ex-

periments (Witten and Tibshirani (2010)), they retain some noise features (Wang

et al. (2013)). Witten and Tibshirani (2010) gave an example: 60 observations

were generated from 3 clusters involving 50 relevant features and 150 noise fea-

tures, for which `1-k-means kept all the noise features in the final clustering

result. However neither the intuitive explanations on why they can select rel-

evant features nor any theoretical guarantee about their properties have been

supplied. In this paper, we propose a new sparse k-means clustering framework
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to overcome such drawbacks.

2.2. `0-k-means

The `1 penalty is commonly replaced by the `q(0 ≤ q < 1) penalty for sparse

modeling problems when more sparsity is needed (Xu et al. (2012); Marjanovic

and Solo (2012); Wang et al. (2013)), but this substitution may not be trivial

and tractable for sparse clustering. For example, if we use the `0 penalty instead

in (2.5), we have the optimization problem,

max
w,Θ(C)

p∑
j=1

wjfj(Xj ,Θ(C)) (2.7)

s.t. ‖w‖2 ≤ 1, ‖w‖0 ≤ s, wj ≥ 0, j = 1, . . . , p.

This model is not easy to analyze or solve since the objective function is no longer

convex. Thus we propose to jointly apply the `∞ and `0 penalties. We consider

the sparse clustering framework

max
w,Θ(C)∈D

p∑
j=1

wjfj(Xj ,Θ(C)) (2.8)

s.t. ‖w‖∞ ≤ 1, ‖w‖0 ≤ s, wj ≥ 0, j = 1, . . . , p,

where ‖w‖∞ = max
i=1,2,...,p

|wj | and ‖w‖0 is the number of nonzero components of

w.

Similar to `1-k-means, we define a clustering model by specifying fj(Xj ,Θ(C))
to be the aj at (2.3). Thus, the final objective for the proposed `0-k-means is

max
C,w

p∑
j=1

wj

(
1

n

n∑
i=1

n∑
i′=1

dii′j −
K∑
k=1

1

nk

∑
i,i′∈Ck

dii′j

)
(2.9)

s.t. ‖w‖∞ ≤ 1, ‖w‖0 ≤ s, wj ≥ 0, j = 1, . . . , p.

We will show that such `0-k-means are not only tractable but can be analyzed

theoretically. Consider how to solve the `0-k-means (2.9). The difficulty mainly

comes from the existence of two types of variables: the partition variable C =

{C1, . . . , CK} that clusters the data samples into K groups, and the weight w =

(w1, . . . , wp)
> that records the contribution of features. In this paper, we apply

the alternative iteration technique to solve `0-k-means (2.9): we solve w and C
alternatively by choosing one as the variable and fixing the other. The iterative

series is not guaranteed to converge to the global optimum, but the objective

function increases monotonically and achieves its maximal value. Since the sample

can only be grouped in a finite number of ways and the optimal weights for each
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fixed partition are unique based on the subsequent analysis, the feasible set of the

optimization is finite. Therefore, the algorithm terminates after finite iterations

and reaches a local optimum.

The details of the solving procedure of `0-k-means are in Algorithm 1.

Algorithm 1 `0-k-means algorithm

Input:
Cluster number K and data matrix X.

Output:
Clusters C1, C2, . . . , CK and wnew.

1: wnew
1 = wnew

2 = · · · = wnew
p = 1/

√
p.

2: Let wold = wnew. Use k-means to find clusters C1, C2, . . . , CK based on varied
distances wold

j dii′j .
3: Fix C1, C2, . . . , CK . Calculate the following optimization problem to obtain wnew:

max
w

w>a (2.10)

s.t. ‖w‖∞ ≤ 1, ‖w‖0 ≤ s, wj ≥ 0.

4: Repeat step 2 and 3 until ∑p
j=1 |wnew

j − wold
j |∑p

j=1 |wold
j |

< 10−4.

Theorem 1. When the sequence {aj}pj=1 at (2.3) satisfies ai ≥ aj for any i < j,

an optimal solution of (2.10) is given by, for j = 1, . . . , p,

w∗j =

{
1 j ≤ bsc,
0 j > bsc,

(2.11)

where bsc is the integer part of s.

The solution of (2.10) thus has a closed-form. With the {aj}pj=1 ordered,

we assign wj = 1 to the components corresponding to the first bsc elements of

{aj}pj=1, and wj = 0 to the other elements.

We observe that the standard k-means costs O(nKp) in time complexity and

Step 3 of Algorithm 1 costs O(pbsc). Thus, the proposed `0-k-means algorithm

is an O(nKp) (if bsc ≤ nK) complexity method, the same as the standard k-

means. In fact, the condition bsc ≤ nK is easy to satisfy because the number

of relevant features is often assumed to be only a small portion of all features

in high-dimensional data clustering problems. The `0-k-means is very efficient in

implementation.
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2.3. Theory

We analyze the theoretical properties of `1 and `0-k-means. For this, assume

the data matrix is generated from a high-dimensional Gaussian mixture model.

The `1 and `0-k-means are interpreted from a thresholding perspective, and then

we show that the solutions of `1 and `0-k-means have a screening consistent

property under mild conditions. We also compare the two models.

Data Generation Model: Suppose each row xi of the data matrix X is

i.i.d. from the Gaussian mixture model where

p(xi) =

K∑
k=1

φikzik, (2.12)

where zik is a normal random vector with covariance matrix Σ and mean

(~vk)j =

{
µkj j = 1, . . . , p∗,

0 j = p∗ + 1, . . . , p,
(2.13)

and φik ∈ {0, 1} is a binary with P(φik = 1) = πk and
∑K

k=1 φik = 1 for k =

1, . . . ,K. We assume
∑

k πkµk = 0 and Σjj = 1, j = 1, . . . , p. We further assume

that, for each feature j = 1, . . . , p∗, there exists at least two k and k′ ∈ {1, . . . ,K}
such that µkj 6= µk′j . With these assumptions, we can ensure that the generated

data matrix X can be distinguished clearly by the first p∗ features, the relevant

features. Let C∗ = {C∗1 , . . . , C∗K} be the partition based on φik, i = 1, . . . , n, k =

1, . . . ,K.

Theorem 2. If the data matrix X = (xij)n×p is generated according to (2.12)

and (2.13), then

E[aj(C∗)] =

{
K − 1 + cj 1 ≤ j ≤ p∗,
K − 1 otherwise,

(2.14)

where cj = n
∑K

k=1 πkµ
2
kj − n(

∑K
k=1 πkµkj)

2.

Thus, there is a significant gap between the expectations of relevant and noise

features when the data matrix is generated by the Gaussian mixture model. For

example, for the jth feature, the gap is cj = n
∑K

k=1 πkµ
2
kj−n(

∑K
k=1 πkµkj)

2 > 0.

Here we used the convexity of function x2 and the assumption µkj 6= µk′j for some

k 6= k′ to obtain the positiveness. The convexity also can be used to prove that

the gap cj grows larger when the K groups are distinguished more clearly on the

jth feature.

The `1-k-means proposed in Witten and Tibshirani (2010) is in fact based on
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such gaps to distinguish relevant features from noise features. Given an estimated

partition Ĉ, `1-k-means define the optimal feature weight

ŵ =
S(a(Ĉ),∆)

‖S(a(Ĉ),∆)‖2
, (2.15)

where S(a,∆)j = max(aj − ∆, 0) is the soft thresholding function (Donoho

(1995)). From (2.15), we can see that any feature with aj < ∆ is identified

as a noise feature, otherwise it is a relevant feature. Compared with `1-k-means,

Theorem 1 indicates that `0-k-means use the hard thresholding function (Blu-

mensath and Davies (2008)) to distinguish relevant and noise features. Although

`1 and `0-k-means both take full advantage of the same gap information to select

relevant features, we show their feature selection capacity is different.

Let C be any partition of the n samples, and its BCSS for feature j be (2.3).

By Lemma 1 in the supplementary materials, we know

aj(C) =−

(
1√
n

n∑
i=1

xij

)2

+

K∑
k=1

(
1√
|Ck|

∑
i∈Ck

xij

)2

. (2.16)

We omit the constant term and define the weighted BCSS as

F (C, w) ,
p∑
j=1

wj āj(C)2

,
p∑
j=1

wj

aj(C) +

(
1√
n

n∑
i=1

xij

)2
 (2.17)

=

p∑
j=1

wj

K∑
k=1

(
1√
|Ck|

∑
i∈Ck

xij

)2

. (2.18)

Our goal is to analyze the screening property of the problem

max
C,w

F (C,w) (2.19)

s.t. w ∈ Ω,

where Ω is a constraint set of w.

Definition 1. The estimated weight ŵ of (2.19) has the screening consistent

property (SCP) provided

P({1 . . . , p∗} ⊂ supp(ŵ))→ 1, as n→∞

where supp(ŵ) = (j|ŵj 6= 0, j = 1, . . . , p).

Theorem 3. Let (Ĉ, ŵ) be the optimal solution of (2.19) where Ω = Ω1 =
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{w| ‖w‖1 ≤ s, ‖w‖2 ≤ 1}. Let σ1 = min
j=1,...,p∗

∑K
k=1 πkµ

2
kj > 0, σ2 = max

j=1,...,p∗

∑K
k=1

πkµ
2
kj > 0. If p∗2 ≤ σ4

1/(6400σ3
2 ln(K)) and ln(p) = o(n), with∑p∗

j=1

∑K
k=1 πkµ

2
kj − 1/2σ1p

∗√∑p∗

j=1

(∑K
k=1 πkµ

2
kj − 1/2σ1

)2
≤ s ≤

∑p∗

j=1

∑K
k=1 πkµ

2
kj√∑p∗

j=1

(∑K
k=1 πkµ

2
kj

)2
,

we have

P (ŵ has SCP)→ 1, as n→∞. (2.20)

Theorem 4. With the notation of Theorem 3, if p∗2 ≤ s2 ≤ σ2
1/(192 ln(K)σ2)

and ln(p) = o(n), then

P (ŵ has SCP)→ 1, as n→∞. (2.21)

Thus `1 and `0-k-means both have the SCP if p∗ is small enough and ln p =

o(n). That ln p = o(n) is considered to be optimal for regularized regression

approaches to ultra-high dimensional feature selection problems (see e.g., Zhao

and Yu (2006); Wainwright (2009); Fan and Lv (2010)). Although `1 and `0-k-

means have the same property, their finite sample performance is differs.

3. Experimental Evaluation

In this section, we evaluate and compare the finite sample performance of

`0-k-means with other popular algorithms based on a set of synthetic data and

an application to data from the Allen Developing Mouse Brain Atlas.

The `0-k-means involve a tuning parameter s which controls the number of

features selected. Witten and Tibshirani (2010) proposed a strategy to select

the tunning parameter s based on the gap statistic (Tibshirani, Walther and

Hastie (2001)). We follow their strategy for the proposed `0-k-means as well. We

consider two criteria for comparison. The first is the Classification Error Rate

(CER) (Witten and Tibshirani (2010); Chipman and Tibshirani (2006)), defined

as CER ,
∑

i>i′ |1Ĉ(i,i′) − 1C∗(i,i′)|/
(
n
2

)
, where 1C(i,j) is an indicator function

to record whether the ith and jth sample are in the same group with respect to

partition C. The second criterion is F1-score, which measures the feature selection

accuracy. If

precision =
|(i : wi 6= 0, ŵi 6= 0)|
|(i : ŵi 6= 0)|

,

and

recall =
|(i : wi 6= 0, ŵi 6= 0)|
|(i : wi 6= 0)|

,
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Figure 1. Overview of `0-k-means.

then F1-score is the harmonic mean of precision and recall,

F1-score = 2 · precision× recall

precision + recall
.

3.1. Evaluation on synthetic data

Four experiments were conducted. The first experiment was to verify that

the gap statistic succeeds in selecting an appropriate tuning parameter for `0-k-

means. The second and the third experiments were to compare the performance

of `0-k-means, `1-k-means, standard k-means, PCA-k-means, and EM algorithm

for penalized log likelihood for a Gaussian mixture model with independent or

correlated features. In the fourth experiment, we explored the performance of

those algorithms for non-Gaussian distributions.

Experiment 1: We constructed 6 clusters, each cluster containing 20 sam-

ples with 2,000 features, leading to a data matrix X120×2,000. Among the 2,000

features, we assumed only the first 200 were relevant features. For the kth clus-

ter, relevant features were sampled from a N (0.5 · k, 1) and noise features were

sampled from N (0, 1) independently. The data matrix was normalized to have

column-wise zero mean before any algorithm was applied. We repeated the sam-

ple generation procedure 20 times and report the averaged results based on these

20 trials for `0-k-means and standard k-means. The results are shown in Figure 1.

From the left subfigure of Figure 1, we can see that the highest gap statistic is

achieved when the number of non-zero weights is around 200. This shows the gap

statistic to be useful for the selection of tuning parameter for `0-k-means. The

middle subfigure shows that the obtained partition has a significant smaller CER

compared with standard k-means. In the right subfigure, we report the average

values of estimated weights over 20 trails for each feature. Here the values for

relevant features are approximately 1 while those for noise features are close to

0. Gap statistics for `0-k-means can help the selection of relevant features and
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Figure 2. CER Boxplot for Experiment 2.

improve the accuracy of partitions.

Experiment 2: We report the performance of standard k-means, `0-k-means,

`1-k-means, PCA-k-means (Chang (1983)) (PCA for short), and EM for `1-

penalized log likelihood (Pan and Shen (2007)) (EM for short) when data was

generated from a Gaussian mixture model with independent features. We as-

sumed each element xij in the data matrix was N (µij , σ
2
j ) independently, with

µij =


ajµ if i ∈ C1, j ≤ 50,

−ajµ if i ∈ C2, j ≤ 50,

0 if i ∈ C3, or j > 50,

(3.1)

where aj was chosen randomly from [0.75, 1.25] for each j = 1, . . . , 50, and σj
was chosen randomly from [0.75, 1.25] for j = 1, . . . , p. Thus, the first 50 features

were relevant while the rest were noise. There were 3 clusters and each cluster

contained 50 samples, with µ = 0.6, 0.7 and p = 200, 500, 1,000. Each parameter

setting was repeated 50 times. The results are reported in Figures 2 and 3.

In Figure 2, `0-k-means have the best average clustering performance (low-

est CER) compared to other algorithms. This can be explained by the superior

feature selection performance of `0-k-means shown in Figure 3. The `0-k-means,
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Figure 3. F1-score Boxplot for Experiment 2.

compared to other algorithms, has F1-score close to 1 with a small deviation. This

may explain why `0-k-means tend to have lower CERs than the other algorithms.

Experiment 3: Similar to Experiment 2, we report the performance of `0-k-

means when data was generated from a Gaussian mixture model with correlated

features. Suppose each sample xi was N (µ,Σ), where the elements Σij of Σ were

Σij = 0.1|i−j|.

In Figures 4 and 5, it can be seen that the performance of `0-k-means is quite

stable. It always has the highest feature selection F1-scores and the lowest CER

values among the algorithms.

Experiment 4: In this experiment, we extended the Gaussian mixture model

to non-Gaussian cases. Experiment settings were identical to those of Experi-

ment 2, except we used the standard log normal distribution f(x) = k · µ + a ·
exp(N (0, 1)) and standard Poisson distribution f(x) = k · µ + Poisson(1), with

a chosen randomly from [0.75, 1, 25] and k = 1, . . . ,K. We took µ = 2, 3 for the

log normal distribution and µ = 1, 1.5 for the Poisson distribution. The results

are shown in Figures 6 to 9. Here `0-k-means achieve the best feature selection

accuracy.
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µ 

− − −

µ 

− − −

Figure 4. CER Boxplot for Experiment 3.

µ 

− − −

µ 

− − −

Figure 5. F1-score Boxplot for Experiment 3.
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µ 

− − −

µ 

− − −

Figure 6. CER Boxplot for Experiment 4 log normal case.

µ 

− − −

µ 

− − −

Figure 7. F1-score Boxplot for Experiment 4 log normal case.
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− − −

µ 

− − −

Figure 8. CER Boxplot for Experiment 4 Poisson case.

µ 

− − −

µ 

− − −

Figure 9. F1-score Boxplot for Experiment 4 Poisson case.
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Table 1. Statistics of mouse brain data at annotation level 3.

Ages E11.5 E13.5 E15.5 E18.5 P4 P14 P28
Number of genes 1,724 1,724 1,724 1,724 1,724 1,724 1,724
Number of voxels 7,122 13,194 12,148 12,045 21,845 24,180 28,023
Number of regions 20 20 20 20 20 19 20

E11.5 E13.5 E15.5 P14 P28P4E18.5

Figure 10. Selected sample slices of 7 developmental mouse brains with respect to the
gene Neurog1.

3.2. Evaluation of the Allen Developing Mouse Brain Atlas

We compared our proposed method with other methods on the Allen De-

veloping Mouse Brain Atlas data (Lein et al. (2007); Li et al. (2015); Wang et

al. (2013)). This data set contains in situ hybridization gene expression pattern

images of a developing mouse brain across 7 developmental ages. The mouse

brain is imaged into 3D space with voxels in a regular grid. The expression en-

ergy at each voxel for some gene is recorded as a numerical value. Through such

operations, 7 data matrices associated with 7 developmental ages are obtained.

In these data matrices, rows correspond to brain voxels and columns correspond

to genes. With the development of a mouse brain, the rows of energy matrices

increase because, as the size of brain grows larger, more and more voxels are

needed to stabilize the resolution. The basic statistics of the data are listed in

Table 1, and Figure 10 shows the sample slices of 7 developmental mouse brains

with respect to the gene Neurog1. In fact, each voxel is annotated with a brain

region manually, which can be viewed as the ground truth cluster label.

We applied the `0-k-means, `1-k-means, standard k-means, PCA-k-means,

and EM for `1-penalized log likelihood (EM for short) to the 7 data matrices.

The results, including CER values and feature selection performance, are shown

in Tables 2 and 3. From Table 2, we can see that the `0-k-means, in most cases,

outperforms other competitors. Besides the low CER values while using the

smallest number of features (i.e., nonzero weights w), another advantage of `0-



SPARSE k-MEANS WITH `∞/`0 PENALTY 1281

Table 2. The CER values of clustering when the algorithms are applied to Allen Devel-
oping Mouse Brain Atlas data.

Ages E11.5 E13.5 E15.5 E18.5 P4 P14 P28
k-means 0.1610 0.1877 0.2055 0.2369 0.3444 0.3628 0.3599
`1-k-means 0.1662 0.1985 0.2221 0.2425 0.3308 0.3593 0.3470
`0-k-means 0.1605 0.1842 0.2259 0.2358 0.3306 0.3580 0.3505
PCA-k-means 0.1654 0.1977 0.2321 0.2682 0.3617 0.3860 0.3650
EM 0.2471 0.2432 0.3045 0.3100 0.4141 0.3707 0.3419

Table 3. The NW values of clustering when the algorithms were applied to Allen Devel-
oping Mouse Brain Atlas data.

Ages E11.5 E13.5 E15.5 E18.5 P4 P14 P28
k-means 1,723 1,724 1,724 1,724 1,720 1,724 1,724
`1-k-means 717 672 659 642 446 224 1,724
`0-k-means 100 660 100 1,600 199 322 1,068
PCA-k-means 1,723 1,724 1,724 1,724 1,720 1,724 1,724
EM 1,723 1,724 1,724 1,724 1,720 1,724 1,724

k-means is interpretability. Apparently the `0-k-means can eliminate more noise

features than other methods. For instance, consider the postnatal stage P14 as

differentiation of gene functions is more discriminative at this postnatal stage.

We observe that there are few “noisy” genes which have been eliminated by `0-

k-means and included by `1-k-means. Thus a noisy gene ’Scn4b’ is detected by

our `0-k-means method. This gene is highly related to the protein composition

of sodium channel beta subunits (Medeiros-Domingo et al. (2007)), is strongly

bonded with electrical signal transmission activities in most of types of cells,

and it is reasonable to consider features corresponding to this gene as noise; its

function is uniformly supportive in the whole brain and using it to distinguish

different regions may not be effective. Detecting a feature as noise by `1-k-means

is consistent with the prior knowledge about genes listed in the database of Allen

Institute∗.

4. Conclusion and Future Work

In this paper, we focus on designing an efficient clustering algorithm for

high dimensional data sets. Inspired by the literature of sparse clustering, we

allow algorithms to optimize weights of individual features to combine clustering

procedures with feature selection. We proposed a new sparse clustering method

∗http://www.genecards.org/.
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with `∞/`0 penalty, called `0-k-means. They can be efficiently solved by our

Algorithm 1. Both `0-k-means and `1-k-means have screening consistency under

appropriate conditions for Gaussian mixture model, but empirical experiments

suggest that `0-k-means outperform `1-k-means in feature selection in terms of

F1-score. Extensive experiments were carried out to compare with some other

well-known clustering methods.

In the future, we might carry out our work in the following directions. We

intend to investigate the possibility of establishing a feature selection consistency

property for `0 and `1-k-means within the framework of this paper. We mean to

extend the current research by going on to other high-dimensional data clustering

models, for instance, penalized model-based clustering (Pan and Shen (2007)).

Supplementary Materials

We provide proofs of the theorems in the online supplementary material.
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