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Abstract: In the statistical inference for long range dependent time series the shape

of the limit distribution typically depends on unknown parameters. Therefore,

we propose to use subsampling. We show the validity of subsampling for general

statistics and long range dependent subordinated Gaussian processes that satisfy

mild regularity conditions. We apply our method to a self-normalized change-point

test statistic so that we can test for structural breaks in long range dependent time

series without having to estimate nuisance parameters. The finite sample properties

are investigated in a simulation study. We analyze three data sets and compare our

results to the conclusions of other authors.
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1. Introduction

1.1. Long range dependence

While most statistical research is done for independent data or short memory

time series, in many applications there are also time series with long memory in

the sense of slowly decaying correlations: in hydrology (starting with the work

of Hurst (1956)), in finance (e.g. Lo (1989)), in the analysis of network traffic

(e.g. Leland et al. (1994)), and in many other fields of research.

As model of dependent time series we consider subordinated Gaussian pro-

cesses: Let (ξn)n∈N be a stationary sequence of centered Gaussian variables with

Var(ξn) = 1 and covariance function γ satisfying

γ(k) := Cov(ξ1, ξk+1) = k−DLγ(k)

for D > 0 and a slowly varying function Lγ . If D < 1, the spectral density f of

(ξn)n∈N is not continuous, but has a pole at 0. The spectral density has the form
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f(x) = |x|D−1Lf (x)

for a function Lf which is slowly varying at the origin (see Proposition 1.1.14 in

Pipiras and Taqqu (2011)). Let G : R → R be a measurable function such that

E[G2(ξ1)] <∞. The stochastic process (Xn)n∈N given by Xn := G(ξn) is called

long range dependent if
∑∞

n=0 |Cov(X1, Xn+1)| =∞, and short range dependent

if
∑∞

n=0 |Cov(X1, Xn+1)| <∞.

In limit theorems for the partial sum Sn =
∑n

i=1Xi, the normalization and

the shape of the limit distribution not only depend on the decay of the covariances

γ(k) as k → ∞, but also on the function G. More precisely, Taqqu (1979) and

Dobrushin and Major (1979) independently proved that

1

Lγ(n)r/2nH

n∑
i=1

(Xi − E[Xi])⇒ C(r,H)grZr,H(1)

if the Hurst parameter H := max{1 − rD/2, 1/2} is greater than 1/2. Here,

r denotes the Hermite rank of the function G, C(r,H) is a constant, gr is the

first non-zero coefficient in the expansion of G as a sum of Hermite polynomials,

and Zr,H is a Hermite process. For more details on Hermite polynomials and

limit theorems for subordinated Gaussian processes we recommend the book of

Pipiras and Taqqu (2011). In this case (rD < 1), the process (Xn)n∈N is long

range dependent as the covariances are not summable. The limiting random

variable C(r,H)Zr,H(1) is Gaussian only if the Hermite rank r = 1.

If rD = 1, the process (Xn)n∈N might be short or long range dependent

according to the slowly varying function Lγ . If rD > 1, the process is short

range dependent. In this case, the partial sum
∑n

i=1(Xi − E[Xi]) has (with

proper normalization) always a Gaussian limit.

There are other models for long memory processes: fractionally integrated

autoregressive moving average processes can show long range dependence, see

Granger and Joyeux (1980); general linear processes with slowly decaying coeffi-

cients were studied by Surgailis (1982).

1.2. Subsampling

In applications the parameters D, r, and the slowly varying function Lγ
are unknown and thus the scaling needed in the limit theorems and the shape

of the asymptotic distribution are not known. That makes it difficult to use

the asymptotic distribution for statistical inference. The situation is even more

complicated if one is not interested in partial sums, but in nonlinear statistical

functionals: U -statistics can have a limit distribution that is a linear combination
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of random variables related to different Hermite ranks, see Beutner and Zähle

(2014); self-normalized statistics typically converge to quotients of two random

variables (e.g. McElroy and Politis (2007)); the change-point test proposed by

Berkes et al. (2006) converges to the supremum of a fractional Brownian bridge

under the alternative hypothesis.

To deal with the unknown shape of the limit distribution and to avoid the

estimation of nuisance parameters, one would like to use nonparametric meth-

ods. However, Lahiri (1993) has shown that the popular moving block bootstrap

might fail under long range dependence. Another nonparametric approach is

subsampling (also called sampling window method), first studied by Politis and

Romano (1994), Hall and Jing (1996), and Sherman and Carlstein (1996). The

idea is the following: Let Tn = Tn(X1, . . . , Xn) be a series of statistics con-

verging in distribution to a random variable T . As we typically have just one

sample, we observe only one realization of Tn and therefore cannot estimate its

distribution If l = ln is a sequence with ln → ∞ and ln = o(n), then Tl also

converges in distribution to T and we have multiple (though dependent) realiza-

tions Tl(X1, . . . , Xl), Tl(X2, . . . , Xl+1), . . . , Tl(Xn−l+1, . . . , Xn), that can be used

to calculate the empirical distribution function.

We do not need to know the limit distribution. In our example (the self-

normalized change point test statistic, see Section 3), the shape of the distribu-

tion depends on two unknown parameters, but we can still apply subsampling.

However, for other statistics, one needs an unknown scaling to achieve conver-

gence. If this is the case, one has to estimate the scaling parameters before

applying subsampling.

Under long range dependence the validity of subsampling for the sample

mean X̄ = (1/n)
∑n

i=1Xi has been investigated in the literature starting with

Hall, Jing and Lahiri (1998) for subordinated Gaussian processes. Nordman

and Lahiri (2005) and Zhang et al. (2013) studied linear processes with slowly

decaying coefficients. For the case of Gaussian processes, an alternative proof

can be found in the book of Beran et al. (2013).

It was noted by Fan (2012) that the proof in Hall, Jing and Lahiri (1998) can

be easily generalized to other statistics than the sample mean. Unfortunately,

the assumptions on the Gaussian process are restrictive (see also McElroy and

Politis (2007)). Their conditions imply that the sequence (ξn)n∈N is completely

regular, which might hold for some special cases (see Ibragimov and Rozanov

(1978)), but excludes many examples:

Example 1 (Fractional Gaussian Noise). Let (BH(t))t∈[0,∞) be a fractional
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Brownian motion, that means a centered, self-similar Gaussian process with co-

variance function

E [BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
for some H ∈ (1/2, 1). Then, (ξn)n∈N given by ξn = BH(n)−BH(n−1) is called

fractional Gaussian noise. By self-similarity we have

corr

( n∑
i=1

ξi,

3n∑
j=2n+1

ξj

)
= corr {BH(n), BH(3n)−BH(2n)}

= corr {BH(1), BH(3)−BH(2)} .

As a result, the correlations of linear combinations of observations in the past and

future do not vanish if the gap between past and future grows. Thus, fractional

Gaussian noise is not completely regular.

Jach, McElroy and Politis (2012) provide a more general result on the validity

of subsampling, but under assumptions that are difficult to check in practice

(Hermite rank 1, Lipschitz-continuity of G and of the test statistic Tn, see Jach,

McElroy and Politis (2016)). The main aim of this paper is to establish the

validity of the subsampling method for general statistics Tn without assumptions

on the continuity of the statistic, on the functionG, and only mild assumptions on

the Gaussian process (ξn)n∈N. Independently of our research, similar theorems

have been proved by Bai, Taqqu and Zhang (2016). We discuss their results

after our main theorem in Section 2. In Section 3 we will apply our theorem to

a self-normalized, robust change-point statistic. The finite sample properties of

this test is dealt with in a simulation study in Section 4. The proof of the main

result, and the lemmas needed, can be found in the the supplementary material,

Sections S3 and S4.

2. Main Results

2.1. Statement of the Theorem

For a statistic Tn = Tn(X1, . . . , Xn), the subsampling estimator F̂l,n of the

distribution function FTn
with FTn

(t) = P (Tn ≤ t) is, for t ∈ R,

F̂l,n(t) =
1

n− l + 1

n−l+1∑
i=1

1{Tl(Xi,...,Xi+l−1)≤t}.

Next, we state our assumptions:

Assumption 1. (Xn)n∈N is a stochastic process and (Tn)n∈N is a sequence of
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statistics such that Tn ⇒ T in distribution as n → ∞ for a random variable T

with distribution function FT .

This is a standard assumption for subsampling, see for example Politis and

Romano (1994). If the distribution does not converge, we cannot expect the

distribution of Tl to be close to the distribution of Tn.

Assumption 2. Xn = G(ξn) for a measurable function G and a stationary,

Gaussian process (ξn)n∈N with covariance function

γ(k) := Cov(ξ1, ξ1+k) = k−DLγ(k)

such that

1. D ∈ (0, 1] and Lγ is a slowly varying function with

max
k̃∈{k+1,...,k+2l′−1}

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ K l′

k
min {Lγ(k), 1}

for a constant K <∞ and all l′ ∈ {lk, . . . , k};

2. (ξn)n∈N has a spectral density f with f(x) = |x|D−1Lf (x) for a slowly

varying function Lf bounded away from 0 on [0, π] such that limx→0 Lf (x) ∈
(0,∞] exists.

We do not impose any conditions on the function G: no finite moments

or continuity are required, so that our results are applicable for heavy-tailed

random variables and robust test statistics. In the next subsection we will show

that Assumption 2 holds for some standard examples of long range dependent

Gaussian processes.

Assumption 3. Let (ln)n∈N be a non-decreasing sequence of integers such that

l = ln →∞ as n→∞ and ln = O(n(1+D)/2−ε) for some ε > 0.

If the dependence of the underlying process (ξn)n∈N gets stronger, the range

of possible values for l gets smaller. A popular choice for the block length is

l ≈ C
√
n (see for example Hall, Jing and Lahiri (1998)), which is allowed for all

D ∈ (0, 1]. Now, we can state our main result:

Theorem 1. Under Assumptions 1, 2 and 3 we have

FTn
(t)− F̂l,n(t)

P−→ 0

as n→∞ for all points of continuity t of FT . If FT is continuous, then

sup
t∈R

∣∣∣FTn
(t)− F̂l,n(t)

∣∣∣ P−→ 0.
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As a result, we have a consistent estimator for the distribution function of

Tn. It is possible to build tests and confidence intervals based on this estimator.

If D > 1, the process (ξn)n∈N is strongly mixing due to Theorem 9.8 in the

book of Bradley (2007). The statements of Theorem 1 hold by Corollary 3.2 in

Politis and Romano (1994) for any block length l satisfying l→∞ and l = o(n).

In a recent article, Bai, Taqqu and Zhang (2016) have shown that subsam-

pling is consistent for long range dependent Gaussian processes without any extra

assumptions on the slowly varying function Lf , but with a stronger restriction

on the block size l, namely l = o(n2−2HLγ(n)). In another article by Bai and

Taqqu (2015), the validity of subsampling is shown under the mildest possible

assumption on the block length (l = o(n)). The condition on the spectral density

is slightly stronger than our condition, the case limx→0 Lf (x) =∞ is not allowed.

2.2. Examples for our Assumptions

Example 2 (Fractional Gaussian Noise). The covariance function of frac-

tional Gaussian Noise (ξn)n∈N with Hurst parameter H can be rewritten (with

the a Taylor expansion) as

γ(k) =
1

2

(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
= H(2H − 1)

{
k−D + h(k)k−D−1

}
for D = 2 − 2H and a function h bounded by a constant M < ∞. Hence,

Lγ(k) = H(2H − 1)(1 + h(k)/k), and for all k̃ ≥ k∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ H(2H − 1)

∣∣∣∣h(k)

k
− h(k̃)

k̃

∣∣∣∣ ≤ H(2H − 1)
M

k
=: K

1

k
,

implying part 1 of Assumption 2. For the second part note that the spectral

density f corresponding to fractional Gaussian noise is

f(λ) = C(H){1− cos(λ)}
∞∑

k=−∞
|λ+ 2kπ|D−3

= λD−1C(H)
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3
,

see Sinai (1976). The slowly varying function

Lf (λ) = C(H)
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3

is bounded away from 0 because this holds for the first factor {1 − cos(λ)}/λ2

and since ∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3
≥ |λ+ 0π|D−3

λD−3
= 1.
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Example 3 (Gaussian FARIMA processes). Let (εn)n∈Z be Gaussian white

noise with variance σ2 = Var(ε0). Then, for d ∈ (0, 1/2), a FARIMA(0, d, 0)

process (ξn)n∈N is given by

ξn =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εn−j .

According to Pipiras and Taqqu (2011), Section 1.3, it has the specral density

f(λ) =
σ2

2π

∣∣∣1− e−iλ∣∣∣−2d
= |λ|D−1 σ

2

2π

(
|λ|

|1− e−iλ|

)1−D

with D = 1 − 2d ∈ (0, 1). As |1 − e−iλ| ≤ λ, part 2 of Assumption 2 holds. For

part 1 we have, by Corollary 1.3.4 of Pipiras and Taqqu (2011), that

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(k + d)

Γ(k − d+ 1)
.

Using Stirling’s formula,

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)
e−2d+1k2d−1

(k + d

k

)k+d( k

k − d+ 1

)k−d+1
{

1 +O
(

1

k

)}
.

A Taylor expansion of (k+d)
{

log(k+d)− log(k)
}

+(k−d+1)
{

log(k)− log(k−
d + 1)

}
gives γ(k) = k−DLγ(k) with Lγ(k) = C +O(1/k) for some constant C.

Part 1 of Assumption 2 follows in the same way as in Example 2.

It would be interesting to know, if the sampling window method is also

consistent for long range dependent linear processes and general statistics without

the assumption of Gaussianity. However, this is beyond the scope of this article.

3. Applications

3.1. Robust, self-normalized change-point test

Our main motivation for considering subsampling procedures to approximate

the distribution of test statistics consists in avoiding the choice of unknown pa-

rameters. As an example we consider a self-normalized test statistic that can be

applied to detect changes in the mean of long range dependent and heavy-tailed

time series.

Given observations X1, . . . , Xn with Xi = µi +G(ξi) we are concerned with

a decision on the change-point problem

H : µ1 = · · · = µn

against

A : µ1 = · · · = µk 6= µk+1 = · · · = µn for some k ∈ {1, . . . , n− 1} .
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Under the hypothesis H we assume that the data generating process (Xn)n∈N
is stationary, while under the alternative A there is a change in location at

an unknown point in time. This problem has been widely studied: Csörgő and

Horváth (1997) give an overview of parametric and non-parametric methods that

can be applied to detect change-points in independent data.

Many testing procedures are based on Cusum (cumulative sum) test statis-

tics. When applied to data sets generated by long range dependent processes,

these change-point tests often falsely reject the hypothesis of no change in the

mean (see also Baek and Pipiras (2014)) and are sensitive to outliers in the data.

Testing procedures that are based on rank statistics have the advantage of

not being sensitive to outliers in the data. Rank-based tests were introduced

by Antoch et al. (2008) for detecting changes in the distribution function of

independent random variables. Wilcoxon-type rank tests have been studied by

Wang (2008) in the presence of linear long memory time series and by Dehling,

Rooch and Taqqu (2013) for subordinated Gaussian sequences.

The normalization of the Wilcoxon change-point test statistic, as proposed

in Dehling, Rooch and Taqqu (2013), depends on the slowly varying function

Lγ , the LRD parameter D, and the Hermite rank r of the class of functions

1{Xi≤x} − F (x), x ∈ R. Many authors assume r = 1 and, while there are well-

tried methods to estimate D, estimating Lγ does not seem to be an easy task.

For this reason, the Wilcoxon change-point test does not seem to be suitable for

applications.

To avoid these issues, Betken (2016) proposed an alternative normalization

for the Wilcoxon change-point test. This normalization approach was originally

established by Lobato (2001) for decision on the hypothesis that a short range

dependent stochastic process is uncorrelated up to a lag of a certain order. The

normalization has recently been applied to change-point test statistics: Shao and

Zhang (2010) define a self-normalized Kolmogorov-Smirnov test statistic that

serves to identify changes in the mean of short range dependent time series; Shao

(2011) adopted the normalization so as to define an alternative normalization for

a Cusum test that detects changes in the mean of short range dependent as well

as long range dependent time series.

To construct a robust test statistic, we introduce the ranks Ri := rank(Xi) =∑n
j=1 1{Xj≤Xi} for i = 1, . . . , n. It seems natural to transfer the normalization

that has been used in Shao (2011) to the Cusum test statistic of the ranks in

order to establish a self-normalized version of the Wilcoxon test statistic, which

is robust to outliers in the data. The corresponding two-sample test statistic is
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Gn(k) :=

∑k
i=1Ri − (k/n)

∑n
i=1Ri{

(1/n)
∑k

t=1 S
2
t (1, k) + (1/n)

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
,

where

St(j, k) :=

t∑
h=j

(
Rh − R̄j,k

)
with R̄j,k :=

1

k − j + 1

k∑
t=j

Rt.

The self-normalized Wilcoxon change-point test rejects the hypothesis for large

values of maxk∈{bnτ1c,...,bnτ2c} |Gn(k)|, where 0 < τ1 < τ2 < 1. The proportion of

the data that is included in the calculation of the supremum is restricted by τ1

and τ2. A common choice for these parameters is τ1 = 1−τ2 = 0.15; see Andrews

(1993).

For long range dependent subordinated Gaussian processes (Xn)n∈N, the

asymptotic distribution of the test statistic under the hypothesis H can be derived

by the Continuous Mapping Theorem (see Theorem 1 in Betken (2016)):

Tn(τ1, τ2) := max
k∈{bnτ1c,...,bnτ2c}

|Gn(k)| ⇒

sup
τ1≤λ≤τ2

|Zr(λ)− λZr(1)|[ ∫ λ
0 {Zr(t)−(t/λ)Zr(λ)}2dt+

∫ 1−λ
0 {Z?r (t)−(t/(1− λ))Z?r (1− λ)}2dt

]1/2 .
Here, Zr is an r-th order Hermite process with Hurst parameter H := max{1−
rD/2, 1/2} and Z?t (r) = Zr(1)− Zr(1− t). A comparison of Tn(τ1, τ2) with the

critical values of its limit distribution still presupposes determination of these pa-

rameters. We can bypass the estimation of D and r by applying the subsampling

procedure since Assumption 1 holds.

Under the alternative A (change in location), we also have to find the quan-

tiles of the distribution under the hypothesis (stationarity). As the block length l

is much shorter than the sample size n, most blocks are not contaminated by the

change-point so that the distribution of the test statistic does not change much.

The accuracy and the power of the test will be investigated by a simulation study

in Section 4.

If the distribution of Xi is not continuous, there might be ties in the data and

consideration of the ranks Ri =
∑n

j=1 1{Xj≤Xi} may not be appropriate. We pro-

pose to use a modified statistic based on the modified ranks R̃i =
∑n

j=1(1{Xj<Xi}+

(1/2)1{Xj=Xi}) in this case. The convergence of the corresponding self-normalized

change point test follows from results of Dehling, Rooch and Wendler (2017), see

the supplementary material, Section S1, for details.

The test statistic Tn(τ1, τ2) is designed for the detection of a single change-
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point. An extension of the testing procedure that allows for multiple change-

points is possible by adapting Shao’s testing procedure which takes this problem

into consideration (see Shao (2011)). For convenience, we describe the construc-

tion of the modified test statistic in the case of two change-points. The general

idea consists in dividing the sample given by X1, . . . , Xn according to the pair

(k1, k2) of potential change-point locations and to compute the original test statis-

tic with respect to the subsamples X1, . . . , Xk2 and Xk1+1, . . . , Xn. We reject the

hypothesis for large values of the sum of the corresponding single statistics.

For ε ∈ (0, τ2 − τ1) consider the test statistic Tn(τ1, τ2, ε) :=

sup(k1,k2)∈Ωn(τ1,τ2,ε) |Gn(k1, k2)|, where Ωn(τ1, τ2, ε) := {(k1, k2) : bnτ1c ≤ k1 <

k2 ≤ bnτ2c, k2 − k1 ≥ bnεc} and

Gn(k1, k2) :=

∣∣∣∑k1
i=1R

(1)
i − (k1/k2)

∑k2
i=1R

(1)
i

∣∣∣{
(1/n)

∑k1
t=1

(
S

(1)
t (1, k1)

)2
+ (1/n)

∑k2
t=k1+1

(
S

(1)
t (k1+1, k2)

)2}1/2

+

∣∣∣∑k2
i=k1+1R

(2)
i − {(k2 − k1)/(n− k1)}

∑n
i=k1+1R

(2)
i

∣∣∣{
(1/n)

∑k2
t=k1+1

(
S

(2)
t (k1 + 1, k2)

)2
+ (1/n)

∑n
t=k2+1

(
S

(2)
t (k1 + 1, n)

)2}1/2
,

with

R
(1)
i :=

k2∑
j=1

1{Xj≤Xi}, R
(2)
i :=

n∑
j=k1+1

1{Xj≤Xi},

S
(h)
t (j, k) :=

t∑
i=j

(
R

(h)
i − R̄

(h)
j,k

)
with R̄

(h)
j,k :=

1

k − j + 1

k∑
t=j

R
(h)
t .

The distribution of the test statistic converges to a limit T (r, τ1, τ2, ε) (see the

supplementary material, Section S2), so subsampling can be applied. The crit-

ical values corresponding to the asymptotic distribution of the test statistic are

reported in Table 1.

3.2. Data examples

We revisit some data sets from the literature. We use the self-normalized

Wilcoxon change-point test combined with subsampling and compare our findings

to the conclusions of other authors.

The plot in Figure 1 depicts the annual volume of discharge from the Nile

river at Aswan in 108 m3 for the years 1871 to 1970. The data set has been

analyzed for the detection of a change-point by numerous authors under differing

assumptions concerning the data generating random process and by usage of
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Table 1. Simulated critical values for the distribution of T (1, τ1, τ2, ε) when [τ1, τ2] =
[0.15, 0.85] and ε = 0.15. The sample size is 1,000, the number of replications is 10,000.

10% 5% 1%
H = 0.501 17.79 19.76 24.13
H = 0.6 19.80 22.38 27.68
H = 0.7 22.08 24.95 30.46
H = 0.8 24.24 27.61 34.04
H = 0.9 26.50 30.11 37.78
H = 0.999 28.28 32.32 41.24

diverse methods. Amongst others, Cobb (1978), Macneill, Tang and Jandhyala

(1991), Wu and Zhao (2007), and Shao (2011) provided statistically significant

evidence for a decrease of the Nile’s annual discharge toward the end of the 19th

century. The construction of the Aswan Low Dam between 1898 and 1902 serves

as a popular explanation for an abrupt change in the data.

The value of the self-normalized Wilcoxon test statistic computed with re-

spect to the data is given by Tn(τ1, τ2) = 13.48729. For a level of significance of

5%, the self-normalized Wilcoxon change-point test rejects the hypothesis for ev-

ery possible value of H ∈ (1/2, 1). Furthermore, we approximate the distribution

of the self-normalized Wilcoxon test statistic by the sampling window method

with block size l = b
√
nc = 10. The subsampling-based test decision also indi-

cates the existence of a change-point in the mean of the data, even if we consider

the 99%-quantile of F̂l,n.

Previous analysis of the Nile data done by Wu and Zhao (2007) and Balke

(1993) suggests that the change in the discharge volume occurred in 1899. We

applied the self-normalized Wilcoxon test and the sampling window method to

the corresponding pre-break and post-break samples. Neither of these two ap-

proaches leads to rejection of the hypothesis, so that it seems reasonable to

consider both samples as stationary. Based on the whole sample, local Whittle

estimation with bandwidth parameter m = bn2/3c suggests the existence of long

range dependence characterized by an Hurst parameter Ĥ = 0.962, whereas the

estimates for the pre-break and post-break samples given by Ĥ1 = 0.517 and

Ĥ2 = 0.5, respectively, should be considered as indication of short range depen-

dent data. In this regard, our findings support the conjecture of spurious long

memory caused by a change-point and therefore agree with the results of Shao

(2011).

The second data set consists of the seasonally adjusted monthly deviations of

the temperature (degrees C) for the northern hemisphere during the years 1854
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Figure 1. Measurements of the annual discharge of the river Nile at Aswan in 108 m3

for the years 1871-1970. The dotted line indicates the location of the change-point; the
dashed lines designate the sample means for the pre-break and post-break samples.

to 1989 from the monthly averages over the period 1950 to 1979. The data results

from spatial averaging of temperatures measured over land and sea. At first sight,

the plot in Figure 2 may suggest an increasing trend as well as an abrupt change

of the temperature deviations. Statistical evidence for a positive deterministic

trend implies affirmation of the conjecture that there has been global warming

during the last decades.

The question of whether the Northern hemisphere temperature data acts

as an indicator for global warming of the atmosphere is a controversial issue.

Deo and Hurvich (1998) provided some indication for global warming by fitting

a linear trend to the data. Beran and Feng (2002) considered a more general

stochastic model by the assumption of so-called semiparametric fractional au-

toregressive (SEMIFAR) processes. Their method did not deliver sufficient sta-

tistical evidence for a deterministic trend. Wang (2007) applied another method

for the detection of gradual change to the global temperature data and did not

detect a trend, either. He offers an alternative explanation for the occurrence of

a trend-like behavior by pointing out that it may have been generated by sta-

tionary long range dependent processes. In contrast, it is shown in Shao (2011)

that the existence of a change-point in the mean yields yet another explanation

for the performance of the data.
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Figure 2. Monthly temperature of the northern hemisphere for the years 1854-1989
from the data base held at the Climate Research Unit of the University of East Anglia,
Norwich, England. The temperature anomalies (in degrees C) are calculated with respect
to the reference period 1950-1979. The dotted line indicates the location of the potential
change-point; the dashed lines designate the sample means for the pre-break and post-
break samples.

The value of the self-normalized Wilcoxon test statistic for this data set is

Tn(τ1, τ2) = 18.98636. Consequently, this test would reject the hypothesis of

stationarity for every value of H ∈ (1/2, 1) at a level of significance of 1%. An

application of the sampling window method with respect to the self-normalized

Wilcoxon test statistic based on comparison of Tn(τ1, τ2) with the 99%-quantile

of the sampling distribution F̂l,n yields a test decision in favor of the alternative

hypothesis for any choice of the block length l ∈ {bnγc| γ = 0.3, 0.4, . . . , 0.9} =

{9, 19, 40, 84, 177, 371, 778}. All in all, both testing procedures provide strong

evidence for the existence of a change in the mean.

According to Shao (2011) the change-point is located around October 1924.

Based on the whole sample local Whittle estimation with bandwidth m = bn2/3c
provides an estimator Ĥ = 0.811. The estimated Hurst parameters for the

pre-break and post-break sample are Ĥ1 = 0.597 and Ĥ2 = 0.88, respectively.

Neither subsampling with respect to the self-normalized Wilcoxon test statistic

nor comparison of the value of Tn(τ1, τ2) with the corresponding critical values of

its limit distribution, provides evidence for another change-point in the pre-break

or post-break sample.
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Computation of the test statistic that allows for two change-points yields

Tn(τ1, τ2, ε) = 17.88404 (for τ1 = 1 − τ2 = ε = 0.15). If compared to the values

in Table 1, the test statistic only surpasses the critical value corresponding to

H = 0.501 and a significance level of 10%, but does not exceed any of the

other values. Subsampling with respect to the test statistic Tn(τ1, τ2, ε) does not

support the conjecture of two changes, either. In fact, subsampling leads to a

rejection of the hypothesis when the block length is l = bn0.7c = 177 (based on a

comparison of Tn(τ1, τ2, ε) with the 95%-quantile of the corresponding sampling

distribution F̂l,n), but yields a test decision in favor of the hypothesis for block

lengths l ∈ {bnγc| γ = 0.5, 0.6, 0.8, 0.9} = {40, 84, 371, 778} and for comparison

with the 90%-quantile of F̂l,n.

It seems safe to conclude that the appearance of long memory in the post-

break sample is not caused by another change-point in the mean. The pronounced

difference between the local Whittle estimators Ĥ1 and Ĥ2 suggests a change in

the dependence structure of the times series. Another explanation could be a

gradual change of the temperature in the post-break period. We conjecture that

our test has only low power in the case of a gradual change, because the denom-

inator of our self-normalized test statistic is inflated as the ranks systematically

deviate from the mean rank of the first and second part. When using subsam-

pling, the trend also appears in subsamples so that we fail to approximate the

distribution under the hypothesis.

As pointed out by one of the referees, the Northern hemisphere temperature

data does not seem to be second-order stationary as the variance in the first part

of the time series seems higher. A change in variance should also result in a loss

of power,. The ranks in the part with the higher variance are more extreme, so

that the distance to the mean rank of this part is larger. This leads to a higher

value of the denominator of our self-normalized test statistic, and consequently

to a lower value of the ratio.

The third data set consists of the arrival rate of Ethernet data (bytes per 10

milliseconds) from a local area network (LAN) measured at Bellcore Research and

Engineering Center in 1989. For more information on the LAN traffic monitoring

we refer to Leland and Wilson (1991) and Beran (1994). Figure 3 reveals that

the observations are strongly right-skewed. As the self-normalized Wilcoxon test

is based on ranks, we do not expect that this affects our analysis.

Coulon, Chabert and Swami (2009) examined this data set for change-points

before. The method proposed in their paper is based on the assumption that a

FARIMA model holds for segments of the data. The number of different sections
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Figure 3. Ethernet traffic in bytes per 10 milliseconds from a LAN measured at Bellcore
Research Engineering Center.

and the location of the change-points are chosen by a model selection criterion.

The algorithm proposed by Coulon, Chabert and Swami (2009) detects multiple

changes in the parameters of the corresponding FARIMA time series.

In contrast, an application of the self-normalized Wilcoxon change-point

test does not provide evidence for a change-point in the mean: the value of

the test statistic is given by Tn(τ1, τ2) = 3.270726. Even for a level of signif-

icance of 10%, the self-normalized Wilcoxon change-point test does not reject

the hypothesis for any value H ∈ (1/2, 1). Subsampling with respect to the

self-normalized Wilcoxon test statistic does not lead to a rejection of the hypoth-

esis , either (for any choice of block length l ∈ {bnγc| γ = 0.3, 0.4, . . . , 0.9} =

{12, 27, 63, 144, 332, 761, 1745} and for comparison with the 90%-quantile of the

corresponding sampling distribution F̂l,n).

Taking into consideration that the data set contains ties (the value 0 appears

several times), we also applied the self-normalized Wilcoxon test statistic based

on the modified ranks R̃i and used subsampling with respect to this statistic.

Both approaches did not lead to a rejection of the hypothesis.

An application of the test statistic constructed for the detection of two

changes yields a value of Tn(τ1, τ2, ε) = 15.24527 when ε = τ1 = 1 − τ2 = 0.15.

This does not lead to a rejection of the hypothesis for any value of the parameter

H. Subsampling based on comparison of Tn(τ1, τ2, ε) with the 90%-quantile of
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the corresponding sampling distribution F̂l,n does not provide evidence for the as-

sertion of multiple changes for any block lenght l ∈ {bnγc| γ = 0.5, 0.6, 0.7, 0.8} =

{63, 144, 332, 761} in the data, either.

These results do not coincide with the analysis of Coulon, Chabert and

Swami (2009). This may be due to the fact that our methods differ consid-

erably from the testing procedures applied before. The change-point estima-

tion algorithm proposed in Coulon, Chabert and Swami (2009) is not robust to

skewness or heavy-tailed distributions and decisively relies on the assumption of

FARIMA time series. This seems to contradict observations made by Bhansali

and Kokoszka (2001) as well as Taqqu and Teverovsky (1997) who stress that

the model that fits the Ethernet traffic data is very unlikely to be FARIMA.

Estimation of the Hurst parameter by the local Whittle procedure with band-

width parameter m = bn2/3c yields an estimate of Ĥ = 0.845, so it indicates the

existence of long range dependence. This is consistent with the results of Leland

et al. (1994) and Taqqu and Teverovsky (1997).

In the three data examples, we find that the results obtained by subsam-

pling and by parameter estimation are in good accordance with each other. The

methods take into account long range dependence or heavy tails, but still detect

a change in location in the first two examples. For the third data example our

analysis supports the hypothesis of stationarity.

4. Simulations

We investigated the finite sample performance of the subsampling procedure

with respect to the self-normalized Wilcoxon test and with respect to the classical

Wilcoxon change-point test. We compared these results to the performance of the

tests when the test decision is based on critical values obtained from the asymp-

totic distribution of the test statistic. We considered subordinated Gaussian time

series (Xn)n∈N, Xn = G(ξn), where (ξn)n∈N was fractional Gaussian noise (intro-

duced in Examples 1 and 2) with Hurst parameter H ∈ {0.6, 0.7, 0.8, 0.9} and

covariance function

γ(k) ∼ k−D
(

1− D

2

)
(1−D) ,

where D = 2 − 2H. Initially, we took G(t) = t, so that (Xn)n∈N has normal

marginal distributions. We also considered the transformation

G(t) =

{
βk2

(β − 1)2(β − 2)

}−1/2 [
k{Φ(t)}−1/β − βk

β − 1

]
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(with Φ denoting the standard normal distribution function) so as to generate

Pareto-distributed data with parameters k, β > 0 (referred to as Pareto(β, k)).

In both cases, the Hermite rank r of 1{G(ξi)≤x} − F (x), x ∈ R, is r = 1 and∣∣∣∣∫
R
J1(x)dF (x)

∣∣∣∣ =
1

2
√
π

;

see Dehling, Rooch and Taqqu (2013).

Under these conditions, the critical values of the asymptotic distribution of

the self-normalized Wilcoxon test statistic were reported in Table 2 in Betken

(2016). The limit of the Wilcoxon change-point test statistic can be found in

Dehling, Rooch and Taqqu (2013), the corresponding critical values can be taken

from Table 1 in Betken (2016).

The frequencies of rejections of both testing procedures are reported in Table

2 and Table 3 for the self-normalized Wilcoxon change-point test, and in Table

4 and Table 5 for the classical Wilcoxon test (without self-normalization). The

calculations are based on 5, 000 realizations of time series with sample size n =

300 and n = 500. We chose block lengths l = ln = bnγc with γ ∈ {0.4, 0.5, 0.6}.
As level of significance we chose 5%, comparing the values of the test statistic

with the 95%-quantile of its asymptotic distribution and the 95%-quantile of the

empirical distribution function F̂l,n, respectively.

For the usual testing procedures the estimation of the Hermite rank r, the

slowly varying function Lγ and the integral
∫
J1(x)dF (x) was neglected. For

every simulated time series we estimate the Hurst parameter H by the local

Whittle estimator Ĥ proposed in Künsch (1987). This estimator is based on an

approximation of the spectral density by the periodogram at the Fourier frequen-

cies. It depends on the spectral bandwidth parameter m = m(n) which denotes

the number of Fourier frequencies used for the estimation. If the bandwidth m

satisfies 1/m + m/n −→ 0 as n −→ ∞, the local Whittle estimator is a con-

sistent estimator for H; see Robinson (1995). For convenience we always chose

m = bn2/3c. The critical values corresponding to the estimated values of H were

determined by linear interpolation.

Under the alternative A we analyzed the power of the testing procedures

by considering different choices for the height of the level shift (denoted by h)

and the location [nτ ] of the change-point. In the tables the columns that are

superscribed by “h = 0” correspond to the frequency of a type 1 error.

For the self-normalized Wilcoxon change-point test based on the asymptotic

distribution, the empirical size almost equals the level of significance of 5% for
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Table 2. Rejection rates of the self-normalized Wilcoxon change-point test obtained by
subsampling with block length l = n0.4, n0.5, n0.6, and by comparison with asymptotic
critical values for fractional Gaussian noise of length n with Hurst parameter H.

τ = 0.25 τ = 0.5
fGn n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 subspl. l = 9 0.041 0.263 0.700 0.502 0.952
subspl. l = 17 0.064 0.313 0.742 0.570 0.964
subspl. l = 30 0.070 0.322 0.705 0.555 0.943

asymptotic 0.044 0.209 0.521 0.424 0.861
500 subspl. l = 12 0.053 0.396 0.859 0.697 0.994

subspl. l = 22 0.060 0.421 0.861 0.720 0.995
subspl. l = 41 0.069 0.411 0.829 0.697 0.991

asymptotic 0.049 0.303 0.687 0.577 0.958
H = 0.7 300 subspl. l = 9 0.057 0.155 0.412 0.291 0.759

subspl. l = 17 0.070 0.171 0.423 0.313 0.763
subspl. l = 30 0.077 0.177 0.403 0.314 0.737

asymptotic 0.053 0.108 0.268 0.228 0.611
500 subspl. l = 12 0.056 0.183 0.513 0.382 0.856

subspl. l = 22 0.059 0.193 0.508 0.382 0.854
subspl. l = 41 0.065 0.192 0.476 0.387 0.819

asymptotic 0.048 0.133 0.359 0.302 0.730
H = 0.8 300 subspl. l = 9 0.070 0.126 0.251 0.223 0.526

subspl. l = 17 0.067 0.117 0.234 0.208 0.494
subspl. l = 30 0.073 0.114 0.218 0.201 0.466

asymptotic 0.048 0.081 0.144 0.141 0.362
500 subspl. l = 12 0.066 0.121 0.295 0.217 0.591

subspl. l = 22 0.068 0.114 0.278 0.210 0.567
subspl. l = 41 0.069 0.119 0.257 0.205 0.532

asymptotic 0.053 0.085 0.198 0.163 0.462
H = 0.9 300 subspl. l = 9 0.093 0.126 0.208 0.209 0.462

subspl. l = 17 0.074 0.097 0.161 0.169 0.397
subspl. l = 30 0.073 0.095 0.145 0.165 0.367

asymptotic 0.057 0.065 0.106 0.125 0.308
500 subspl. l = 12 0.079 0.105 0.194 0.185 0.461

subspl. l = 22 0.067 0.091 0.166 0.162 0.416
subspl. l = 41 0.063 0.087 0.146 0.152 0.391

asymptotic 0.051 0.068 0.120 0.128 0.350

normally distributed data (see Table 2). The sampling window method yields

rejection rates that slightly exceed this level. For Pareto(3, 1) time series both

testing procedures lead to similar results and tend to reject the hypothesis too

often when there is no change. With regard to the empirical power, it is notable

that for fractional Gaussian noise time series the sampling window method yields
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Table 3. Rejection rates of the self-normalized Wilcoxon change-point test obtained by
subsampling with block length l = n0.4, n0.5, n0.6, and by comparison with asymptotic
critical values for Pareto(3, 1)-transformed fractional Gaussian noise of length n with
Hurst parameter H.

τ = 0.25 τ = 0.5
Pareto n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1
H = 0.6 300 subspl. l = 9 0.041 0.847 0.977 0.990 1.000

subspl. l = 17 0.067 0.871 0.946 0.990 1.000
subspl. l = 30 0.070 0.831 0.946 0.979 1.000

asymptotic 0.056 0.820 0.912 0.984 0.999
500 subspl. l = 12 0.055 0.947 0.997 0.999 1.000

subspl. l = 22 0.066 0.946 0.994 0.999 1.000
subspl. l = 41 0.071 0.921 0.976 0.996 1.000

asymptotic 0.061 0.920 0.970 0.996 1.000
H = 0.7 300 subspl. l = 9 0.057 0.571 0.821 0.990 0.994

subspl. l = 17 0.064 0.527 0.738 0.876 0.990
subspl. l = 30 0.077 0.527 0.738 0.842 0.975

asymptotic 0.070 0.529 0.702 0.856 0.982
500 subspl. l = 12 0.066 0.693 0.904 0.949 0.999

subspl. l = 22 0.068 0.684 0.893 0.942 0.998
subspl. l = 41 0.072 0.632 0.838 0.921 0.994

asymptotic 0.076 0.663 0.820 0.940 0.995
H = 0.8 300 subspl. l = 9 0.070 0.355 0.574 0.703 0.931

subspl. l = 17 0.068 0.284 0.454 0.666 0.905
subspl. l = 30 0.073 0.284 0.454 0.633 0.857

asymptotic 0.072 0.297 0.428 0.640 0.875
500 subspl. l = 12 0.064 0.401 0.609 0.738 0.948

subspl. l = 22 0.063 0.379 0.581 0.714 0.933
subspl. l = 41 0.064 0.345 0.509 0.688 0.903

asymptotic 0.069 0.369 0.510 0.715 0.920
H = 0.9 300 subspl. l = 9 0.093 0.253 0.396 0.597 0.832

subspl. l = 17 0.071 0.168 0.254 0.532 0.772
subspl. l = 30 0.073 0.168 0.254 0.482 0.729

asymptotic 0.073 0.165 0.236 0.499 0.738
500 subspl. l = 12 0.073 0.256 0.405 0.585 0.839

subspl. l = 22 0.064 0.219 0.340 0.547 0.802
subspl. l = 41 0.065 0.190 0.296 0.503 0.762

asymptotic 0.068 0.199 0.296 0.529 0.782

considerably better power than the test based on asymptotic critical values. If

Pareto(3, 1)-distributed time series are considered, the empirical power of the

subsampling procedure is still better than the empirical power that results from

using asymptotic critical values. However, in this case, the deviation of the
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Table 4. Rejection rates of the classical Wilcoxon change-point test obtained by subsam-
pling with block length l = n0.4, n0.5, n0.6, and by comparison with asymptotic critical
values for fractional Gaussian noise of length n with Hurst parameter H.

τ = 0.25 τ = 0.5
fGn n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 subspl. l = 9 0.066 0.200 0.232 0.386 0.591
subspl. l = 17 0.054 0.223 0.411 0.439 0.784
subspl. l = 30 0.059 0.264 0.529 0.663 0.870

asymptotic 0.026 0.096 0.160 0.223 0.727
500 subspl. l = 12 0.063 0.285 0.436 0.569 0.856

subspl. l = 22 0.058 0.345 0.663 0.627 0.952
subspl. l = 41 0.062 0.397 0.789 0.683 0.975

asymptotic 0.036 0.148 0.256 0.378 0.897
H = 0.7 300 subspl. l = 9 0.052 0.080 0.088 0.162 0.302

subspl. l = 17 0.049 0.095 0.158 0.206 0.466
subspl. l = 30 0.051 0.120 0.227 0.267 0.593

asymptotic 0.035 0.067 0.228 0.167 0.66
500 subspl. l = 12 0.042 0.104 0.153 0.249 0.539

subspl. l = 22 0.039 0.131 0.267 0.287 0.689
subspl. l = 41 0.046 0.160 0.373 0.343 0.789

asymptotic 0.030 0.079 0.259 0.225 0.714
H = 0.8 300 subspl. l = 9 0.028 0.030 0.031 0.054 0.092

subspl. l = 17 0.029 0.038 0.048 0.075 0.179
subspl. l = 30 0.034 0.057 0.088 0.070 0.272

asymptotic 0.077 0.153 0.421 0.245 0.673
500 subspl. l = 12 0.023 0.031 0.036 0.064 0.162

subspl. l = 22 0.028 0.044 0.070 0.097 0.273
subspl. l = 41 0.039 0.071 0.129 0.137 0.391

asymptotic 0.050 0.112 0.439 0.226 0.714
H = 0.9 300 subspl. l = 9 0.009 0.010 0.006 0.016 0.020

subspl. l = 17 0.009 0.014 0.009 0.021 0.060
subspl. l = 30 0.015 0.029 0.028 0.011 0.153

asymptotic 0.360 0.484 0.739 0.524 0.830
500 subspl. l = 12 0.008 0.006 0.003 0.015 0.026

subspl. l = 22 0.011 0.009 0.011 0.029 0.086
subspl. l = 41 0.021 0.021 0.032 0.058 0.197

asymptotic 0.319 0.439 0.743 0.511 0.845

rejection rates is rather small. While the empirical size is not much affected by

the Hurst parameter H, the empirical power is lower for H = 0.8, 0.9.

Considering the classical Wilcoxon test (without self-normalization), for both

procedures the empirical size is in most cases not close to the nominal level

of significance (5%), ranging from 1.1% to 20.8% using subsampling and from
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Table 5. Rejection rates of the classical Wilcoxon change-point test obtained by subsam-
pling with block length l = n0.4, n0.5, n0.6, and by comparison with asymptotic critical
values for Pareto(3, 1)-transformed fractional Gaussian noise of length n with Hurst
parameter H.

τ = 0.25 τ = 0.5
Pareto n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1
H = 0.6 300 subspl. l = 9 0.170 0.949 0.742 0.991 0.923

subspl. l = 17 0.130 0.963 0.861 0.996 0.991
subspl. l = 30 0.109 0.962 0.871 0.998 0.998

asymptotic 0.108 0.938 0.985 0.998 1.000
500 subspl. l = 12 0.163 0.991 0.916 1.000 0.993

subspl. l = 22 0.132 0.997 0.976 1.000 0.999
subspl. l = 41 0.114 0.997 0.989 1.000 1.000

asymptotic 0.128 0.988 0.999 1.000 1.000
H = 0.7 300 subspl. l = 9 0.224 0.785 0.568 0.939 0.796

subspl. l = 17 0.175 0.802 0.680 0.955 0.949
subspl. l = 30 0.140 0.789 0.708 0.959 0.976

asymptotic 0.179 0.833 0.969 0.974 0.999
500 subspl. l = 12 0.208 0.921 0.763 0.989 0.956

subspl. l = 22 0.167 0.931 0.862 0.992 0.996
subspl. l = 41 0.143 0.925 0.891 0.994 0.998

asymptotic 0.191 0.940 0.994 0.996 1.000
H = 0.8 300 subspl. l = 9 0.203 0.508 0.326 0.743 0.565

subspl. l = 17 0.160 0.496 0.347 0.776 0.808
subspl. l = 30 0.137 0.484 0.364 0.791 0.881

asymptotic 0.204 0.729 0.925 0.918 0.993
500 subspl. l = 12 0.190 0.639 0.445 0.865 0.770

subspl. l = 22 0.160 0.649 0.513 0.886 0.929
subspl. l = 41 0.137 0.626 0.556 0.890 0.961

asymptotic 0.212 0.805 0.963 0.948 0.999
H = 0.9 300 subspl. l = 9 0.128 0.150 0.077 0.320 0.336

subspl. l = 17 0.097 0.128 0.071 0.403 0.550
subspl. l = 30 0.092 0.125 0.077 0.481 0.677

asymptotic 0.309 0.712 0.901 0.848 0.966
500 subspl. l = 12 0.112 0.159 0.089 0.402 0.436

subspl. l = 22 0.100 0.161 0.101 0.518 0.680
subspl. l = 41 0.095 0.170 0.106 0.571 0.771

asymptotic 0.270 0.726 0.911 0.851 0.975

2.6% to 36.0% using asymptotic critical values. In general, the sampling window

method becomes more conservative for higher values of the Hurst parameter

H, while the test based on the asymptotic distribution becomes more liberal.

Under the alternative, the usual application of the Wilcoxon test yields better
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power than the sampling window method, especially for high values of H. But it

should be emphasized that this comparison is problematic because the rejection

frequencies under the hypothesis differ.

We conclude that the self-normalized Wilcoxon change-point test is more

reliable than the classical change-point test. The reason can be that in the scaling

of the classical test, the estimator Ĥ of the Hurst parameter enters as a power of

the sample size n. Thus, a small error in this estimation can lead to a large error

in the value of the test statistic. By using the sampling window method for the

self-normalized version, we avoid the estimation of unknown parameters so that

the performance is similar to the performance of the classical testing procedure

which compares the values of the test statistic with the corresponding critical

values.

In most cases covered by our simulations the choice of the block length for

the subsampling procedure does not have a big impact on the frequency of a type

1 error. Considering the self-normalized Wilcoxon change-point test, an increase

of the block length tends to go along with a decrease in power, especially for big

values of the Hurst parameter H and Pareto-distributed random variables. For

smaller values of H the effect is not pronounced. We recommend using a block

length bn0.4c or bn0.5c for the self-normalized change-point test as the choice

l = bn0.6c implies worse properties in most cases.

An application of the subsampling testing procedure to the classical (non-

self-normalized) Wilcoxon test for different choices of the block length shows the

opposite effect on the rejection rate under the alternative: an increase of the

block length results in a higher frequency of rejections. Here, the block length

bn0.6c leads to better results in many cases, but we do not recommend to use

this test, but rather to self-normalize the test statistic.

An alternative way of choosing the block length is to apply the data-driven

block selection rule proposed by Götze and Račkauskas (2001) and Bickel and

Sakov (2008). Although the algorithm had originally been implemented for ap-

plications of the m-out-of-n bootstrap to independent and identically distributed

data, it also lead to satisfactory simulation results in applications to long range

dependent time series (see Jach, McElroy and Politis (2012)). Another general

approach to the selection of the block size in the context of hypothesis testing is

given by Algorithm 9.4.2 in Politis, Romano and Wolf (1999).
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Supplementary Materials

In the online supplement, additional information about the change point

test for long range dependent data with ties can be found (see Section S1). More

details on the test for multiple change points is given in Section S2. The technical

lemmas in Section S3 are needed for the proof of Theorem 1, in Section S4.
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