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Abstract: This paper considers a continuous time analogue of the classical autore-

gressive moving average processes, Lévy-driven CARMA processes. First we de-

scribe limiting properties of the periodogram by means of the so-called truncated

Fourier transform if observations are available continuously. The obtained results

are in accordance with their counterparts from the discrete-time case. Then we

discuss the numerical approximation of the truncated Fourier transform based on

non-equidistant high frequency data. In order to ensure convergence of the numer-

ical approximation to the true value of the truncated Fourier transform a certain

control on the maximal distance between observations and the number of observa-

tions is needed. We obtain both convergence to the continuous time quantity and

asymptotic normality under a high-frequency infinite time horizon limit.
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Lévy process, trapezoidal rule.

1. Introduction

The classical autoregressive moving average process ARMA has been broadly

discussed in the literature. For a comprehensive discussion see e.g. the mono-

graph by Brockwell and Davis (2006) and references therein. In discrete time

models we restrict ourselves to observations at fixed equidistant points in time.

In many cases these observations made at discrete times come from an underlying

continuous process, thus the natural question arises: can we model also the time

series in continuous time? One of the earliest results dealing with properties of

such processes can be found in Doob (1944). Later this problem was discussed

in Brockwell (2001a) for continuous time ARMA processes driven by Gaussian

noise. The next step was to extend these ideas to the models with noise mod-

elled by jump processes, so-called Lévy-driven CARMA models introduced in

Brockwell (2001b). In these papers time series are modelled as continuous time
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processes with continuous time noises (with or without jumps) and the inference

is based mainly on discrete equidistant data. One of the latest results can be

found in the paper Brockwell, Davis and Yang (2011), which consideres QML

estimations of the AR and MA parameters based on equidistant observations.

The estimation procedure of Lévy-driven CARMA processes in high-fre-

quency settings has been discussed by Fasen and Fuchs (2013b), where the au-

thors deal with the limit behaviour of the periodogram of CARMA processes

under equidistant sampling when the sampling interval tends to 0. The results

are analogous to ARMA processes: the periodogram for CARMA processes is

not a consistent estimator of the spectral density function, but after appropri-

ate smoothing consistency can be obtained. Some related results were discussed

by Fasen and Fuchs (2013a), where asymptotic distributions of periodograms of

CARMA processes driven by a symmetric α-stable Lévy noise are obtained, and

where it is shown that the vector composed of periodograms for various frequen-

cies converges in distribution to a function of a multidimensional stable random

vector. Likewise, Fasen (2013) considers the behaviour of the periodogram for

an equidistantly sampled continuous time moving average process when only

the number of observations goes to infinity. Marquardt and Stelzer (2007) or

Schlemm and Stelzer (2012) are, for instance, papers considering multivariate

CARMA processes.

The problem of statistical analysis of such processes has been studied further

for example in the dissertation Gillberg (2006), where different approaches to the

estimation of CARMA processes with Gaussian noise are discussed both using

equidistant and non-equidistant observations. The author works mainly in the

frequency domain. He describes the properties of the truncated Fourier transform

of a CARMA process with Gaussian noise on a fixed interval [0, T ] based on

equidistant frequencies. In the non-equidistant case he uses a method based on

splines in order to find an approximation of the spectral density.

Another approach for the estimation of a stationary process (Y (t))t∈R with

mean zero, finite second-order moments, and continuous covariance function has

been discussed by Lii and Masry (1992, 1994), where they described some prop-

erties of a smoothed periodogram. Here observations are assumed to be given on

a random grid (τk) of an interval [0, T ], where τk is a stationary point process on

the real line which is independent of (Y (t))t∈R.

In the present paper we describe the asymptotic behaviour of the so-called

truncated Fourier transform of a CARMA process, which is a building block for

an estimation of the spectral density of a CARMA process. We use some of the
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ideas from Gillberg (2006) to prove results in more general settings.

The paper is structured as follows: We recall second order Lévy-driven

CARMA models and summarize the results needed later in Section 2. We define

in Section 3 the truncated Fourier transform of a CARMA process and we inves-

tigate its asymptotic properties at a fixed frequency: for a non-zero frequency we

obtain that the limiting law of the real and imaginary part is the two-dimensional

normal distribution with mean zero and the covariance matrix depending on the

spectral density of the CARMA process. If we consider the truncated Fourier

transform at zero, we obtain a one-dimensional normal law with mean zero and

variance depending only on two parameters of the CARMA process. We show

that the limiting law of the joint distribution of the squared modulus of the trun-

cated Fourier transform at different positive frequencies converges to a vector of

independent and exponentially distributed random variables with mean depend-

ing on the values of the spectral density. These results can be interpreted as the

limiting behaviour of the truncated Fourier transform when the CARMA process

is observed continuously. In Section 3.2 we approximate the truncated Fourier

transform when the CARMA process is observed on a non-equidistant determin-

istic grid. To find a numerical approximation value of the truncated Fourier

transform we apply the trapezoidal rule. We are interested in the convergence

of the truncated Fourier transform when the length of the interval T goes to

infinity and the mesh of the grid to zero. Since the interplay of the length of

the interval, of the number of elements of the grid, and of the maximal distance

between the elements of the grid plays a crucial role, to ensure the convergence

of the approximating sum to the true value of the truncated Fourier transform

we have to impose some limiting conditions on these quantities. In Section 4 we

look at some illustrative simulations of the truncated Fourier transform based on

non-equidistant observations. We consider Ornstein-Uhlenbeck type (CAR(1))

and CARMA(2,1) processes driven by a standard Brownian motion, a Variance

Gamma process, and a “two-sided Poisson process”, and we compare our simu-

lations with the theoretical asymptotic distributions described earlier.

All proofs are relegated to the online supplement where also some additional

results on the moments of the truncated Fourier transform can be found.

Notation

The symbol N := {1, 2, 3, . . . } denotes the set of positive integers, N0 :=

N∪ {0}, R is the set of real numbers and C denotes the set of complex numbers.

The symbol Rm×n, resp. Cm×n denotes the space of real- (resp. complex-) valued
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matrices with m rows and n columns. For A ∈ Cm×n the symbol AT denotes the

transposed of a matrix A. We are working on a given filtered probability space

(Ω,F , (Ft)t≥0,P) satisfying the usual hypothesis (cf. Protter (2004, Chap. 1)).

Moreover, by X
d
= Y we denote that the random variables X and Y are equal in

distribution.

2. Preliminaries

We begin with the model set-up given by Brockwell (2001b,a). A second-

order Lévy-driven continuous-time ARMA(p, q) process is defined in terms of a

state-space representation of the formal differential equation

a(D)Y (t) = b(D)DL(t), t ≥ 0. (2.1)

Here, D denotes differentiation with respect to t, non-negative integers p, q satisfy

p > q, and (L(t))t≥0 is a one-dimensional Lévy process (i.e. a continuous time

process with stationary and independent increments and L(0) = 0 a.s.; see e.g.

Applebaum (2009)) with EL(1)2 <∞. The polynomials

a(z) := zp + a1z
p−1 + · · ·+ ap, b(z) := b0 + b1z + · · ·+ bp−1z

p−1,

are called the autoregressive- and moving average polynomials, respectively. We

assume that bq 6= 0 and bj = 0 for q < j < p. The state-space representation

consists of the observation and state equations:

Y (t) = bTX(t), (2.2)

dX(t) = AX(t)dt+ edL(t), (2.3)

where

A :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1

 , X(t) :=


X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)

 ,

e := [0, . . . , 0, 1]T , b := [b0, b1, . . . , bp−1]
T ,

i.e. A ∈ Rp×p, X(t) ∈ Rp×1, e ∈ Rp, b ∈ Rp. If p = 1, we set A = −a1.

Assumption 1. EL(1) = 0 and E|L(1)|2 = σ2 <∞.

Observe that E[L(s)L(t)] = min{s, t}E|L(1)|2. It is shown e.g. in Brockwell

(2009) that the solution X(t) of (2.3) satisfies
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X(t) = eAtX(0) +

∫ t

0
eA(t−u)edL(u). (2.4)

Assumption 2. X(0) is independent of (L(t))t≥0.

From now on we assume that Assumption 2 holds. It is well-known from

Proposition 2 of Brockwell (2009) that under Assumptions 1 and 2 the process

{X(t)}t≥0 is strictly stationary and causal iff X(0) has the same distribution as∫∞
0 eAuedL(u) and the p (not necessarily distinct) eigenvalues λ1, . . . , λp of A

have negative real parts. We extend the Lévy process (L(u))u≥0 to the whole real

line in the usual way: Let L̃ = (L̃(t))t≥0 be an independent copy of (L(t))t≥0. For

t ∈ R take L∗(t) := L(t)1[0,∞)(t)+ L̃(−t−)1(−∞,0](t). To get stationary solutions

of (2.3) we need the following assumptions:

Assumption 3. All eigenvalues of A have strictly negative real parts.

Assumption 4. X(0)
d
=
∫ 0
−∞ e

−AuedL∗(u)

In Brockwell (2009) it was shown that if Assumptions 3 and 4 are satisfied

the process (X(t))t∈R given by

X(t) =

∫ t

−∞
eA(t−u)edL∗(u) (2.5)

is a strictly stationary solution of (2.3) (with L replaced by L∗) for t ∈ R with

corresponding CARMA process

Y (t) =

∫ t

−∞
bT eA(t−u)edL∗(u). (2.6)

For t ≥ 0 one can rewrite it in the form

Y (t) = bT eAtX(0) +

∫ t

0
bT eA(t−u)edL(u). (2.7)

In the present paper the spectral density of a CARMA process plays a crucial

role. The spectral density is the Fourier transform of the autocovariance function

γY (h) := Cov(Y (0), Y (h)) for h ∈ R. The spectral density of a CARMA process

is

fY (ω) =
1

2π

∫ ∞
−∞

γY (h)e−ihωdh =
σ2

2π

|b(iω)|2

|a(iω)|2
, ω ∈ R. (2.8)

3. Limit Behaviour of the Fourier Transform

In this section we deal with the Fourier transform of the CARMA process

assuming that the observations are given continuously on the time interval [0, T ].
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A similar idea for Gaussian CARMA processes was presented in Gillberg (2006)

for equidistant observations. The truncated continuous-time Fourier transform

of the process Y at a fixed frequency ω ∈ R is given by

FT (Y )(ω) :=
1√
T

∫ T

0
Y (t)e−iωtdt.

Observe that the norming constant 1/
√
T is taken as this ensures convergence in

distribution for T →∞ as will be shown later.

3.1. Properties of the truncated Fourier transform of a CARMA pro-

cess

First we derive an alternative representation.

Lemma 1. Let X and Y be processes given by the state-space representation (2.2)

and (2.3). If Assumptions 1, 2 and 3 are satisfied, then the truncated Fourier

transform of the CARMA process Y at a fixed frequency ω ∈ R is of the form

FT (Y )(ω) =
1√
T

b(iω)

a(iω)

∫ T

0
e−iωtdL(t) (3.1)

+
1√
T
bT (iωI −A)−1

{
X(0)− e−iωTX(T )

}
,

or equivalently

FT (Y )(ω) =
1√
T
bT (iωI −A)−1

×
{∫ T

0

(
e−iωu − e−iωT eA(T−u)

)
edL(u) +

(
I − e(−iωI+A)T

)
X(0)

}
.

(3.2)

To investigate asymptotic properties of the truncated Fourier transform we

first show that the second summand of (3.1) converges in probability to zero.

Lemma 2. Let X and Y be processes given by the state-space representation

(2.2) and (2.3). If Assumptions 1, 2 and 3 are satisfied, and

Z̃(T ) := FT (Y )(ω)− 1√
T

b(iω)

a(iω)

∫ T

0
e−iωtdL(t),

then P− limT→∞ |Z̃(T )| = 0.

Now we show that the first summand of formula (3.1) converges in distribu-

tion, so that, together with Lemma 2, we obtain the limit in distribution of the

truncated Fourier transform. We have two cases: the first case is if the frequency

ω = 0. Then the truncated Fourier transform is a real-valued function. For
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frequencies ω 6= 0 the truncated Fourier transform is a complex-valued function.

In both cases we first give the description of the distribution of the truncated

Fourier transform and then we describe the distribution of the squared modulus

of the truncated Fourier transform.

Theorem 1. Let X and Y be processes given by the state-space representation

(2.2) and (2.3). If Assumptions 1 and 3 are satisfied, and

Z(T ) :=
1√
T

b(0)

a(0)

∫ T

0
dL(t),

then

d− lim
T→∞

Z(T ) ∼ N

(
0,

(
b(0)

a(0)

)2

σ2

)
, d− lim

T→∞

1

σ2

∣∣∣∣a(0)Z(T )

b(0)

∣∣∣∣2 ∼ χ2(1).

In order to find the asymptotic distribution of the truncated Fourier trans-

form we use the multivariate Central Limit Theorem. We state all results for

positive frequencies as the corresponding results for negative ones can be ob-

tained by taking the complex conjugate.

Theorem 2. Let X and Y be processes given by the state-space representation

(2.2) and (2.3) and suppose that Assumptions 1 and 3 are satisfied. If ω > 0,

Z(T ) := (1/
√
T )[{b(iω)}/{a(iω)}]

∫ T
0 e−iωtdL(t), and Z(T ) = [<Z(T ),=Z(T )]T ,

then d− limT→∞ Z(T ) ∼ N (0,Σ), where Σ = (σ2/2)[|{b(iω)}/{a(iω)}|2]I2×2.

Now we apply this theorem to find the asymptotic distribution of the trun-

cated Fourier transform squared.

Theorem 3. Let X and Y be processes given by the state-space representation

(2.2) and (2.3) and suppose that Assumptions 1 and 3 are satisfied. With Z de-

fined as in Theorem 2, |Z|2 ∼ Exp(σ2|{b(iω)}/{a(iω)}|2), where Exp(λ) denotes

the exponential distribution with mean λ.

We give the description of the convergence of the random vector consisting

of the truncated Fourier transform at different frequencies.

Theorem 4. Let X and Y be processes given by the state-space representation

(2.2) and (2.3) and suppose that Assumptions 1, 2 and 3 are satisfied. If 0 < ω1 <

· · · < ωd are fixed frequencies, then the 2d-dimensional vector [<{FT (Y )(ωj)} ,
={FT (Y )(ωj)}]Tj=1,...,d converges to N{0, (σ2/2)B}, with B = diag[|{b(iω1)}/
{a(iω1)}|2, |{b(iω1)}/{a(iω1)}|2, . . . , |{b(iωd)}/{a(iωd)}|2, |{b(iωd)}/{a(iωd)}|2],
and {|FT (ωj)|2}Tj=1,...,d converges to a vector of independent Exp[σ2|{b(iωj)}/
{a(iωj)}|2] distributed random variables for j = 1, . . . , d.
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Theorem 2 is basically a special case of Theorem 4. But we state this special

case as the proof in the online supplement in the case of several frequencies

is much more complicated than the elementary reasoning given there to prove

Theorem 2.

The limiting result is the analogue of the one for discrete time ARMA models.

(See e.g. Brockwell and Davis (2006, Chap. 10).)

3.2. Numerical approximation and limiting behaviour of the truncated

pathwise Fourier transform based on non-equidistant discrete

grids

In this section we deal with the numerical approximation of the integral

FT (Y )(ω) :=
1√
T

∫ T

0
Y (t)e−iωtdt. (3.3)

Our aim is to describe conditions under which we are able to calculate numerically

the truncated Fourier transform of a CARMA process based on non-equidistant

observations.

We consider trapezoidal approximations of integrals over non-equidistant

grids and their convergence rate in L2. Related results on equidistant grids can

be found in Brockwell and Schlemm (2013). Our general result is the following:

Theorem 5. Let X and Y be processes given by the state-space representation

(2.2) and (2.3). Suppose that Assumptions 1, 2, 3 and 4 are satisfied and that

F : R→ Rd is a twice continuously differentiable function with ‖F ′′‖∞ <∞. Let

(x
(T )
i )i=0,...,N(T )−2 be a partition of the interval [a, b] with x

(T )
0 = a and x

(T )
N(T )−1 =

b and let hmax(T ) = maxj=0,...,N(T )−1(x
(T )
j+1 − x

(T )
j ). With

α
(N(T ))
0 =

x
(T )
1 − x(T )

0

2
F
(
x
(T )
0

)
,

α
(N(T ))
N(T )−1 =

x
(T )
N(T )−1 − x

(T )
N(T )−2

2
F
(
x
(T )
N(T )−1

)
, (3.4)

α
(N(T ))
j =

x
(T )
j+1 − x

(T )
j−1

2
F
(
x
(T )
j

)
, j = 1, . . . , N(T )− 2, (3.5)

there exist positive constants C1, C2 such that

E

∥∥∥∥∥∥
N(T )−1∑

j=0

α
(N(T ))
j Y

(
x
(T )
j

)
−
∫ b

a
Y (t)F (t)dt

∥∥∥∥∥∥
2 ≤ C1(C2 + T )N(T )2h6max(T ).

Thus if limT→∞ TN(T )2h6max(T ) = 0, then



TRUNCATED PATHWISE FOURIER TRANSFORM OF CARMA PROCESSES 1641

lim
T→∞

∥∥∥∥∥∥
N(T )−1∑

j=0

α
(N(T ))
j F

(
x
(T )
j

)
−
∫ b

a
Y (t)F (t)dt

∥∥∥∥∥∥
L2

= 0.

We apply this result to find a numerical approximation of the truncated

Fourier transform. Using the notation of Theorem 5 we denote the trapezoidal

approximation of FT (Y )(ω) by

TT (Y )(ω) =
1√
T

N−1∑
j=0

α
(N)
j Y

{
x
(N)
j

}
,

where the grid points (x
(N)
j )j=0,...,N(T )−1 are given as in Theorem 5 and

α
(N(T ))
0 =

x
(T )
1 − x(T )

0

2
F
(
x
(T )
0

)
,

α
(N(T ))
N(T )−1 =

x
(T )
N(T )−1 − x

(T )
N(T )−2

2
F
(
x
(T )
N(T )−1

)
,

α
(N(T ))
j =

x
(T )
j+1 − x

(T )
j−1

2
F
(
x
(T )
j

)
, j = 1, . . . , N(T )− 2,

with F (x) = e−iωx.

Theorem 6. Let X and Y be processes given by the state-space representa-

tion (2.2) and (2.3). Suppose that Assumptions 1, 2, 3 and 4 are satisfied and

that the process Y is observed at not necessarily equidistant points 0 = x
(T )
0 <

x
(T )
1 < · · · < x

(T )
N(T )−1 = T . Let hmax(T ) := maxj=0,...,N(T )−2(x

(T )
j+1 − x

(T )
j ). If

limT→∞N(T )h3max(T ) = 0, then limT→∞ ‖TT (Y )(ω) − FT (Y )(ω)‖L2 = 0 and

thus P− limT→∞ [TT (Y )(ω)−FT (Y )(ω)] = 0.

Now we can obtain a central limit theorem for the truncated Fourier trans-

form:

Theorem 7. Under the Assumptions of Theorem 6, let α
(N)
j be defined as in The-

orem 5. Assume that limT→∞N(T )h3max(T ) = 0, and Σ = (σ2/2) |{b(iω)}/{a(iω)}|2

I2×2. If ω 6= 0, then

d− lim
T→∞

[
<{TTY (ω)}
={TTY (ω)}

]
= N (0,Σ) ,

d− lim
T→∞

(
<{TTY (ω)}2 + ={TTY (ω)}2

)
= Exp

(
σ2
∣∣∣∣ b(iω)

a(iω)

∣∣∣∣2
)
.

If ω = 0, then d− limT→∞ TTY (0) = N
(
0, (b(0)/a(0))2σ2

)
and
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d− lim
T→∞

1

σ2

∣∣∣∣a(0)TTY (0)

b(0)

∣∣∣∣2 ∼ χ2(1).

Clearly, an analogous statement using Theorem 4 holds for the joint distri-

bution when the truncated Fourier transform is taken at different frequencies.

4. Simulations

We now turn to a numerical illustration of the results of Section 3.2. We

looked at simulations of CARMA processes and their numerically approximated

truncated Fourier transform over different time horizons and maximal grid widths.

To illustrate the convergence to the asymptotic normal distribution we looked

at several frequencies and different driving Lévy processes, standard Brownian

motion, a Variance Gamma process and a “two sided Poisson process”. The

truncated Fourier transform of (Y (t))t∈[0,T ] was obtained using the trapezoidal

rule based on non-equidistant observations of the CARMA process (Y (t))t∈[0,T ]

given on the interval [0, T ]. On an interval [0, T ] we generated a non-equidistant

grid in the following way: we fixed the maximal distance hmax(T ) between el-

ements of the grid, and from each interval {0.5ihmax(T ), 0.5(i+ 1)hmax(T )} for

i = 0, 1, . . . , N−1, we drew a number according to the uniform distribution. This

resulted in a non-equidistant grid with the number of points N(T ) = 2T/hmax+1.

For our simulations we used the R Project for Statistical Computing. We

first generated the non-equidistant grid as above and then joined it with a regular

grid of mesh 0.001, on average five times finer than the non-equidistant grid of

the largest time horizon considered to ensure that the discretisation error for the

CARMA SDE was very small in the simulated data. On this joint non-equidistant

grid the CARMA process Y was simulated with a standard Euler scheme for

the state space representation. Only the simulated values at the times of the

original non-equidistant grid were used to compute the approximation of the

truncated Fourier transform with the trapezoidal rule. In all cases we simulated

2000 independent paths of the CARMA process and computed the associated

values of the truncated Fourier transform at the frequencies [ω1, ω2, ω3, ω4] =

[0, 0.1, 1, 10]. For the non-zero frequencies, real and imaginary part have to be

considered separately. We report only on the real parts as the behaviour of the

imaginary parts is mostly similar. The results are presented via QQ-plots where

the theoretical values follow the (limiting) law described in Theorem 7.

We considered CARMA processes with the autoregressive and moving av-

erage orders: (p, q) = (1, 0), an Ornstein-Uhlenbeck type process, and (p, q) =
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(2, 1). For the time horizon T and the maximum distance of the non-equidistant

observation times we considered the pairs (T = 10, hmax = 0.1), (T = 50, hmax =

0.05) and (T = 100, hmax = 0.01).

For each case we considered three different driving Lévy noises: standard

Brownian Motion, a Variance Gamma process, and a “two sided Poisson process”.

For the definition and properties of the Variance Gamma process we refer to

Madan, Carr and Chang (1998) and references therein. We constructed the

process as Vt = G1
t −G2

t , where G1
t and G2

t were independent Gamma processes

with shape parameter 1 and scale parameter 4. Likewise the “two sided Poisson

process” was the difference of two independent Poisson processes with rate 10,

i.e. a compound Poisson process with rate 20 and jumps +1 and −1 both with

probability 1/2.

Example 1. We considered the CAR(1) model. Then A = −a1 and a(z) :=

z+a1, b(z) = b0, so the spectral density was f(ω) = (σ2/2π) |{b(iω)}/{a(iω)}|2 =

(σ2/2π)(b20)/(ω
2 + a21). For the simulations we took [b0, a1] = [1, 2].

QQ-plots of the results for 2,000 simulated paths for the four frequencies

and three combinations of time horizon and maximum grid width can be found

in Figures 1, 2, and 3 for the driving Lévy process being a standard Brownian

motion, a Variance Gamma, and a two-sided Poisson process, respectively.

Example 2. We considered the CARMA(2, 1) model

A :=

[
0 1

−a2 −a1

]
, b :=

[
b0
1

]
, e :=

[
0

1

]
, X(t) :=

[
X(t)

X(1)(t)

]
.

The autoregressive and moving-average polynomials were of the form a(z) = z2+

a1z+a2, b(z) = z+b0. We have {b(iω)}/{a(iω)} = (iω + b0)/{(iω)2+(iω)a1+a2},
and f(ω) = (σ2/2π) |{b(iω)}/{a(iω)}|2 = (σ2/2π)(b20 + ω2)/{ω4 + (a21 − 2a2)ω

2

+ a22}. For the simulations we took [b0, b1, a1, a2] = [1, 1, 1, 2]. The plots for this

simulation study can be found in the supplementary materials.

Figure 1 shows a good fit of the empirical quantiles from the simulations with

the theoretical ones of the asymptotic distribution across all time horizons and

frequencies. The fit in the tails clearly improves when the time horizon/fineness

of the grid increases, but it is never bad. For the longest time horizon and

finest grid the fit is very good; the distribution of the (trapezoidal approximation

of the) truncated Fourier transform is always exactly Gaussian and not only

asymptotically. Across the non-zero frequencies, for the shortest time horizon

the quantiles for the smallest frequency 0.1 appear to lie on a line which is
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Figure 1. Normal QQ plots for the real part of the truncated Fourier transform of
the Ornstein-Uhlenbeck type process driven by standard Brownian Motion for the
frequencies 0, 0.1, 1, 10 (rows) and time horizons/maximum non-equidistant grid sizes
10/0.1, 50/0.05, 100/0.01 (columns). The theoretical quantiles are coming from the (lim-
iting) law described in Theorem 7.
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(l) ω = 10, T = 100

Figure 2. Normal QQ plots for the real part of the truncated Fourier transform of
the Ornstein-Uhlenbeck type process driven by a Variance Gamma process for the
frequencies 0, 0.1, 1, 10 (rows) and time horizons/maximum non-equidistant grid sizes
10/0.1, 50/0.05, 100/0.01 (columns). The theoretical quantiles are coming from the (lim-
iting) law described in Theorem 7.
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(l) ω = 10, T = 100

Figure 3. Normal QQ plots for the real part of the truncated Fourier transform of
the Ornstein-Uhlenbeck type process driven by a two-sided Poisson process for the
frequencies 0, 0.1, 1, 10 (rows) and time horizons/maximum non-equidistant grid sizes
10/0.1, 50/0.05, 100/0.01 (columns). The theoretical quantiles are coming from the (lim-
iting) law described in Theorem 7.
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somewhat different from the line of the theoretical quantiles. This indicates that

the quantiles of the simulated paths come from a normal distribution with a

different variance then the asymptotic one. This occurs for the lowest frequency

and the smallest time interval, as for low frequencies one observes – regardless of

the fineness of the sampling – the fewest full cycles over a time interval of fixed

length. For this combination of time horizon and frequency we see only one full

cycle.

In Figure 2, the fit in the tails improves again with increasing (T, 1/hmax).

Especially, for the highest (T, 1/hmax), the fit in the tails is a bit worse for a

driving Variance Gamma process compared with the driving Brownian motion

in Figure 1. Here the simulated values are only asymptotically Gaussian. The

fit improves for the higher frequencies. For the lowest frequency with T = 10

the points seem to lie on a straight line in the normal QQ-plot, but one with

a variance is different from the asmpytotic one. This effect is more pronounced

than in the case of the driving Brownian motion.

In Figure 3 again the fit in the tails improves with increasing (T, 1/hmax).

For the highest (T, 1/hmax) the simulated and theoretical asymptotic quantiles

agree well. It is worse than in the case of a driving Brownian motion, but seems to

be similar to the Variance Gamma case, although for frequency 0 the agreement

of the quantiles is slightly worse. For non-zero frequencies, the quantiles are

closer for higher frequencies, and for the smallest non-zero frequency and time

horizon the empirical quantiles seem to be in line with a normal distribution with

a different variance, similar to the Variance Gamma case. At frequency 0 the

QQ-plot for T = 10 again has quantiles close to those of a normal distribution

with a slightly different variance than the asymptotic one.

Overall, simulations in the CAR(1)/OU-type case show that the asymp-

totic distribution approximates the finite-sample distribution of the trapezoidal

approximation of the truncated Fourier transform very well and that the con-

vergence to the asymptotic distribution is fast. For small frequencies, especially

when one has about one full cycle or less over the time horizon considered, one

has to be careful, as then the distribution tends to be somewhat different from

the asymptotic one which is – as discussed – not surprising. This effect seems to

be more pronounced when one considers a Lévy process with jumps compared to

a Brownian motion. In general the quality of the approximation of the simulated

quantiles by the asymptotic ones is somewhat better in the case of a Brownian

motion than for a pure jump process. Comparing the driving jump processes, the

finite activity rather discrete two-sided Poisson process with the infinite activity
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Variance Gamma process, we do not see any significant differences. It should be

noted that both jump processes are, however, light-tailed in the sense that they

have exponential moments. It would not be surprising if this picture changes

when considering a really heavily tailed driving Lévy process. Note that our the-

oretical results are valid also in rather heavily-tailed cases. For the asymptotic

normality of the (trapezoidal approximation of the) truncated Fourier transform

we only needed finite second moments.

Turning to the simulations of CARMA(2,1) processes, most of the findings

of the CAR(1)/OU case remain valid, so we only point out the differences. In

the case of a driving Brownian motion, depicted in Figure S.1, the only difference

seems to be that for T = 10 and ω = 0.1 the empirical quantiles now appear

to lie on a line farther away from the theoretical quantiles, which implies that

the variance in the simulations is farther from the asymptotic one than in the

OU case. The same applies for the Variance Gamma case of Figure S.3 and the

two-sided Poisson case of Figure S.5.

From our simulations of CARMA(2,1) processes the orders of the CARMA

processes and the particular autoregressive and moving average parameters ap-

pear not to really matter for the (qualitative) behaviour of the (trapezoidal ap-

proximation of the) truncated Fourier transform.

5. Conclusion and Outlook

We have obtained an asymptotic normality result for the (trapezoidal ap-

proximation of the) truncated Fourier transform under essentially minimal as-

sumptions (i.e. second moments) and seen via a simulation study that this result

approximates the finite sample behaviour very well, unless the frequency is too

low compared to the length of the considered time interval. Our results suggest

that one might well develop statistical inference techniques for non-equidistantly

sampled CARMA processes by considering continuous observation techniques

and using numerical approximation schemes to compute the quantities of inter-

est based on the observed non-equidistant data. The appropriate set-up to get

convergence and asymptotic distribution results is to send the time horizon to

infinity and to send at the same time the maximum distance of observation time

points to zero.

It seems natural to locally smooth the trapezoidal approximation of the

truncated Fourier transform to get consistent estimators of the spectral density

and to use it in a Whittle type estimator for the AR and MA parameters. Under
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appropriate conditions one should be able to approximate a Whittle likelihood

(and the resulting estimator) based on continuos observations by observations

on a non-equidistant discrete grid. Considering this is beyond the scope of the

present paper.

Supplementary Materials

The online supplement contains most of the proofs and auxiliary results, as

well as further details of the simulation studies.
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