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Abstract: We propose a sparse estimation method, termed MIC (Minimum ap-

proximated Information Criterion), for generalized linear models (GLM) in fixed

dimensions. What is essentially involved in MIC is the approximation of the `0-

norm by a continuous unit dent function. A reparameterization step is devised to

enforce sparsity in parameter estimates while maintaining the smoothness of the

objective function. MIC yields superior performance in sparse estimation by opti-

mizing the approximated information criterion without reducing the search space

and is computationally advantageous since no selection of tuning parameters is re-

quired. Moreover, the reparameterization tactic leads to valid significance testing

results free of post-selection inference. We explore the asymptotic properties of

MIC, and illustrate its usage with simulated experiments and empirical examples.
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1. Introduction

Suppose that data L := {(yi,xi) : i = 1, . . . , n} consist of n i.i.d. copies

of {y,x}, where y is the response variable and x = (x1, . . . , xp)
T ∈ Rp is the

predictor vector. WLOG, we assume that the xij ’s are standardized throughout

the paper. Consider the regression models that link the mean response y and

covariates x through its linear predictor xTβ with β = (β1, . . . , βp)
T , e.g., gener-

alized linear models (GLM; McCullagh and Nelder (1989)). Concerning variable

selection, the true β can be sparse with some components being zeros. Sparse

estimation aims to identify the zero components and estimate the nonzero ones

in β simultaneously. For simplicity, we assume that either there is no nuisance

parameter involved, or that the nuisance parameters (e.g., scale or variance) and

β are orthogonal (Cox and Reid (1987)). Hence we denote the log-likelihood
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function as L(β) =
∑n

i=1 log f(yi,xi;β), where f(y,x;β) denotes the probability

density function of (y,x).

Common variable selection methods can be formulated as the optimization

problem

min
β ∈Ω

− 2L(β) + λ

p∑
j=1

ρ(βj), (1.1)

where ρ(·) ≥ 0 denotes a penalty function applied to each individual component

of β, λ ≥ 0 is the penalty parameter, and Ω = Rp is the search space or parameter

space for β. Methods vary in the form of the penalty function and the way of

determining the penalty parameter. In the classical best subset selection (BSS),

the `0 norm penalty, or cardinality of β,
p∑
j=1

ρ(βj) = ‖β‖0 = card(β), (1.2)

provides a measure of model complexity with the number of nonzero components

in β; the penalty parameter λ0 is fixed as 2 in AIC (Akaike (1974)) or ln(n)

in BIC (Schwarz (1978)). We focus more on the use of BIC for its superior

empirical performance in variable selection, widely reported in the literature.

BSS essentially seeks the best model with minimum BIC. Owing to the discrete

nature of the `0 norm, the optimization is done in two steps: one maximizes

the log-likelihood L(β) for each given sparsity structure or model (2p in total),

then compares across all models. BSS is only feasible for small p, despite the

availability of faster algorithms (Furnival and Wilson (1974)).

The second general approach to variable selection is regularization. One

basic motivation of regularization is to change the discrete nature of BSS. For this

purpose, different continuous penalty functions are proposed. In scenarios where

the log-likelihood function is concave, or can be converted so, the `1 penalty

‖β‖1 =
∑p

j=1 |βj | in LASSO (Tibshirani (1996)) helps retain convexity of the

optimization problem. LASSO requires strong assumptions in order to ensure

selection consistency (Zhao and Yu (2006)) and induces bias in estimating the

nonzero parameters. To make improvements, non-convex penalties such as SCAD

(Fan and Li (2001)) and MCP (Zhang (2010)) are proposed.

There are several difficulties with regularization. To induce sparsity in the

estimated parameters, it is necessary for β = 0 to be a singular point of ρ(β); this

makes the optimization in (1.1) non-smooth. Many well-developed smooth opti-

mization routines cannot be used for this and new ones have to be sought. While

efficient algorithms such as homotopy (Osborne, Presnell and Turlach (2000)),
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the LARS method (Efron et al. (2004)), and coordinate descent (Fu (1998), Fried-

man, Hastie and Tibshirani (2010), and Breheny and Huang (2011)) have become

standard, it is of both methodological and practical interest to see if sparse es-

timation can be formulated into a smooth optimization problem. Besides, the

penalty in regularization no longer corresponds well to model complexity rep-

resented by ‖β‖0. Hence there is no simple rule, as in BIC, for determining

the penalty parameter λ and its choice has to be tuned. This leads to the two-

step procedure in the practice of regularization: compute the regularization path

{β̂(λ) : λ ≥ 0}, then select the best tuning parameter λ? by referring to a crite-

rion such as BIC (see, e.g., Wang, Li and Tsai (2007)). Thus, regularization seeks

minimum BIC from a much reduced search space, noting that the regularization

path is a one-dimensional curve in Ω. Selecting λ? not only consumes additional

computational time, but also causes another statistically awkward issue concern-

ing its inference. Although the best tuning parameter λ̂ is data-dependent and

hence clearly a statistic, no statistical inference is routinely done on λ, at least

in the frequentist’s approach.

Another problem with both BSS and regularization is the post-selection in-

ference. Conventionally statistical inference is made on the final model with

selected variables or nonzero coefficients by ignoring the effect of model selec-

tion. This can be problematic, as pointed out by Leeb and Pötscher (2005) and

others. One obstacle is that no statistical inference is available for parameters

associated with unselected variables in BSS or zero estimates in regularization.

How to make valid post-selection inference has been considered in Berk et al.

(2013), Efron (2014), and Lockhart et al. (2014).

In this article, we study a sparse estimation method for GLM, termed the

Minimum approximated Information Criterion (MIC), first proposed by Su (2015)

in linear regression. The exposition in Su (2015) focuses on variable selection

only; we expand the use of MIC in sparse estimation. The main idea of MIC is to

introduce unit dent functions to approximate the `0 norm in (1.2). This leads to

a smoothed version of BIC that can be directly optimized. A reparameterization

step is then devised to enforce sparsity in parameter estimates while maintaining

smoothness of the objective function. The formulation results in a non-convex

yet smooth programming problem, and many readily available smooth optimiza-

tion algorithms can be conveniently applied. Moreover, the smoothness of the

estimating equation provides leeway in circumventing post-selection inference.

MIC offers several major advantages in sparse estimation. It imitates BSS

but extends its capacity to large p. Since MIC seeks optimization of BIC, albeit
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approximated, without reducing the search space, it outperforms many regular-

ization methods in the sense of minimum BIC. It is computationally advantageous

in avoiding selection of the tuning parameters, and facilitates statistical inference

for both zero and non-zero coefficient estimates via the reparameterization trick.

Our discussions are restricted to fixed dimensions. The remainder of this article

is organized as follows. Section 2 presents the MIC method in detail. In Section

3, we explore its asymptotic properties. Section 4 presents simulation studies

and data analysis examples. Section 5 concludes with a brief discussion.

2. Minimizing the Approximated BIC

MIC approximates cardinality in the information criteria with a smooth unit

dent function and enforces sparsity with reparameterization. In the final form,

it solves the unconstrained smooth optimization problem

min
γ

− 2L(β) + log(n)tr(W), (2.1)

where β = Wγ, and W = diag (wj) with wj = w(γj) = tanh(a γ2
j ) for j =

1, . . . , p. The formulation of (2.1) involves a nonnegative parameters a that con-

trols the sharpness of approximation. The empirical performance of MIC is rather

stable with respect to the choice of a, hence a is fixed a priori. We explain the

detailed procedure step-by-step in the ensuing subsections.

2.1. Unit dent functions

In a similar spirit to regularization, we desire to make the discrete BSS pro-

cess continuous. While most regularization methods are based on optimization

considerations, e.g., convex relaxation of the `0 norm, MIC is mainly motivated

by the idea of approximation. Specifically, we seek a continuous or smooth ap-

proximation to the cardinality in (1.2).

For convenience, we use β as a generic notation for βj from time to time.

Since the cardinality of β is ‖β‖0 =
∑
I{βj 6= 0}, we need to approximate the

indicator function I{β 6= 0}. To this end, a suitable approximating function w(β)

must be a unit dent function.

Definition 1. Let R̄ = R ∪ {−∞,∞}. A unit dent function is a continu-

ous even function w : R̄ → [0, 1] that is increasing on R+ with w(0) = 0 and

limβ→∞w(β) = 1.

If w(β) is differentiable, then ẇ(β) ≥ 0 on R+ and ẇ(β) ≤ 0 on R−. The [0, 1]

range requirement ensures that
∑

j w(βj) approximates ‖β‖0, but it makes w(·)
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Figure 1. Several unit dent functions for approximating I(β 6= 0) : (a) truncated Lr;
(b) modified SCAD; (c) modified MCP; (d) hyperbolic tangent; (e) weight elimination
(WE); (f) converse mollifier (CM).

non-convex. The condition lim|β|→∞w(β) = 1 implies that w(β) is approximately

a constant function or ẇ(β) ≈ 0 when |β| is away from 0. As a consequence, the

penalty w(β) essentially does not alter the related score equations for nonzero β.

Motivated by bump functions, we call w(·) a ‘dent’ function. A special family

of bump functions, called mollifiers, are known as smooth approximations to the

identity (Friedrichs (1944)). For a mollifier φ(·) normalized to have the range

[0, 1], 1− φ(·) is a unit dent function.

Let D denote the family of all unit dent functions. It is easy to see that

D is closed under operations such as composition and product. In particular, if

w(β) ∈ D, then wk(β) ∈ D for k ∈ N. Unit dent functions have appeared in the

regularization literature, one being the truncated `r penalty of Shen, Pan and

Zhu (2012). The penalty functions SCAD (Fan and Li (2001)) and MCP (Zhang

(2010)) can also be modified into unit dent functions. See Figure 1 for graphical

illustrations of several unit dent functions: (a) truncated Lr: w(β; a, r) = (|β|/a)r
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if |β| ≤ a and 1 otherwise; (b) modified SCAD: w(β; a) = a|β| if |β| ≤ a; {2a(2−
a2)|β| − a4 − a2β2}/{4(1− a2)} if a < |β| < (2− a2)/a; and 1 if |β| > (2− a2)/a

for 0 < a <
√

2/3; (c) modified MCP: w(β; a) = a|β| − a2β2/4 if |β| ≤ 2/a and

1 if |β| > 2/a for 0 < a <
√

2; (d) hyperbolic tangent w(β; a) = tanh(a · β2);

(e) weight elimination (Weigend, Rumelhart and Huberman (1991)) w(β) = (1+

a/β2)−1 with a > 0; (f) converse mollifier w(β) = 1 − exp
{
−β2/(a2 − β2)

}
·

I {|β| ≤ a} for a > 0.

To enforce sparsity, the penalty function must have β = 0 as a singular

point (Fan and Li (2001)). However, MIC advocates the use of smooth unit

dent functions since the smoothness property allows us to capitalize on well-

developed theories and methods in optimization and statistical inference. We

achieve sparsity in a different way.

While many smooth unit dent functions can be considered, we use the hy-

perbolic tangent function in MIC for its simple form:

w(β) = tanh(aβ2) =
exp(2aβ2)− 1

exp(2aβ2) + 1
= 2 logistic(2aβ2)− 1. (2.2)

Its derivatives are easily available, with the first two given by ẇ(β) = 2aβ(1−w2)

and ẅ(β) = 2a(1−w2)(1−4aβ2w). In addition, the tanh(·) function is associated

with the logistic or expit function that is widely used in statistics. A plot of w(β)

versus β for different a values is provided in Figure 1(d). It can be seen that a

larger a yields a sharper approximation to the indicator function I{β 6= 0}.
With w(β) = tanh(aβ2), one seeks to solve

min
β

− 2L(β) + λ0

p∑
j=1

w(βj). (2.3)

Expanding L(β) at the MLE β̂ and using the fact that ∇L(β̂) = 0, we have

L(β) ≈ L(β̂) + (β − β̂)T

{
∇2L(β̂)

2

}
(β − β̂),

where ∇L(β̂) and ∇2L(β̂) are the gradient vector and Hessian matrix of L(β)

evaluated at β̂, respectively. Thus, the penalized optimization form in (2.3) can

be viewed as the Lagrangian that corresponds to the constrained optimization

problem

min
β

(β − β̂)T
{
−∇2L(β̂)

}
(β − β̂) subject to

p∑
j=1

w(βj) ≤ t0, (2.4)

for some t0 ≥ 0. Figure 2(a) presents a graphical illustration of the optimization
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Figure 2. Illustration of the reparameterization step: (a) the contour plot of (2.4); (b)
the contour plot of (2.7); (c) β = γw(γ) vs. γ; and (d) w(γ) as a function of β with
different a values.

problem (2.4) in the two-dimensional case. The objective function is an ellipsoid

centered at MLE β̂. As shown as the contour plots of Figure 2(a), the feasible

sets for the constraint w(β1) + w(β2) ≤ t0 contain both sharpened diamonds for

large t0 and discs for small t0, resembling the grouped LASSO penalty (Bakin

(1999)) as pointed out by a referee. By the Taylor expansion, w(β) = aβ2+O(β6)

for β → 0, implying that sparsity may not be enforced. We address this issue in

the next section. Hereafter, w(β) is referred to the hyperbolic tangent penalty,

unless otherwise stated.

2.2. Reparameterization

To enforce sparsity, we consider a reparameterization procedure originally

motivated by the nonnegative garrotte (NG) of Breiman (1995). NG is a sign-
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constrained regularization based on the decomposition β = sgn(β) |β|. Supposing

that the sign of each βj can be correctly specified by the MLE β̂, it remains

to estimate |βj |. Reparameterizing β = diag{sgn(β̂)}γ, for some nonnegative

vector γ such that γj = |βj |, leads to the NG formulation

min
γ
−2L(β) s.t.

p∑
j=1

γj ≤ t and γj ≥ 0

with tuning parameter t. A fundamental problem with sign-constrained regular-

ization is that if any sign is wrongly specified by the initial estimator β̂, which

occurs often in data owing to multicollinearity or other complexities, then it

cannot make a correction.

Our immediate aim is to introduce singularity to the penalty function at 0.

For this purpose, we consider the decomposition β = β I{β 6= 0}. Set γ = β

and approximate I{γ 6= 0} by w(γ). This motivates the reparameterization

βj = γjw(γj) for j = 1, . . . , p. In matrix form, β = Wγ, where matrix W is

defined in (2.1). As shown in Figure 2(c), β is a strictly increasing function of γ

and β = γ except for a small neighborhood of 0, in which a shrinkage on |β| is

imposed.

To see how the reparameterization helps enforce sparsity, consider the re-

sulting optimization problem

min
β

− 2L(β) + ln(n)

p∑
j=1

w(γj). (2.5)

Compared to (2.3), the only change is that the penalty function w(·) is now

applied to the reparameterized γj instead of βj . The w(γj) in (2.5) is an implicit

function of βj . Figure 2(d) plots w(γ) as a penalty function of β for different

values of a, which shows a similar pattern to the non-convex SCAD or MCP

penalty with a cusp at β = 0. It can be verified that w(γ) is a unit dent function

of β that approximates I(β 6= 0).

The singularity at 0 can be further confirmed by calculating the derivatives

of w(γ) at β. Applying the chain rule gives

dw(γ)

d β
=
dw(γ)

d γ

d γ

d β
=
dw(γ)

d γ

(
d β

d γ

)−1

=
ẇ

w + γẇ
, (2.6)

where w = w(γ) and ẇ = ẇ(γ) = 2aγ(1− w2), and it follows d β/d γ = w + γẇ.

The first derivative in (2.6) is expressed in terms of γ via implicit differentiation

since the explicit formula of γ in terms of β is unavailable. The validity of

(2.6), however, requires d β/d γ 6= 0, which holds everywhere except at β = 0.
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Similar arguments can be used to derive the form of higher-order derivatives. For

example, the second-derivative is given by

d2w(γ)

d β2 =
w ẅ − 2 ẇ2

(w + γẇ)3

with ẅ = ẅ(γ) = 2a(1−w2)(1− 4aγ2w), which again does not exist at β = 0. It

can be verified that w(γ) is a smooth function of β except at β = 0.

The reparameterization β = γw(γ) to enforce singularity at 0 holds for any

smooth function in D. We have utilized the differentiation of the inverse function

to achieve this. Accordingly, the derivatives of w(γ) as a function of β exist

everywhere except at β = 0.

Figure 2(b) provides a two-dimensional illustration of the constrained opti-

mization problem that corresponds to (2.5):

min
β

(β − β̂)T
{
−∇2L(β̂)

}
(β − β̂) s.t. tr(W) ≤ t0 with β = Wγ. (2.7)

The contour lines of the constraint w(γ1)+w(γ2) ≤ t (as a function of β1 and β2)

are sharpened diamonds, which serve better for the variable selection purpose.

The smooth formulation facilitated by reparameterization allows us to utilize

available results in optimization theory and statistical inference, and leads to

some important advantages. For computation, we estimate γ instead by solving

(2.1). Compared to (2.5) where the objective function is nonsmooth in β, we

have switched the decision vector to γ. Solving (2.1) is a smooth optimization

problem and many standard algorithms apply. Estimation of γ is meaningful in

its own right. The fact that the correspondence between β and γ is one-to-one

with βj = 0 iff γj = 0 allows us to derive significance testing for β through γ

that is free of post-selection inference. The objective function in (2.1) is smooth

for estimating γ. Thus standard arguments in M-estimators can be applied for

making inference on γ. The procedure is given next.

3. Asymptotic Properties

In this section, we study the asymptotic oracle properties of the MIC esti-

mator β̃, including its
√
n-consistency, selection consistency, and the asymptotic

normality of its nonzero components. We then present significance testing on β

via γ that is free of post-selection inference. The proofs are in the supplementary

materials.
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3.1. Oracle properties of the MIC estimator β̃

We consider the MIC estimator β̃ obtained by minimizing the objective

function in (2.5),

Qn(β) = −2
L(β)

n
+

ln(n)

n

p∑
j=1

w(γj), (3.1)

where L(β) =
∑n

i=1 li(β) with li(β) = log f(Xi, Yi;β). We denote a as an so

that βj = γjw(γj) = γj tanh(anβ
2
j ), and assume an = O(n); this rate for an will

be manifested in the derivation.

Denote the true parameter as β0 = (βT0(1),β
T
0(0))

T , where β0(1) ∈ Rq consists

of all q nonzero components and β0(0) = 0 consists of all the (p− q) zero compo-

nents. For simplicity, we use β̃ and β̂ to denote the MIC and MLE estimators,

respectively. Let I = I(β0) and I1 be the Fisher information matrix for the whole

and reduced true model with β0(0) = 0, respectively. It is well known that I1 is

the q-th principal submatrix of I.

Theorem 1. Let {(Xi, Yi) : i = 1, . . . , n} be n i.i.d. copies from a density

f(X, Y ;β0). Under the regularity conditions (A)–(C) in Fan and Li (2001), we

have

(i). (
√
n-Consistency) there exists a local minimizer β̃ of Qn(β) that is

√
n-

consistent for β0 in the sense that ‖β̃ − β0‖ = Op(n
−1/2).

(ii). (Sparsity and Asymptotic Normality) Partition β̃ in (i) as (β̃
T

(1), β̃
T

(0))
T in

a similar manner to β0. With probability tending to 1 as n→∞, β̃(0) = 0

and
√
n(β̃(1) − β0(1)) → N

(
0, I−1

1

)
.

The results in Theorem 1 are analogous to Theorems 1 and 2 in Fan and Li

(2001). It establishes that β̃(0) is selection consistent and β̃(1) is a best asymptotic

normal (BAN; see, e.g., Serfling (1980)) estimator of β0(1). The standard errors

(SE) for nonzero components in β̃ can be computed by replacing I1 in Theorem

1(ii) with the observed Fisher information matrix (Efron and Hinkley (1978))

and plugging in β̃. Since β̃ is essentially an M-estimator, alternative sandwich

SE formulas (Stefanski and Boos (2002)) are available. However, as part of the

post-selection inferences, all these SE formulas are only available for nonzero

components in β̃ and hence caution should be exercised.

3.2. Inference on β via γ

MIC completes sparse estimation in a single optimization step. This brings
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about a unique opportunity to address the fundamental post-selection inference

problem. Inference on zero components in β is unavailable in MIC because

the asymptotic normality of M-estimators often entails a condition that the ex-

pected objective function E{Qn(β)} admits a second-order Taylor expansion at

β0 whereas sparsity requires singularity of the penalty function w(γ) at β = 0.

However, the reparameterisation helps us to circumvent this non-smoothness is-

sue. The transformation β = γw(γ) is a bijection and β = 0 iff γ = 0. Hence

testing H0 : βj = 0 is equivalent to testing H0 : γj = 0. As the objective function

of γ, Qn(γ) in (3.1) is smooth in γ. Therefore, the statistical properties of γ̃ are

readily available following standard M-estimation arguments.

Theorem 2. If γ0 is the reparameterized parameter vector associated with β0

such that β0j = γ0jw(γ0j), then

‖γ0 − β0‖2 = O{exp(−2an min
1≤j≤q

γ2
0j)}.

Under the regularity conditions (A)–(C) in Fan and Li (2001), we have
√
n {D(γ0)(γ̃ − γ0) + bn}

d−→ N
{
0, I−1(β0)

}
. (3.2)

where

D(γ0) = diag(wj + γjẇj)|γ=γ
0

= diag (Djj) (3.3)

and the asymptotic bias

bn =
{
−∇2L(β0)

}−1 ln(n)

2

(
ẇj

wj + γ̃jẇj

)p
j=1

= (bnj)
p
j=1 (3.4)

satisfies (i) limn→∞Djj = I{β0j 6= 0} and (ii) bn = op(1).

A practical implication of Theorem 2 is that both D(γ0) and bn may be

ignored in computing the standard errors of γ̃. Furthermore, since ‖γ̃ − β0‖ ≤
‖γ̃ − γ0‖+ ‖γ0−β0‖ = op(1), γ̃ is a consistent estimator of β0 and can be used

to replace β0 in estimating the Fisher information matrix. Thus, an asymptotic

(1− α)× 100% confidence interval for γ0j is

γ̃j ± z1−α/2

√{
I−1
n (γ̃)

n

}
jj

, (3.5)

where In denotes the observed Fisher information matrix and z1−α/2 is the (1−
α/2)-th percentile of N(0, 1). Significance testing on γ0j can be done accordingly.

4. Numerical Results

In this section, we present simulation experiments and data examples to
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illustrate MIC in comparison with other methods.

4.1. Computational issues

MIC solves for γ̃ by optimizing (2.1). Considering its nonconvex nature, a

global optimization method is desirable. Mullen (2014) provides a comprehensive

comparison of global optimization algorithms currently available in R (R Core

Team (2017)). According to her recommendations, we have chosen the GenSA

package (Xiang et al. (2013)) that implements the generalized simulation anneal-

ing of Tsallis and Stariolo (1996), because of its superior performance in both

identification of the true optimal point and computing speed. With estimated γ̃,

the MIC estimator β̃ can be obtained via the transformation β̃ = W̃γ̃, where

W̃ = diag(w̃j) with w̃j = w(γ̃j). Because of the shrinkage effect of the reparam-

eterization around 0, estimates γ̃j close to 0 yield small values of |β̃j |, which can

be virtually taken as 0.

Implementation of MIC involves the choice of a or an. In theory, the asymp-

totic results in Section 3.1 entail an = O(n). To apply the arguments of Fan and

Li (2001), this O(n) rate seems unique. In practice, the empirical performance

of MIC is quite stable with respect to the choice of an, as demonstrated in Su

(2015) for linear regression. In MIC, an is a shape or scale parameter in the unit

dent function that modifies the sharpness of its approximation to the indicator

function. Its role is largely similar to that of the parameter a in SCAD (Fan and

Li (2001)), where a is fixed at a = 3.7. In general, a larger an enforces a better

approximation of the indicator function with the hyperbolic tangent function,

while a smaller an is appealing for optimization purposes, by introducing more

smoothness. Based on our numerical experience, applying an an value smaller

than 1 is not advisable owing to poor approximation. The performance of MIC

stabilizes substantially when an gets large, especially when it is 10 or above. On

this basis, we recommend fixing a to any value in [10, 50].

Four known methods are included for comparison with MIC: the best subset

selection (BSS) with BIC, LASSO, SCAD, and MCP. The oracle estimate is

added as a benchmark. All the computations are done in R (R Core Team

(2017)). Specifically, we have used the R package bestglm for BSS, lars and

glmnet for LASSO, and ncvreg and SIS for SCAD and MCP, with their default

settings.

4.2. Simulated experiments

We generated data sets by using the simulation settings of Zou and Li (2008).
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The models are
Model A: y|x ∼ N{µ(x), 1} with µ(x) = xTβ,

Model B: y|x ∼ Bernoulli{µ(x)} with µ(x) = expit(xTβ),

Model C: y|x ∼ Poisson {µ(x)} with µ(x) = exp(xTβ),

(4.1)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T in Models A and B, and (1.2, 0.6,

0, 0, 0.8, 0, 0, 0, 0, 0, 0, 0)T in Model C. Each data set involves p = 12 predictors

that follow a multivariate normal distribution N(0, Σ) with Σ = (σjj′) and

σjj′ = 0.5|j−j
′| for j, j′ = 1, . . . , p. In Model B, six binary predictors are created

by setting x2j−1 := I{x2j−1 < 0} for j = 1, . . . , 6. Thus, there are six continuous

and six binary predictors in Model B. We consider sample sizes n = 100 and

n = 200, and 500 simulation runs were taken for each model configuration.

To apply the MIC method, we fixed λ0 = ln(n) and an = 10. Five per-

formance measures were used for comparison. The first is the empirical model

error (ME),
∑n

i=1(µi − µ̂i)2/n, where µi is given in (4.1) and µ̂i is obtained by

plugging in the estimate of β. We computed ME based on an independent test

sample of size n = 500 and report the averaged ME over 500 realizations. The

other measures were the average model Size, the number of nonzero parameter

estimates; FP, the number of nonzero estimates for zero parameters; FN, the

number of zero estimates for nonzero parameters; and the proportion of correct

selections, C.

Table 1 indicates that MIC performs similarly to BSS across all three models.

All performance measures of MIC improve as the sample size increases. By

comparing MIC against the other regularization methods, we find that MIC

outperforms them in general, except for the Gaussian linear regression case where

its performance is only comparable. We think this is mainly because the objective

function of MIC involves the Gaussian profile likelihood n ln ‖y−Xβ‖2, which is

nonconvex, while regularization methods can work with the convex least squares

problem ‖y−Xβ‖2 directly. Nevertheless, they all have to deal with the same log-

likelihood function in Models B and C. No implementation of MCP is available

for the log-linear regression, hence it is not presented for Model C. In sum, MIC

not only enjoys computational efficiency, but also demonstrates an excellent finite

sample performance.

We evaluated the standard error formula for nonzero parameter estimates.

Table 2 presents the median absolute deviation (MAD) value of β̃(1) out of 500

runs, which provides a more robust estimate of its standard deviation. This MAD

value matches reasonably well with the median of standard errors of β̃(1). Also
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Table 1. Simulation results on MIC (with λ0 = ln(n) and a = 10) in comparison with
other methods. Reported quantities include ME, Size, FP, FN, and C, all based on 500
realizations.

(a) Model A – Linear Regression
n = 100 n = 200

Method ME Size FP FN C ME Size FP FN C
MIC 0.054 3.47 0.47 0.00 0.640 0.021 3.25 0.25 0.00 0.790
Oracle 0.034 3.00 0.00 0.00 1.000 0.015 3.00 0.00 0.00 1.000
BIC 0.055 3.35 0.35 0.00 0.710 0.022 3.19 0.19 0.00 0.834
LASSO 0.085 6.09 3.09 0.00 0.092 0.039 6.23 3.23 0.00 0.102
SCAD 0.045 3.58 0.58 0.00 0.752 0.022 3.71 0.71 0.00 0.752
MCP 0.047 3.57 0.57 0.00 0.750 0.020 3.41 0.41 0.00 0.814

(b) Model B – Logistic Regression
n = 100 n = 200

Method ME Size FP FN C ME Size FP FN C
MIC 0.017 3.74 1.03 0.29 0.354 0.005 3.42 0.49 0.07 0.624
Oracle 0.005 3.00 0.00 0.00 1.000 0.002 3.00 0.00 0.00 1.000
BIC 0.015 3.40 0.67 0.27 0.514 0.005 3.21 0.28 0.06 0.766
LASSO 0.023 6.54 3.79 0.25 0.012 0.012 7.32 4.37 0.05 0.018
SCAD 0.019 3.69 1.09 0.41 0.206 0.012 3.92 1.11 0.19 0.278
MCP 0.019 3.12 0.65 0.53 0.236 0.011 3.39 0.64 0.24 0.420

(c) Model C – Log-Linear Regression
n = 100 n = 200

Method ME Size FP FN C ME Size FP FN C
MIC 12.310 3.34 0.35 0.00 0.712 4.367 3.23 0.23 0.00 0.828
Oracle 9.289 3.00 0.00 0.00 1.000 3.555 3.00 0.00 0.00 1.000
BIC 25.884 3.39 0.39 0.00 0.714 4.897 3.23 0.23 0.00 0.826
LASSO 600.821 1.55 0.37 1.81 0.184 348.182 1.46 0.18 1.72 0.282
SCAD 40.753 4.08 1.08 0.00 0.336 12.843 3.64 0.64 0.00 0.528
MCP 80.931 3.48 0.59 0.11 0.698 18.979 3.50 0.56 0.05 0.745

presented is the MAD of standard errors. Table 3 presents the empirical size and

power results in testing H0 : γj = 0 at the significance level α = 0.05, together

with the coverage of 95% confidence intervals, over 1,000 simulation runs. The

coverage proportion of 95% confidence intervals is presented only for each nonzero

estimate; the coverage for a zero-valued γj estimate equals 1 minus the empirical

size in this case and hence has been omitted. Sample sizes n ∈ {50, 200} were

considered. It can be seen that the proposed testing procedure has empirical

sizes close to the nominal level 0.05 while showing exceptional empirical powers

and coverage probabilities.
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Table 2. Simulation results on standard errors of nonzero β̂ with n = 200 over 500
simulation runs. Reported quantities are MAD of the parameter estimates, Median of
the standard errors, and MAD of the standard errors.

(a) Model A – Gaussian Linear Regression
oracle MIC

MAD Median SE MAD SE MAD Median SE MAD SE
β1 0.083 0.082 0.006 0.083 0.082 0.006
β2 0.084 0.082 0.006 0.087 0.082 0.006
β5 0.072 0.072 0.005 0.073 0.072 0.005

(b) Model B – Logistic Regression
oracle MIC

MAD Median SE MAD SE MAD Median SE MAD SE
β1 0.528 0.475 0.086 0.529 0.492 0.094
β2 0.399 0.389 0.048 0.448 0.407 0.064
β5 0.380 0.356 0.059 0.405 0.367 0.061

(c) Model C – Loglinear Regression
oracle MIC

MAD Median SE MAD SE MAD Median SE MAD SE
β1 0.037 0.036 0.007 0.037 0.036 0.007
β2 0.039 0.039 0.007 0.040 0.039 0.007
β5 0.032 0.032 0.006 0.033 0.033 0.006

Table 3. Hypothesis testing on γ0 in MIC. Empirical size (ES), empirical power (EP),
and the coverage proportion of the 95% CI are obtained at α = 0.05 based on 1,000
simulation runs. The stronger signals correspond to Model A, B, and C in (4.1) while
the case of the weaker signals resets β := β/3.

Empirical Size Empirical Power Coverage

Model Signal n γ3 γ4 γ6 γ7 γ8 γ9 γ10 γ11 γ12 γ1 γ2 γ5 γ1 γ2 γ5

A Stronger 50 0.051 0.049 0.036 0.040 0.037 0.017 0.036 0.028 0.035 1.000 1.000 1.000 0.957 0.956 0.959

200 0.037 0.041 0.043 0.023 0.036 0.024 0.030 0.033 0.042 1.000 1.000 1.000 0.960 0.963 0.973

Weaker 50 0.062 0.054 0.038 0.043 0.041 0.018 0.037 0.031 0.037 1.000 0.681 0.912 0.942 0.867 0.944

200 0.036 0.040 0.045 0.022 0.035 0.023 0.031 0.034 0.043 1.000 1.000 1.000 0.959 0.961 0.972

B Stronger 50 0.012 0.011 0.007 0.004 0.002 0.005 0.008 0.009 0.010 0.509 0.202 0.327 0.997 0.988 0.995

200 0.065 0.045 0.053 0.043 0.059 0.036 0.053 0.035 0.062 1.000 1.000 1.000 0.924 0.934 0.935

Weaker 50 0.051 0.061 0.074 0.044 0.057 0.067 0.078 0.071 0.062 0.712 0.242 0.350 0.914 0.952 0.944

200 0.047 0.061 0.049 0.045 0.048 0.038 0.046 0.052 0.051 1.000 0.759 0.932 0.941 0.926 0.946

C Stronger 50 0.023 0.017 0.017 0.016 0.013 0.019 0.019 0.014 0.022 1.000 0.977 0.997 0.984 0.985 0.986

200 0.071 0.077 0.066 0.060 0.058 0.060 0.052 0.051 0.085 1.000 1.000 1.000 0.990 0.970 0.994

Weaker 50 0.045 0.033 0.033 0.039 0.028 0.022 0.024 0.033 0.044 0.650 0.185 0.220 0.817 0.964 0.987

200 0.041 0.030 0.016 0.014 0.009 0.008 0.008 0.008 0.017 0.999 0.528 0.878 0.917 0.702 0.943
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Table 4. Illustration with real data examples.

(a) Linear Regression with Diabetes Data
Best Subset MIC

β̂j SE p-value? β̂j SE LASSO SCAD MCP
age 1.00
sex −0.15 0.04 0.00 −0.14 0.04 −0.12 −0.15 −0.14
bmi 0.32 0.04 0.00 0.33 0.04 0.32 0.32 0.33
map 0.20 0.04 0.00 0.20 0.04 0.18 0.20 0.20
tc 1.00 −0.06 −0.38
ldl 1.00 0.22 −0.07
hdl −0.18 0.04 0.01 −0.17 0.04 −0.14 −0.18
tch 1.00 0.08
ltg 0.29 0.04 0.00 0.29 0.04 0.32 0.43 0.30
glu 1.00 0.03 0.04 0.03

(b) Logistic Regression with Heart Data
Best Subset MIC

β̂j SE p-value? β̂j SE LASSO SCAD MCP
intercept −0.85 0.12 0.00 −0.84 0.12 −0.79 −0.85 −0.84
sbp 1.00 0.04 0.06
tobacco 0.37 0.12 0.00 0.35 0.12 0.30 0.37 0.37
ldl 0.35 0.11 0.00 0.33 0.11 0.27 0.35 0.37
famhist 0.46 0.11 0.00 0.45 0.11 0.37 0.46 0.46
obesity 1.00 −0.01 −0.09
alcohol 1.00
age 0.64 0.14 0.00 0.66 0.14 0.54 0.65 0.63

(c) Log-Linear Regression with Fish Data
Best Subset MIC

β̂j SE p-value? β̂j SE LASSO SCAD MCP
intercept −0.31 0.07 0.00 −0.30 0.07 0.36 −0.01
nofish 1.00 0.03
livebait 1.00
camper 1.00
persons 1.00
child −0.64 0.10 0.00 −0.64 0.10 −0.65 −0.65
xb 1.47 0.03 0.00 1.46 0.03 0.33 1.46 1.46
zg 0.60 0.07 0.00 0.60 0.07 0.60 0.60
xb:zg 1.00 0.18

4.3. Data examples

We consider the diabetes data (Efron et al. (2004)), the heart data (Hastie,

Tisshirani and Friedman (2009)), and the fish count data (available from http:

//www.ats.ucla.edu/stat/data/fish.csv) to illustrate linear regression, lo-

http://www.ats.ucla.edu/stat/data/fish.csv
http://www.ats.ucla.edu/stat/data/fish.csv
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gistic regression, and log-linear regression models, respectively. The results are

presented in Table 4, where the p-values in MIC are based on testing H0 : γj = 0.

Table 4 shows that MIC provides the similar selection as the BIC-based

best subset selection across all three examples. In addition, the resulting MIC

estimates and their standard errors are quite close to these of the BIC model,

indicating that MIC approximates the best subset selection method well. This,

together with MIC’s computational efficacy, allows us to employ MIC on data

with large numbers of covariates, even when BSS is infeasible. In the diabetes

data, it is interesting that the sign of the parameter estimate on hdl is posi-

tive under the full model fitting, but is negative in the MIC model and others.

This sign change could be problematic for sign-constrained methods such as NG

(Breiman (1995)), but it comes out naturally in MIC. Furthermore, MIC is com-

putationally much advantageous by design. See Table 1 in the Supplementary

Materials for a comparison study on computing time.

To illustrate the stability of MIC with respect to the value of a, we obtained

the MIC estimates for a ∈ {1, 5, 10, 15, . . . , 100} and plot them in Figure 3. While

there are some minor variations mainly owning to the non-convex optimization

nature, almost all the estimated coefficients are quite steady in all three examples,

suggesting that the MIC estimation is robust to the choice of a.

5. Discussion

MIC is the first method that does sparse estimation by explicitly approximat-

ing BIC. BIC is optimal in two aspects: it approximates the posterior distribution

of candidate models besides being selection-consistent. This is why BIC has been

used as an ultimate yardstick in many variable selection and regularization meth-

ods. MIC extends the best subset selection (BSS) to scenarios with large p by

optimizing an approximated BIC. Formulated as a smooth optimization problem,

MIC is computationally advantageous to the discrete-natured BSS and enjoys the

additional benefit in avoiding the post-selection inference. Moreover, the search

space in MIC remains to be the entire parameter space. This explains why we

expect MIC to outperform many regularization methods that have a much re-

duced search space for the minimum BIC. By borrowing the knowledge of the

fixed penalty parameter for model complexity in BIC, MIC circumvents the tun-

ing parameter selection problem and hence is also computationally advantageous

to regularization methods.

The hyperbolic tangent function has been used to approximate the cardinal-
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Figure 3. Illustrating the robustness of MIC with respect to the choice of a in these
examples. The values of a considered are {1, 5, 10, 15, . . . , 100}.

ity in MIC, but can be replaced by other unit dent functions. Since one focus

of this paper is on the variable selection consistency, we have adopted BIC by

taking λ0 = ln(n). If the aim is on the model selection efficiency or predictive

accuracy, then we can adopt AIC by setting λ0 = 2. It can be shown that the
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resulting MIC is selection-efficient by applying techniques similar to those used

in Zhang, Li and Tsai (2010). In sum, we can obtain variants of MIC by changing

its penalty function w and penalty parameter λ0 to meet practical needs.

To broaden the usefulness of MIC, we would like to generalize MIC by ac-

commodating grouped or structured sparsity (see, e.g., Huang, Breheny and Ma

(2012)), and extend MIC to other complex model or dependence structures, such

as finite mixture models, longitudinal data, and structural equation modelings

(SEM). Similar ideas can be applied to approximate the effective degrees of free-

dom as well. In these settings, MIC can be particularly useful because the log-

likelihood function is not concave and having convex penalties does not help with

the optimization problem. We would like to also develop the MIC method for

diverging p→∞ with p/n→ 0 (Fan and Peng (2004)) and ultra-high dimensions

with p � n (Fan and Lv (2008)) by approximating the extended or generalized

BIC as pioneered by Chen and Chen (2008).

Supplementary Materials

In the Supplementary Materials, we outline the proofs of Theorems 1 and

2 and we provide more details about an R package glmMIC that implements

MIC, on which basis a comparison study on computing time is also included.
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