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Abstract: Latin hypercube designs (LHDs) have found wide application in com-

puter experiments. It is known that orthogonal LHDs guarantee the orthogonality

between all linear effects, and symmetric LHDs ensure the orthogonality between

linear and second-order effects. In this paper, we propose a construction method

for orthogonal symmetric LHDs. Most resulting LHDs can accommodate the max-

imum number of factors, thus can study many more factors than existing ones.

Several methods for constructing nearly orthogonal symmetric LHDs are also pro-

vided. The constructed orthogonal and nearly orthogonal LHDs can be utilized

to generate more nearly orthogonal symmetric LHDs. A detailed comparison with

existing designs shows that the resulting designs have more flexible and economical

run sizes, and many desirable design properties.

Key words and phrases: Computer experiment, correlation, second-order effect,

symmetric Latin hypercube design.

1. Introduction

Computer models and simulators are used as a way to explore complex phys-

ical systems. With the computational power increasing, simulations can be quite

large and extremely complex. Many simulations contain thousands of input vari-

ables, a substantial number of which may be significant (see for example, Cioppa

and Lucas (2007), and Gramacy et al. (2015)). Simulations are used not only to

screen significant factors, but also to understand and reason about these complex

systems and processes. To efficiently explore these simulations, we need experi-

mental designs that allow us to screen a large number of input variables by fitting

commonly used linear-main-effects models with (nearly) uncorrelated coefficient

estimates, while providing flexibility to fit complex models on selected dominant

factors.

Orthogonal Latin hypercube designs (LHDs) are commonly used for this

goal. An orthogonal LHD is an LHD with centered levels and zero inner product
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between any two distinct columns. Obviously, orthogonal LHDs allow uncor-

related estimates of linear main effects. They also provide some space-filling

property for fitting complex models, say, Gaussian process models, on selected

factors. Detailed justifications can be found in Owen (1994), Joseph and Hung

(2008), Lin and Tang (2015), among others. A number of methods have been

proposed to construct orthogonal and nearly orthogonal LHDs, see e.g., Beattie

and Lin (1997), Steinberg and Lin (2006), Pang, Liu and Lin (2009), Georgiou

(2009), Lin, Mukerjee and Tang (2009), Sun, Liu and Lin (2009, 2010), Lin et

al. (2010), Georgiou and Stylianou (2011), Yang and Liu (2012), Ai, He and Liu

(2012), Yin and Liu (2013), Georgiou and Efthimiou (2014), Efthimiou, Georgiou

and Liu (2015), Wang et al. (2015), and the references therein.

Orthogonality may not be sufficient for fitting a linear-main-effects model

when second-order effects are present because the estimates of linear main ef-

fects may be biased by nonnegligible second-order effects. This paper constructs

orthogonal symmetric LHDs (OSLHDs) that allow uncorrelated estimates of lin-

ear main effects while making sure these estimates are not biased by second-order

effects (cf., Ye (1998)). A design is called symmetric, if for any row d, −d is also

one of the rows in the design. Ye, Li and Sudjianto (2000) showed that symmetry

is also an ideal property for fitting Gaussian process models because symmetric

designs are more space-filling and perform better under the maximum entropy

criterion (Shewry and Wynn (1987)). Some of the orthogonal LHDs constructed

by Cioppa and Lucas (2007), Sun, Liu and Lin (2009, 2010), and Yang and Liu

(2012) are symmetric. However, they are only available for very limited sizes:

c2r+1 or c2r+1 +1 runs for at most 2r factors, where c and r are positive integers.

Georgiou (2009) constructed OSLHDs with 4, 5, 8, 9, 16, 17 runs. The OSLHDs

in Georgiou and Stylianou (2011) and Georgiou and Efthimiou (2014) are only

able to accommodate 32 or less factors.

In this paper, methods for constructing orthogonal (or nearly orthogonal)

symmetric LHDs are proposed. In particular, the resulting OSLHDs can have qd

runs and (qd − 1)/2 factors, where q is an odd prime, and d = 2c with c being

any positive integer. The number of factors, (qd − 1)/2, is indeed the maximum

possible value. Hence, the constructed OSLHDs have larger factor-to-run ratios

and are more economical than existing OSLHDs. The newly constructed nearly

orthogonal symmetric LHDs (NOSLHDs) with qd + i runs (where i = −1, 0, 1, 2

and d is any positive integer) have low correlations between any two distinct

columns and high factor-to-run ratios.

This paper is organized as follows. Section 2 provides the main construction
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method and theoretical result of the paper. OSLHDs and NOSLHDs are then

constructed in Sections 3 and 4, respectively. A detailed comparison between the

proposed methods and some existing ones is made in Section 5. It is shown that

the proposed methods are able to construct many new OSLHDs and NOSLHDs

with more flexible run sizes and larger numbers of factors. Concluding remarks

are given in Section 6. Proofs are deferred to the Appendix.

2. Main Result

Throughout the paper, q is an odd prime number. Let GF (q) = {0, . . . , q−1}
and GF (q)[x] = {a0 + a1x + · · · + ad−1x

d−1, a0, . . . , ad ∈ GF (q)}. A qd-run full

factorial design has d columns 1, . . . ,d. Each column, or a generated column, of

1, . . . ,d, can be denoted by 1a0 · · ·dad−1 for some a0, . . . , ad ∈ GF (q) and corre-

sponds to a nonzero element a0+a1x+ · · ·+ad−1xd−1 in GF (q)[x]. Each nonzero

element in GF (q)[x] can also be expressed as xk modulo a primitive polynomial

f(x) over GF (q)[x] for k ∈ {0, . . . , qd − 1}. Let b = b(qd − 1)/(d(q − 1))c, where

bcc denotes the largest integer less than or equal to c. As shown in Steinberg

and Lin (2006) and Pang, Liu and Lin (2009), the corresponding columns of the

first m = bd nonzero elements of GF (q)[x], x0,x1, . . . , xm−1 modulo f(x), form a

regular design, denoted by D. Any d consecutive columns of D are a full factorial

design. Based on this property of D, we propose a new algorithm for constructing

symmetric LHDs.

Algorithm 1 Construction of symmetric LHDs

Step 1. Given q and d, obtain a regular design D with n = qd runs and m = bd factors
such that any d consecutive columns of D form a full factorial design.

Step 2. Derive a symmetric LHD(q, p) B = (bij) with levels {−(q−1)/2,−(q−3)/2, . . . ,
(q− 1)/2} and bij = −bq+1−i,j , where LHD(q, p) denotes an LHD with q runs and
p factors.

Step 3. For j = 1, . . . , p, obtain an n ×m matrix D(j) from D by replacing the levels
0, . . . , q − 1 of D with b(q+1)/2,j , . . . , bqj , b1j , . . . , b(q−1)/2,j , respectively.

Step 4. Let Td be a matrix of order d comprised of columns of permutations of
{1, q, . . . , qd−1} (up to sign changes). For j = 1, . . . , p, let L(j) = D(j)T where
T = diag{Td, . . . , Td} with Td repeating b times.

Step 5. The resulting design matrix is then

L = (L(1), . . . , L(p)). (2.1)

For any matrix X = (x1, . . . , xm) where xi is the ith column of X for i =
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Table 1. The regular design D (in transpose) in Example 1.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
3 1 4 2 0 2 0 3 1 4 1 4 2 0 3 0 3 1 4 2 4 2 0 3 1
0 2 4 1 3 4 1 3 0 2 3 0 2 4 1 2 4 1 3 0 1 3 0 2 4
2 4 1 3 0 0 2 4 1 3 3 0 2 4 1 1 3 0 2 4 4 1 3 0 2
1 0 4 3 2 0 4 3 2 1 4 3 2 1 0 3 2 1 0 4 2 1 0 4 3

1, . . . ,m, define ρij(X) = xTi xj/(x
T
i xix

T
j xj)

1/2 as the correlation between the ith

and jth columns, and CX = (ρij(X)) as the correlation matrix of X.

Theorem 1. (i) The matrix L in (2.1) is a symmetric LHD(n,mp) with levels

{−(n− 1)/2, −(n− 3)/2, . . . , (n− 1)/2}.

(ii) The correlation matrix of L in (2.1) is given by CL = CB ⊗ Ib ⊗ CTd
, where

Ib is the identity matrix of order b and ⊗ denotes the Kronecker product.

Theorem 1 not only declares that the design constructed by the proposed

algorithm is a symmetric LHD, but also gives an insight into its correlation

structure. By Theorem 1, an OSLHD can be obtained by carefully choosing the

design B and the matrix Td.

Example 1. Let q = 5, d = 2, and D be the 56−4 regular factorial design shown

in Table 1. Any two columns of D form a 52 full factorial design. Suppose B is

the OSLHD(5,2) constructed by Ye (1998) with

B =

(
−2 −1 0 1 2

−1 2 0 −2 1

)T

.

Then D(1) and D(2) can be obtained by replacing the levels 0, . . . , 4 of D with the

entries in the first and second column ofB, respectively, following the replacement

rule specified in Step 3 of Algorithm 1. Let

T2 =

(
5 −1

1 5

)
,

and L(k) = D(k)T with T = diag{T2, T2, T2}, for k = 1, 2. Then it can be easily

checked that L = (L(1), L(2)), shown in Table 2, is an OSLHD(25, 12).

Example 1 is a typical illustration for constructing an OSLHD from the

proposed algorithm.
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Table 2. The design L = (L(1), L(2)) (in transpose) in Example 1.

−12 −7 −2 3 8 −11 −6 −1 4 9 −10 −5 0 5 10 −9 −4 1 6 11 −8 −3 2 7 12
−8 −9 −10 −11 −12 −3 −4 −5 −6 −7 2 1 0 −1 −2 7 6 5 4 3 12 11 10 9 8

3 −5 12 −1 −9 2 −11 6 −7 10 −4 8 0 −8 4 −10 7 −6 11 −2 9 1 −12 5 −3
−11 1 8 −5 7 10 −3 4 −9 −2 6 −12 0 12 −6 2 9 −4 3 −10 −7 5 −8 −1 11
−1 8 −3 6 −10 −12 2 11 −5 4 7 −9 0 9 −7 −4 5 −11 −2 12 10 −6 3 −8 1
−5 −12 11 4 2 −8 10 3 1 −6 9 7 0 −7 −9 6 −1 −3 −10 8 −2 −4 −11 12 5
−6 9 −1 −11 4 −3 12 2 −8 7 −5 10 0 −10 5 −7 8 −2 −12 3 −4 11 1 −9 6
−4 −7 −5 −3 −6 11 8 10 12 9 1 −2 0 2 −1 −9 −12 −10 −8 −11 6 3 5 7 4
−11 10 6 2 −7 1 −3 −12 9 5 8 4 0 −4 −8 −5 −9 12 3 −1 7 −2 −6 −10 11
−3 −2 4 10 −9 5 11 −8 −7 −1 −12 −6 0 6 12 1 7 8 −11 −5 9 −10 −4 2 3

2 4 11 −12 −5 −6 1 3 10 −8 −9 −7 0 7 9 8 −10 −3 −1 6 5 12 −11 −4 −2
10 −6 3 −8 1 −4 5 −11 −2 12 7 −9 0 9 −7 −12 2 11 −5 4 −1 8 −3 6 −10

Remark 1. For the case of d = 2 and

T2 =

(
1 −q
q 1

)
,

the proposed construction method is a special case of the method of Lin, Mukerjee

and Tang (2009). Their designs may not be symmetric. The difference is that we

use a symmetric LHD (the design B) in Step 2, and organize its row-order in Step

3, such that the resulting design L can be symmetric, with better properties.

3. Construction of OSLHDs

Corollary 1. If B is orthogonal and Td is column-orthogonal, T Td Td = adId with

ad = (q2d − 1)/(q2 − 1), then L in (2.1) is orthogonal.

From Corollary 1, an OSLHD(q, p) B and a column-orthogonal Td are needed

for constructing an OSLHD(qd, bdp), where b = b(qd− 1)/(d(q− 1))c. For d = 2c

with c = 1, 2, . . ., the Td can be obtained recursively (Pang, Liu and Lin (2009))

by letting T20 = 1 and

T2c =

(
q2

c−1

T2c−1 −T2c−1

T2c−1 q2
c−1

T2c−1

)
. (3.1)

Here (qd−1)/(d(q−1)) is an integer and b = (qd−1)/(d(q−1)) for d = 2c. For q =

3, the choice of B can only be (−1, 0, 1)T . In this case, the construction described

in the last section yields OSLHD(n,m)’s with n = 3d and m = (n − 1)/2, for

example OSLHD(9, 4) and OSLHD(81, 40). An OSLHD(n,m) is second-order

orthogonal, satisfying m ≤ bn/2c (see Theorem 3 of Sun, Liu and Lin (2009)).

OSLHD(n,m)’s with m = bn/2c are called saturated. The following results can

be straightforwardly obtained.

Proposition 1. For q = 3, d = 2c, and Td defined in (3.1), the OSLHD L
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Table 3. Newly searched OSLHD(11, 3) and OSLHD(13, 3) (in transpose).

OLHD(11, 3)
−5 −4 −3 −2 −1 0 1 2 3 4 5
−5 3 1 4 2 0 −2 −4 −1 −3 5

1 2 −5 3 −4 0 4 −3 5 −2 −1
OLHD(13, 3)
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−6 5 4 −2 −1 3 0 −3 1 2 −4 −5 6

1 3 −6 2 −4 5 0 −5 4 −2 6 −3 −1

constructed in (2.1) is saturated.

For q ≥ 5, if B is saturated, B has p = (q−1)/2 factors, then L has (qd−1)/2

columns and is also saturated.

Proposition 2. If B is saturated and Td is defined in (3.1), the OSLHD L

constructed in (2.1) is saturated.

Obviously, the OSLHD(25,12) obtained in Example 1 is saturated. In ad-

dition, with T2 and T4 in (3.1), and the OSLHD(5, 2) and OSLHD(17, 8) con-

structed by Yang and Liu (2012), the proposed construction yields saturated

OSLHD(25, 12), OSLHD(625, 312), and OSLHD(289, 144). As another example,

we could have the OSLHD(11, 3) and OSLHD(13, 3) shown in Table 3; they were

obtained by computer search and are apparently new. With T2 defined in (3.1),

we can obtain OSLHD(121, 36) and OSLHD(169, 42). Though they are not sat-

urated, they are new and can also accommodate many factors.

4. Construction of NOSLHDs

For given q and p, if there does not exist an OSLHD(q, p) as the design B in

the proposed method, and/or there does not exist a column-orthogonal matrix Td,

a nearly orthogonal LHD for B and a nearly column-orthogonal matrix for Td (cf.,

Sun, Pang and Liu (2011)) can be used instead. For an n×m matrix X, the near

orthogonality is usually assessed by ρM (X) = maxi<j |ρij(X)| and ρ2ave(X) =∑
i<j ρ

2
ij(X)/(m(m − 1)/2). The ρM measures the maximum correlation, and

the ρ2ave measures both magnitudes and sparsity of the correlations. A result

from Theorem 1 gives the values for ρM and ρ2ave of the resulting design L in

(2.1).

Corollary 2. For L in (2.1), we have

ρM (L) = max {ρM (B), ρM (Td)} , and
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Table 4. The regular design D (in transpose) in Example 2.

1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

122 0 2 1 1 0 2 2 1 0 0 2 1 1 0 2 2 1 0 0 2 1 1 0 2 2 1 0
223 0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0

12232 0 2 1 1 0 2 2 1 0 2 1 0 0 2 1 1 0 2 1 0 2 2 1 0 0 2 1
123 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 2 0

12223 0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1
1232 0 2 1 0 2 1 0 2 1 2 1 0 2 1 0 2 1 0 1 0 2 1 0 2 1 0 2
12 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1
23 0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1

1223 0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1 2 1 0 0 2 1 1 0 2

ρ2ave(L) =
(d− 1)ρ2ave(Td) + (d− 1)(p− 1)ρ2ave(Td)ρ

2
ave(B) + (p− 1)ρ2ave(B)

bdp− 1
.

Butler (2001) constructed optimal LHD(n,m) for Fourier-polynomial models

where n is a prime and m = (n− 1)/2. When scaling the levels to {−(n− 1)/2,

−(n−3)/2, . . . , (n−1)/2}, his resulting LHDs are symmetric with low and sparse

correlations. With his LHD(11, 5), LHD(13, 6), LHD(19, 9) and LHD(23, 11), and

T2 in (3.1), we are able to construct an NOSLHD(121, 60), NOSLHD(169, 84),

NOSLHD(361, 180), and NOSLHD(529, 264) with ρM = 0.0909, 0.0989, 0.1053,

and 0.1067, and ρ2ave = 0.0003, 0.0002, 0.0001, and 0.0001, respectively.

Through computer search, we find that the matrix 1 1 q2

q −q2 1

q2 q −q


is an optimal choice for T3 because it has the minimum ρM and ρ2ave among all

choices for T3. By this T3, we can obtain an NOSLHD(27, 12), as follows.

Example 2. Using the primitive polynomial f(x) = x3 + 2x+ 1 over GF (3)[x],

x0, . . . , x11 modulo f(x), are 1, x, x2, 2 + x, 2x + x2, 2 + x + 2x2, 1 + x + x2, 2 +

2x+ x2, 2 + 2x2, 1 + x, x+ x2, 2 + x+ x2, respectively, which correspond in order

to the twelve columns of the regular factorial design D shown in Table 4. Any

three consecutive columns of D form a full factorial design. Let B = (−1, 0, 1)T,

T3 =

1 1 9

3 −9 1

9 3 −3


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with correlation matrix

CT =

 1 0.0110 −0.1648

0.0110 1 −0.0989

−0.1648 −0.0989 1

 ,

and T = diag{T3, T3, T3, T3}. Then by Corollary 2, (2.1) leads to an NOSLHD(27,

12), say L, with ρM (L) = ρM (T3) = 0.1648 and ρ2ave(L) = 0.0022. By Theorem

1, the correlation matrix of L is given by CL = diag{CT , CT , CT , CT }, which is

very sparse.

Similar to Example 2, let q = 5 and B be the OSLHD(5, 2) in Example 1,

we can obtain an NOSLHD(125, 60) with ρM = 0.1459 and ρ2ave = 0.0002.

We next provide some further properties of the L constructed in (2.1). First,

L contains the center point (0, . . . , 0). If we delete the center point and properly

re-scale the levels, we obtain an LHD with qd − 1 runs. Theorem 2 provides an

upper bound for the pairwise column correlations of the resulting design.

Definition 1. The sign matrix of an n×m matrix X = (xij) is an n×m matrix

SX = (sij) with

sij =

 1, if xij > 0;
0, if xij = 0;
−1, if xij < 0.

Theorem 2. Suppose L is the symmetric LHD(qd, bdp) constructed in (2.1) with

p = 1, and L0 is the matrix obtained by deleting the center point (0, . . . , 0) of

(L − SL/2). If ρM (Td) ≤ (qd−1 − 1)(q + 1)/[q(qd + 1)], then L0 is a symmetric

LHD(qd − 1, bdp) with

ρM (L0) ≤
ρM (Td)(q

d + 1)

qd − 2
+

3(q + 1)

q2(qd − 2)
+

3

qd(qd − 2)
. (4.1)

For d = 2c and Td defined in (3.1), ρM (Td) = 0 and (4.1) reduces to

ρM (L0) ≤
3(q + 1)

q2(qd − 2)
+

3

qd(qd − 2)
. (4.2)

The upper bound in (4.2) decreases quickly as q and d increase. The value of

ρM (L0) is typically much smaller, as will be seen in Section 5. If Td is not

column-orthogonal, the upper bound in (4.1) mainly depends on ρM (Td). This is

consistent with the fact that ρM (L) also depends on ρM (Td). When constructing

L, we try to minimize ρM (Td), so that the upper bound in (4.1) is also small.

In Theorem 2, we only derive result for p = 1. For p > 1, we can still

construct NOSLHDs with the same method. It is obvious that the resulting



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS 1511

designs are symmetric, and as will be seen in Section 5, they all have small

correlations between distinct columns.

Let 1m denote an m × 1 vector with all entries unity. We have another

property of the L constructed in (2.1).

Theorem 3. Suppose L is the symmetric LHD(qd, bdp) constructed in (2.1)

with p = 1, m = bd, L1 = ((L + SL)T, 1m,−1m)T, and L2 is the matrix ob-

tained by deleting the center point (0, . . . , 0) of ((L+ SL/2)T, 1/21m,−1/21m)T.

If ρM (Td) ≤ (qd−1 − 1)(q + 1)/[q(qd + 1)], then

(i). L1 is a symmetric LHD(qd + 2, bdp) with

ρM (L1) ≤
ρM (Td)q

d(qd−1)

(qd + 2)(qd + 3)
+

6qd−2(qd − 1)(q + 1)

(qd+1)(qd+2)(qd+3)
+

12

(qd+2)(qd+3)
; (4.3)

(ii). L2 is a symmetric LHD(qd + 1, bdp) with

ρM (L2) ≤
ρM (Td)(q

d − 1)

qd + 2
+

3(qd − 1)(q + 1)

q2(qd + 1)(qd + 2)
+

3

qd(qd + 2)
. (4.4)

Based on Theorem 3, symmetric LHDs with qd + 1 or qd + 2 runs can be

constructed, with upper bounds of pairwise column correlations given in (4.3)

and (4.4), respectively. For d = 2c, if Td is defined in (3.1), then ρM (Td) = 0 and

the first items in the two upper bounds vanish, making the two bounds decrease

quickly as q and d increase.

5. Comparisons and Results

Some comparisons between the proposed approaches and existing construc-

tion methods for OSLHDs and NOSLHDs are provided in Table 5. For simplicity,

we denote the methods of Ye (1998), Cioppa and Lucas (2007), Sun, Liu and Lin

(2009, 2010), Yang and Liu (2012), Georgiou and Stylianou (2011), Georgiou and

Efthimiou (2014), and the proposed methods, by Ye, CL, SLL, YL, GS, GE, and

PM, respectively. The third column of Table 5 is the maximal possible number of

factors of the LHD constructed by the corresponding method. From Table 5, it

is clear that the resulting LHDs of GS and GE can only study 32 or less factors;

YL has a more flexible choice of number of runs than the other methods except

PM, and PM produces LHDs with almost different run sizes from that of YL.

Thus the proposed methods are able to produce many new designs with flexible

run sizes that accommodate more factors.

Some selected symmetric LHDs obtained by the proposed methods are listed

in Table 6. Note that OSLHD(24, 12), OSLHD(25, 12), OSLHD(48, 24), and
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Table 5. Some existing results of OSLHDs and NOSLHDs.

Method Run size n Maximal number of factors OSLHD or NOSLHD

Ye 2r+1 or 2r+1 + 1 2r OSLHD

CL 2r+1 or 2r+1 + 1 1 + r +
(
r
2

)
OSLHD

SLL c2r+1 or c2r+1 + 1 2r OSLHD

YL c2r+1 or c2r+1 + 1 2r OSLHD

c2r+1 + 2 or c2r+1 + 3 2r NOSLHD

GS 7 3 NOSLHD

8k or 8k + 1 4k(k = 1, 2, . . . , 6, 8) OSLHD

8k + 2 4k(k = 1, 2, . . . , 6, 8) NOSLHD

8k + 3 4k(k = 1, 2, . . . , 6) NOSLHD

GE 2ar or 2ar + 1 a = 12, 16, 20, 24 OSLHD

PM qd pd

⌊
qd − 1

(q − 1)d

⌋
OSLHD and NOSLHD†

qd − 1, qd + 1 or qd + 2 pd

⌊
qd − 1

(q − 1)d

⌋
NOSLHD

†: OSLHD can be obtained when d = 2c and an OSLHD(q, p) exists; for otherwise, only
NOSLHD is possible.

OSLHD(49, 24) have been constructed by Georgiou and Efthimiou (2014) and

are not included in Table 6. All designs in the table can accommodate fac-

tors up to half of the run sizes. The OSLHD(81, 40), OSLHD(625, 312), and

OSLHD(289, 144) listed in the table are all new and saturated. The OSLHD(121,

36) and OSLHD(169, 42), although not saturated, are new and can also accom-

modate many factors. For NOSLHDs, the values of ρM and ρ2ave are offered. As

a comparison, for each combination (n,m), the average of the ρM values of 1,000

randomly generated LHD(n,m)’s, denoted by ρRM , is also provided in Table 6.

It is clear that most NOSLHDs in the table have much smaller ρM ’s than their

corresponding randomly generated LHDs. For NOSLHDs with 80, 82, 83, 288,

290, 291, 624, 626, and 627 runs, the ρM ’s are less than (or around) 0.01. These

designs are very close to OSLHDs, with only tiny correlations between few pairs

of columns. Such designs are obviously useful for computer experiments and have

never been constructed by existing methods. The ρM values of other NOSLHDs

are all less than (or around) 0.1 except for the ones generated from q = 3 and

d = 3, and q = 5 and d = 3. Their ρM ’s are around 0.15. All of them have very

small ρ2ave’s. This implies that nonzero correlations exist only between few pairs

of columns for the designs. Thus they are ideal for computer experiments.
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Table 6. Some selected orthogonal and nearly orthogonal symmetric LHD(n,m)’s ob-
tained by the proposed methods.

q d p n = qd + i, m = bdp ρRM ρM ρ2ave
(i = −1, 0, 1, or 2)

3 3 1 26 12 0.5049 0.1644 0.0019
27 12 0.4952 0.1648 0.0022
28 12 0.4971 0.1642 0.0030
29 12 0.4762 0.1626 0.0042

3 4 1 80 40 0.3727 0.0083 0.0000
81 40
82 40 0.3748 0.0079 0.0000
83 40 0.3615 0.0156 0.0000

5 2 2 26 12 0.5049 0.0236 0.0001
27 12 0.4952 0.0452 0.0005

5 3 2 124 60 0.3205 0.1459 0.0002
125 60 0.3210 0.1459 0.0003
126 60 0.3206 0.1459 0.0003
127 60 0.3234 0.1459 0.0003

5 4 2 624 312 0.1748 0.0005 0.0000
625 312
626 312 0.1730 0.0005 0.0000
627 312 0.1736 0.0010 0.0000

7 2 3 50 24 0.4355 0.0573 0.0006
51 24 0.4265 0.0440 0.0004

11 2 3 121 36
11 2 5 120 60 0.3290 0.0949 0.0003

121 60 0.3231 0.0909 0.0003
122 60 0.3220 0.0870 0.0003
123 60 0.3264 0.0833 0.0003

13 2 3 169 42
13 2 6 168 84 0.2862 0.1032 0.0003

169 84 0.2889 0.0989 0.0002
170 84 0.2858 0.0946 0.0002
171 84 0.2827 0.0904 0.0002

17 2 8 288 144 0.2354 0.0006 0.0000
289 144
290 144 0.2346 0.0006 0.0000
291 144 0.2319 0.0012 0.0000

19 2 9 361 180 0.2186 0.1053 0.0001
23 2 11 529 264 0.1859 0.1067 0.0001

6. Concluding Remarks

LHDs have been popular for computer experiments. Orthogonal LHDs en-

sure uncorrected estimates of linear effects when a first-order model is fitted. If
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second-order effects are nonnegligible, a symmetric LHD is preferred. A sym-

metric LHD is able to estimate the linear effects without being correlated with

the estimates of second-order effects. In this paper, we propose some methods to

construct OSLHDs and NOSLHDs. The resulting OSLHDs have the maximum

possible number of factors and are more economical than existing ones. The

resulting NOSLHDs, though they have low correlations among the estimates of

the linear effects of all factors, are able to keep their estimates uncorrelated with

all quadratic effects and bilinear interactions.

Two issues related to this research are particularly worthy of further study.

The first has something to do with the maximal number of factors. It is proved

that if a saturated OSLHD with q (q = 3 or q ≥ 5) runs is available, then the

resulting OSLHD is saturated (i.e., the number of factors attains its maximal

value). For NOSLHDs, the column sizes can be larger. Thus how to add columns

to available LHDs, as well as keeping their symmetry, is an important issue

to be explored. The second related issue concerns the construction of column-

orthogonal designs with fewer levels than runs. Designs with many levels are

desirable, but it is not essential to keep the number of runs equal to the number

of levels. These designs are quite suitable for practical use and, in addition,

they can be viewed as stepping stones to space-filling design as a good space-

filling design must be column-orthogonal or nearly so (Bingham, Sitter and Tang

(2009); Sun, Pang and Liu (2011); Georgiou, Koukouvinos and Liu (2014); Yuan,

Lin and Liu (2017)).
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Appendix: Proofs of Theorems

Lemma 1. Let A = (aij)qd×d be a qd full factorial design with levels k−(q+1)/2

for k = 1, . . . , q, where q is an odd prime, and L = ATd. Then
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ATSL =
q2 − 1

4
Td.

Lemma 2. Let A1 and A2 be two qd full factorial designs with levels k−(q+1)/2

for k = 1, . . . , q, where q is an odd prime, and L1 = A1Td. If any column of A1

is orthogonal to any column of A2, then each element of AT
2 SL1

, say
(
AT

2 SL1

)
i,j

,

i, j = 1, . . . , d, satisfies ∣∣∣(AT
2 SL1

)
i,j

∣∣∣ ≤ qd−2(q2 − 1)

4
.

A.1. Proof of Lemma 1

For a given j, j ∈ {1, . . . , d}, let {πj1, π
j
2, . . . , π

j
d} be the row index of {qd−1,

qd−2, . . . , q, 1} (up to sign changes) in the jth column of Td. Without loss of

generality, suppose the last row of A is the center point (0, 0, . . . , 0). For any i,

i ∈ {1, . . . , qd− 1}, let p = p(i, j) satisfy that (SA)i,πj
1

= · · · = (SA)i,πj
p−1

= 0 and

(SA)i,πj
p
6= 0, p ≤ d. Then (SL)i,j = (SA)i,πj

p
(STd

)πj
p,j

. Hence,

(ATSL)lj =

qd−1∑
i=1

ail(SA)i,πj
p
(STd

)πj
p,j
, for l, j = 1, . . . , d. (A.1)

Here for the jth column of the design A, qd−1(q − 1) rows have p(i, j) = 1,

qd−2(q − 1) rows have p(i, j) = 2, . . . , q − 1 rows have p(i, j) = d. Let Ejh = {i :

p(i, j) = h} for h = 1, . . . , d. Then from (A.1),

(ATSL)lj =

d∑
h=1

(STd
)πj

h,j

∑
i∈Ej

h

ail(SA)i,πj
h
. (A.2)

For πjh = l,
∑

i∈Ej
h
ail(SA)i,πj

h
=
∑

i∈Ej
h
|ail| = 2qd−h

∑(q−1)/2
k=1 k = qd−h(q2−1)/4.

For πjh 6= l, suppose l = πj
h̃

where h̃ ∈ {1, . . . , d} and h̃ 6= h. If h̃ < h, ail = 0 for

all i ∈ Ejh; if h̃ > h, in the rows i ∈ Ejh where the levels of the πjhth column of A

are equal, the levels of the lth column occur equally often. Therefore, for πjh 6= l,∑
i∈Ej

h
ail(SA)i,πj

h
= 0. Then from (A.2), for h = 1, . . . , d,

(ATSL)πj
hj

=
qd−h(q2 − 1)

4
(STd

)πj
h,j

=
q2 − 1

4
(Td)πj

h,j
.

This completes the proof.

A.2. Proof of Lemma 2

Let A2 = (aij). For a given j, j ∈ {1, . . . , d}, let {πj1, π
j
2, . . . , π

j
d} be the

row index of {qd−1, qd−2, . . . , q, 1} (up to sign changes) in the jth column of

Td. Without loss of generality, suppose the last row of A1 is the center point
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(0, 0, . . . , 0). For any i, i ∈ {1, . . . , qd − 1}, let p = p(i, j) satisfy that (SA1
)i,πj

1
=

· · · = (SA1
)i,πj

p−1
= 0 and (SA1

)i,πj
p
6= 0, p ≤ d. Then (SL1

)i,j = (SA1
)i,πj

p
(STd

)πj
p,j

,

and

(AT
2 SL1

)lj =

qd−1∑
i=1

ail(SA1
)i,πj

p
(STd

)πj
p,j
, for l, j = 1, . . . , d. (A.3)

For the jth column of the design A1, q
d−1(q−1) rows have p(i, j) = 1, qd−2(q−1)

rows have p(i, j) = 2, . . ., q−1 rows have p(i, j) = d. Denote Ejh = {i : p(i, j) = h}
for h = 1, . . . , d. Then from (A.3),

(AT
2 SL1

)lj =

d∑
h=1

(STd
)πj

h,j

∑
i∈Ej

h

ail(SA1
)i,πj

h
. (A.4)

As for i /∈ Ej1, (SA1
)i,πj

1
= 0, and any column of A1 is orthogonal to any column

of A2,
∑

i∈Ej
1
ail(SA1

)i,πj
1

=
∑qd

i=1 ail(SA1
)i,πj

1
= 0. From (A.4), for l, j = 1, . . . , d,

∣∣(AT
2 SL1

)lj
∣∣ =

∣∣∣∣∣∣
d∑

h=2

(STd
)πj

h,j

∑
i∈Ej

h

ail(SA1
)i,πj

h

∣∣∣∣∣∣ ≤
d∑

h=2

∑
i∈Ej

h

|ail|.

The result follows from the fact that
∑d

h=2

∑
i∈Ej

h
|ail| =

∑
i/∈Ej

1
|ail| = qd−2

(2
∑(q−1)/2

k=1 k) = qd−2(q2 − 1)/4.

A.3. Proof of Theorem 1

For Part (i), the assertion that L is an LHD(n,mp) with levels {−(n −
1)/2,−(n− 3)/2, . . . , (n− 1)/2} follows from Pang, Liu and Lin (2009). For the

symmetry of L, we need to show that D̃ = (D(1), . . . , D(p)) is symmetric, i.e., for

any row di of D̃, i = 1, . . . , n, −di is also one of its rows. Denote the ith row of D

by (ai1, . . . , aim) for i = 1, . . . , n, then di = (bci1,1, . . . , bcim,1, . . . , bci1,p, . . . , bcim,p),

where cik = (q+1)/2+aik (mod q) for k = 1, . . . ,m. If (ai1, . . . , aim) = (0, . . . , 0),

notice that b(q+1)/2,j = 0 for j = 1, . . . , p, then di = (0, . . . , 0). If (ai1, . . . , aim) 6=
(0, . . . , 0), since D is a regular design, (q − ai1, . . . , q − aim) (mod q) is also

its row, say the lth row. Then the lth row of D̃ is dl = (bel1,1, . . . , belm,1, . . . ,

bel1,p, . . . , belm,p) where elk = (q + 1)/2 − aik (mod q) for k = 1, . . . ,m. Then

belk,j = −bcik,j for j = 1, . . . , p and k = 1, . . . ,m, and dl = −di.
For Part (ii), we have

CL =
12LTL

n(n2 − 1)
. (A.5)

Since L(k) = D(k)(Ib ⊗ Td), L(k)TL(j) = (Ib ⊗ Td)TD(k)TD(j)(Ib ⊗ Td). It follows
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from the proof of Theorem 1 in Lin, Mukerjee and Tang (2009) that D(k)TD(j) =

n(q2 − 1)ckjIbd/12, for k, j = 1, . . . , p, where ckj is the (k, j)th element of CB =

12BTB/(q(q2 − 1)), thus L(k)TL(j) = n(n2 − 1)ckjIb ⊗ CTd
/12. Then LTL =

n(n2 − 1)CB ⊗ Ib ⊗ CTd
/12. Part (ii) is now proved from (A.5).

A.4. Proof of Theorem 2

It is obvious that L0 is a symmetric LHD. From the definition of L0,

LT
0 L0 =

(
L− 1

2
SL

)T(
L− 1

2
SL

)
= LTL− 1

2
LTSL −

1

2
ST
LL+

1

4
ST
LSL. (A.6)

For LTL, by Corollary 2,

(LTL)ij ≤
ρM (Td)q

d(q2d − 1)

12
for i 6= j. (A.7)

Take D(1) = (A1, . . . , Ab) and Li = AiTd, where each Ai is a full factorial design

with levels k − (q + 1)/2 for k = 1, . . . , q, i = 1, . . . , b. For the second item of

(A.6),

LTSL = diag{TT
d , . . . , T

T
d }(A1, . . . , Ab)

T(SL1
, . . . , SLb

)

=

TT
d A

T
1 SL1

TT
d A

T
1 SL2

· · · TT
d A

T
1 SLb

...
...

. . .
...

TT
d A

T
b SL1

TT
d A

T
b SL2

· · · TT
d A

T
b SLb

 .

For diagonal block, from Lemma 1,

TT
d A

T
k SLk

=
q2 − 1

4
TT
d Td for k = 1, . . . , b.

Hence,

|(TT
d A

T
k SLk

)ij | ≤
q2d − 1

4
ρM (Td). (A.8)

For the off-diagonal block, by Lemma 2, for k 6= l and i, j = 1, . . . , d,

|(TT
d A

T
k SLl

)ij | ≤
qd−2(q2 − 1)

4

(
1 + q + · · ·+ qd−1

)
=
qd−2(q + 1)(qd − 1)

4
. (A.9)

For ρM (Td) ≤ qd−2(q + 1)/(qd + 1), the bound in (A.8) is no more than that in

(A.9). For the fourth item of (A.6), it is obvious that for i, j = 1, . . . , bd,

(ST
LSL)i,j ≤ qd − 1. (A.10)

From (A.7), (A.8), (A.9), and (A.10), we have

ρM (L0) ≤
ρM (Td)q

d(q2d − 1)/12 + qd−2(q + 1)(qd − 1)/4 + (qd − 1)/4

qd(q2d − 1)/12− (q2d − 1)/4 + (qd − 1)/4
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=
ρM (Td)(q

d + 1)

qd − 2
+

3(q + 1)

q2(qd − 2)
+

3

qd(qd − 2)
.

A.5. Proof of Theorem 3

(i). It is obvious that L1 is a symmetric LHD. Consider the value of ρij(L1)

for i 6= j. Since

LT
1 L1 = ((L+ SL)T, 1m,−1m)((L+ SL)T, 1m,−1m)T

= LTL+ LTSL + ST
LL+ ST

LSL + 2 · 1m1Tm,

from (A.7), (A.8), (A.9), and (A.10) we have

ρM (L1) ≤
ρM (Td)q

d(q2d − 1)/12 + qd−2(q + 1)(qd − 1)/2 + (qd − 1) + 2

qd(q2d − 1)/12 + (q2d − 1)/2 + (qd − 1) + 2

=
ρM (Td)q

d(qd − 1)

(qd + 2)(qd + 3)
+

6qd−2(qd − 1)(q + 1)

(qd + 1)(qd + 2)(qd + 3)
+

12

(qd + 2)(qd + 3)
.

The proof of (ii) is similar to that of (i) and is thus omitted.
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