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Abstract: In sufficient dimension reduction, the second-order inverse regression

methods, such as the principal Hessian directions and directional regression, com-

monly require the predictor to be normally distributed. In this paper, we introduce

a type of elliptical distributions called the quadratic variance ellipticity family,

which covers and approximates a variety of commonly seen elliptical distributions,

with the normal distribution as a special case. When the predictor belongs to this

family, we study the properties of the second-order inverse regression methods and

adjust them accordingly to preserve consistency. When the dimension of the pre-

dictor is sufficiently large, we show the consistency of the conventional methods,

which strengthens a previous result in Li and Wang (2007). Simulation studies and

data analysis are conducted to illustrate the effectiveness of the adjusted methods.

Key words and phrases: Central mean subspace, central subspace, directional re-

gression, principal Hessian directions, quadratic variance ellipticity family.

1. Introduction

Sufficient dimension reduction has attracted much attention in the recent

decades, for its capability of condensing large dimensional data while preserving

the relative information. For a p-dimensional predictor X and a response variable

Y , it aims to find a lower-dimensional βTX that satisfies

Y ⊥⊥ X |βTX, (1.1)

where “⊥⊥” means independence and β ∈ Rp×d for some d < p. βTX is then a

sufficient statistic, and using it in place of X will not cause information loss in

subsequent analysis. For identifiable parametrization and dimension reduction

effectiveness, Cook (1998) introduced the central subspace as the linear space

spanned by columns of β in (1.1), with smallest possible dimension d. This space

exists under fairly general conditions (Yin, Li and Cook (2008)), and is commonly

denoted by SY |X .
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When statistical interest is on the conditional mean E(Y |X), sufficient di-

mension reduction is adjusted to find βTX that satisfies

E(Y |X) ⊥⊥ X |βTX, (1.2)

so that only those linear combinations of X that affect E(Y |X) will be estimated.

In this case, Cook and Li (2002) defined the central mean subspace as the identi-

fiable parameter, and denoted it by SE(Y |X). For ease of presentation, we do not

distinguish it from the central subspace, and refer to both as the central dimen-

sion reduction subspace, unless otherwise pointed out. We assume its dimension

d to be known a priori. Because β in (1.1) and (1.2) can be easily adjusted for

linear transformations of X, we assume a standardized X that has zero mean

and identity covariance matrix Ip throughout.

To estimate the central dimension reduction subspace, a main stream of

methods in the literature can be characterized as first introducing a symmetric

matrix parameter M , called the kernel matrix, and then estimating the column

space of M by the leading eigenvectors of its sample analog M̂ , where “lead-

ing” means that the corresponding eigenvalues have the greatest absolute value.

When the column space of M is contained in the central dimension reduction

subspace, these methods estimate a subspace of the latter and are called Fisher

consistent; when the two spaces further coincide, these methods are called ex-

haustive. Because the moments of X given Y are used in constructing all the

kernel matrices, these methods are commonly called the inverse regression meth-

ods. Depending on the order of the moments, they can be further categorized

as first-order methods, including ordinary least regression (OLS; Li and Duan

(1989)) and sliced inverse regression (SIR; Li (1991)), and second-order methods,

including principal Hessian directions (pHd; Li (1992)), sliced average variance

estimation (SAVE; Cook and Weisberg (1991)), and directional regression (DR;

Li and Wang (2007)). The kernel matrices of these methods are listed in Table

1. Because M̂ can be easily constructed by slicing Y and using sample moments,

its form is omitted.

To achieve Fisher consistency, first-order methods require the linearity con-

dition

E(X|βTX) = β(βTβ)−1βTX for any β ∈ Rp×d, (1.3)

which, by Li (1991), is equivalent to an elliptical distribution on X and thus is

quite mild. The exhaustiveness of these methods requires additional constraints

on the model structure and may be infeasible in practice.

Second-order methods, in particular SAVE and directional regression, achieve
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Table 1. Inverse regression methods and their kernel matrices. In column 2, var(·) means
the covariance matrix of the distribution, and (X̃, Ỹ ) is an independent copy of (X,Y ).

methods kernel matrix target space
OLS MOLS = E(XY )ET(XY ) SE(Y |X)

SIR MSIR = E{E(X|Y )ET(X|Y )} SY |X
pHd MpHd = E[XXT{Y − E(Y )}] SE(Y |X)

SAVE MSAV E = E[{Ip − var(X|Y )}2] SY |X
DR MDR = E[2Ip − E{(X − X̃)(X − X̃)T|Y, Ỹ }]2 SY |X

exhaustiveness without specifying any model structure (Li and Wang (2007)). In

addition to the linearity condition (1.3), their Fisher consistency requires the

constant variance condition:

var(X|βTX) = Ip − β(βTβ)−1βT, for any β ∈ Rp×d, (1.4)

which, together with (1.3), is equivalent to a multivariate normal distribution on

X (Cook and Weisberg (1991)).

When (1.3) is violated, generalization of the inverse regression methods has

been studied by such authors as Li and Dong (2009), Dong and Li (2010), and

Ma and Zhu (2012). In particular, Dong and Li (2010) considered the case when

(1.3) is violated but (1.4) is satisfied. The case when (1.3) is satisfied but (1.4)

is violated, which amounts to an elliptical but non-normal distribution of X, has

been overlooked in the literature. This case can occur if the data contain many

outliers, or if the data are clearly bounded, or if they do not form a convex hull,

in which only the first-order methods are applicable. Because the second-order

methods enjoy richer theoretical properties, it will benefit researchers if these

methods can be adjusted to also achieve consistency under the ellipticity of X

alone.

The adjustment of the second-order inverse regression methods is also worth

investigation, if transformations on X that only preserve its ellipticity are of

interest when conducting sufficient dimension reduction. This occurs, for exam-

ple, in Luo, Wang and Tsai (2009) and in Dong, Yu and Zhu (2015), both of

which enhance the stableness of sample moments when the magnitude of X has

a heavy-tailed distribution. Luo, Wang and Tsai (2009) project X onto the unit

sphere in Rp, and adjust SAVE and directional regression by changing Ip in the

kernel matrices to τ(Y )Ip, where τ(Y ) is the median eigenvalue of var(X|Y ).

This adjustment requires p > 2d. Whether it is consistent for other transforma-

tions remains open. Dong, Yu and Zhu (2015) transform the magnitude of X

to have range between zero and one, but the corresponding adjustment of the
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second-order inverse regression methods has not been studied.

In this paper, we study the properties of the second-order inverse regression

methods and how they can be adjusted when X belongs to a subfamily of ellipti-

cal distributions called the quadratic variance ellipticity family. The adjustment

adopts a simple form, and preserves the estimation consistency of the conven-

tional methods. The subfamily of elliptical distributions, characterized by the

form of var(X|βTX), includes, and approximates, a variety of commonly seen

cases. When X is in this family and has a sufficiently large dimension, we show

the consistency of the conventional second-order methods.

In the rest of the article, we introduce the quadratic variance ellipticity family

in Section 2, then address pHd in Section 3 and directional regression in Section

4 accordingly. In Section 5 we show consistency for (the conventional) directional

regression in high-dimensional cases. A summary of implementation is given in

Section 6, and simulation studies and a data example are presented in Sections

7 and 8, respectively, to illustrate the effectiveness of the adjusted methods.

2. The Quadratic Variance Ellipticity Family

Here is notation used throughout. With ‖ · ‖ the usual Euclidean norm

for real vectors, we denote p1/2X/‖X‖ by U and p−1/2‖X‖ by R, so that X =

UR. Since X is elliptically distributed and standardized, p−1/2U is uniformly

distributed on the unit sphere in Rp and is independent of R, and E(R2) = 1.

Let β be an arbitrary matrix in Rp×d and γ be an arbitrary vector in Rp such

that (β, γ) is orthonormal. We use S(β) to denote the column space of β, with

orthogonal complement S⊥(β), and use Π(S(β)), or simply Π(β), to denote the

corresponding projection matrix. Let {1, . . . , p}d be the collection of subsets of

{1, . . . , p} with cardinality d. For any i ∈ {1, . . . , p} and A ∈ {1, . . . , p}d, let Xi

denote the ith component of X, and XA denote the components of X indexed by

A. Likewise, for any j ∈ {1, . . . , d} and B ⊂ {1, . . . , d}, βi is the ith column of

β, and βB the set of columns of β indexed by B. For a kernel matrix M ∈ Rp×p,
let λ1(M), . . . , λp(M) be the eigenvalues of M according to the descending order

of their absolute values, and β(M) be the array of eigenvectors following the

same order. When equality exists in the eigenvalues, we allow arbitrariness in

β(M). We use M̂n, or simply M̂ , to denote the sample analog of M based on

a random sample of size n. The
√
n-consistency of M̂ is commonly satisfied in

the literature, and is assumed throughout. We define {λ1(M̂), . . . , λp(M̂)} and

β(M̂) similarly.
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By the ellipticity of X, var(γTX|βTX) is a symmetric function with respect

to the origin in Rd. Therefore, it is natural to be generalized from a constant

in (1.4) to a quadratic function with the linear term being zero. That is, there

exists aγ ∈ R and Bγ ∈ Rd×d such that

var(γTX|βTX) = aγ + (XTβ)Bγ(βTX). (2.1)

We call this condition the quadratic variance condition and the induced dis-

tribution family the quadratic variance ellipticity family. Although adopting a

parametric assumption, this family covers many commonly seen cases. In par-

ticular, it reduces to the multivariate normal distribution if Bγ in (2.1) is zero.

We give two more examples.

Example 1. Let R be degenerate at 1, then X is uniformly distributed on the

sphere centered at the origin and with radius
√
p. This distribution is considered

in Luo, Wang and Tsai (2009) for its advantage in not generating outliers. After

simple calculation, we have,

var(γTX|βTX) =
(p− ‖βTX‖2)

(p− d)
. (2.2)

Example 2. Kotz (1975) introduced the p-dimensional Pearson Type II distri-

bution, with density function with respect to the Lebesque measure

f(x) = {(2m+ p+ 2)π}−p/2Γ(p/2 +m+ 1)

Γ(m+ 2)

(
1− xTx

2m+ p+ 2

)m
on {x ∈ Rp : xTx ≤ 2m + p + 2} and zero elsewhere, m > −1 being the

shape parameter. As discussed in Chapter 6 of Johnson (2013), this family is

closely related to the univariate Beta distribution. In particular, it reduces to the

uniform distribution in the ball centered at the origin and with radius
√
p+ 2, if

m is zero. Johnson (2013) has

var(γTX|βTX) =
(2m+ p+ 2− ‖βTX‖2)

(2m+ p− d+ 2)
.

The support of a distribution in this family can coincide with the real space,

or can be bounded and do or do not form a convex hull. The family excludes such

distributions as the mixture normal and the multivariate t. However, simulation

study suggests that it can still approximate these distributions, if transformed

according to Dong, Yu and Zhu (2015). More details can be found in Section 7.

The coefficients in (2.1) typically have a simple form because of the ellipticity

of X. As discussed in Luo, Wang and Tsai (2009), inverse regression methods

become infeasible if X contains heavy tails. Therefore, we assume the existence
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of E(R4) throughout the article.

Theorem 1. The coefficients in (2.1) are aγ = 1− dδ and Bγ = δId, where

δ =
pE(R4)− (p+ 2)

p (d+ 2)E(R4)− d(p+ 2)
; (2.3)

δ increases with E(R4) and is in the interval [−1/(p− d), 1/(d+ 2)).

The lower bound of δ is reached at the uniform distribution on a sphere. It

remains questionable whether the upper bound can be lowered using the con-

straint (2.1). We leave this for future investigation.

Although the components of an elliptical distribution are uncorrelated, their

squared values may not be. Here the correlation between the squared components

can be measured by δ, or equivalently E(R4), where E(R4) = (p+ 2)/p from the

multivariate normal corresponds to zero correlation and serves as the null value.

When E(R4) exceeds this value, which occurs if R has heavy tails and the data

tend to have more outliers, the squared components are positively correlated.

This conforms to the fact that if an observation is an outlier in one component,

then it also tends to be in the other components. When E(R4) is below the

null value, the squared components of the distribution are negatively correlated.

Because R2 has a small variance in this case, the negative correlation can also

be explained by the constraint that the sum of the squared components, which

equals R2, is nearly constant.

Given a sample, we can estimate δ using (2.3), where E(R4) is replaced by

its sample analog. Alternatively, we can first linearly regress X2
i on (1, ‖XA‖2),

where (i, A) runs through {1, . . . , p}d+1, and then average the resulting coefficient

for ‖XA‖2. An omitted simulation study has shown that the second estimator,

denoted as δ̂, slightly outperforms the first. Thus we adopt it hereafter. Its√
n-consistency is clear.

3. Adjusted pHd for Non-Normal Predictor

The consistency of pHd is based on the fact that when X is normally dis-

tributed, the eigenvectors of the kernel matrix associated with nonzero eigenval-

ues are contained in the central mean subspace. When X belongs to the quadratic

variance ellipticity family, the central mean subspace can still be recovered by a

set of eigenvectors of the same kernel matrix. However, these eigenvectors cannot

be identified by nonzero eigenvalues.

Theorem 2. If X is in the quadratic variance ellipticity family, then there exists
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A0 ∈ {1, . . . , p}d and β(MpHd) such that βA0
(MpHd) is an orthonormal basis of

the central mean subspace. In addition, for any j 6∈ A0, we have

λj(MpHd) = δ
∑
i∈A0

λi(MpHd), (3.1)

which implies 1 ∈ A0 if p > 2d and MpHd is nonzero.

The uniqueness of A0 as the solution to (3.1), which implies nonzero kernel

matrix MpHd, requires the eigenvalues associated with the central mean subspace

to differ from the rest. In other words, MpHd must distinguish the central mean

subspace from its orthogonal complement, in the sense that each eigenspace be-

longs to one of these two spaces, but does not intersect with both. When the

predictor is normally distributed, this condition is equivalent to the exhaustive-

ness of pHd, which requires the regression function E(Y |X) to be asymmetric

with respect to the origin in Rp in any direction. For simplicity, we adopt this

condition throughout unless otherwise specified.

When X has an elliptical but non-normal distribution, the nonzero δ makes

the kernel matrix of pHd no longer of low rank unless the signals in the central

mean subspace accumulate to zero, which is rare. Nonetheless, if d is considerably

smaller than p, then at least the eigenvector(s) corresponding to the leading

eigenvalue lie in the central mean subspace, which means that pHd is still capable

of recovering the corresponding direction(s). This is especially useful if the central

mean subspace is one-dimensional.

In general, to ensure the consistency of pHd, the data must be restricted

so that either δ is negligible, which requires the predictor to be nearly normally

distributed so that its components are weakly dependent, or, p > 2d and the

eigenvalues associated with the central mean subspace are similar to each other.

The latter requires the signal strength to vary negligibly with different directions

in the central mean subspace. In particular, the leading signal cannot dominate

the weakest one. If neither restriction is satisfied, then pHd must be adjusted by

choosing the right set of eigenvectors.

When X is uniformly distributed on a sphere, Luo, Wang and Tsai (2009)

assumed p > 2d and adjusted SAVE and directional regression. Their adjustment

can be easily parallelized for pHd by picking those eigenvalues that differ the most

from the median eigenvalue. Here we adopt a natural criterion based on Theorem

2, which does not require a relationship between p and d: over all the elements

in {1, . . . , p}d, we choose Â to minimize∑
j 6∈A |λj(M̂pHd)− δ̂

∑
i∈A λi(M̂pHd)|, (3.2)
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and select βÂ(M̂pHd) as the basis which spans an estimate of the central mean

subspace. When p > 2d, we further restrict the candidate sets to those that

contain 1. The selection consistency of this criterion is shown in the following,

with the
√
n-consistency of the adjusted pHd as a natural consequence.

Theorem 3. Suppose A0 is the unique solution to (3.1). Then as n → ∞, the

Â that minimizes (3.2) satisfies P (Â = A0)→ 1, and

‖Π(βÂ(M̂pHd))−Π(SE(Y |X))‖ = OP (n−1/2).

When the solution to (3.1) is not unique but at least MpHd is nonzero, we

speculate that there always exists k < d such that, by using k instead of d in

(2.3), the solution to (3.1) exists in {1, . . . , p}k and is unique, in which case a

proper subset of A0 is identified and the adjusted pHd recovers a proper subspace

of the central mean subspace. We leave such details to future research.

4. Adjusted Directional Regression for Non-Normal Predictor

Because both SAVE and directional regression involve the square of the

second-order inverse moment, the detail is slightly more complicated when we

parallelize the discussion in the previous section for these methods. Here we focus

on directional regression as arguments for SAVE can be developed similarly.

The normality of X is needed in directional regression, as it guarantees

the identity between the central subspace and the column space of the kernel

matrix. This identity fails when the normality is relaxed to the quadratic variance

ellipticity family. However, the central subspace can still be recovered by a set

of eigenvectors of the kernel matrix.

Theorem 4. If X belongs to the quadratic variance ellipticity family, then there

exists A0 ∈ {1, . . . , p}d and β(MDR) such that βA0
(MDR) is an orthonormal basis

of the central subspace. Further, for any j 6∈ A0,

λj(MDR) = −2d2δ2 + 2δ2E{
∑

i∈A0
E(‖βi(MDR)TX‖2|Y )}2, (4.1)

which implies 1 ∈ A0 if p > 2d and MDR is nonzero.

Similar to (3.1), the uniqueness of A0 as the solution to (4.1) requires certain

condition on MDR, generally subtler than that for pHd. Nonetheless, when the

predictor is normally distributed, the condition is equivalent to the exhaustive-

ness of directional regression, which is fairly general; see Li and Wang (2007).

We adopt it throughout.

If the predictor is non-normally distributed, then the kernel matrix of direc-

tional regression is not of reduced rank. When interest is only on the leading
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signal of the data, directional regression can still be applied as long as the central

subspace is of considerably lower dimension. In general, the method requires ei-

ther the predictor not to severely deviate from normality, or the signal strength

not to vary dramatically with the directions in the central subspace. Otherwise,

it will miss the weakest signals. Accordingly, we adjust the method by picking

the eigenvectors associated with the set of eigenvalues that minimizes∑
j 6∈A |λj(M̂DR) + 2d2δ̂2 − 2δ̂2Ê{

∑
i∈A Ê(‖βTi (M̂DR)X‖2|Y )}2| (4.2)

over {1, . . . , p}d, where Ê(·) is the sample analog used in directional regression

to estimate the true moment. If p > 2d, then we further restrict the candidate

sets to those that contain 1. The selection procedure is consistent, which also

implies the
√
n-consistency of the adjusted method.

Theorem 5. Suppose A0 is the unique solution to (4.1). Then as n → ∞, Â

that minimizes (4.2) satisfies P (Â = A0)→ 1, and

‖Π(βÂ(M̂DR))−Π(SY |X)‖ = OP (n−1/2).

5. Consistency of Directional Regression in High-Dimensional Cases

The estimation in the last two sections requires an exhaustive search over

certain subsets of {1, . . . , p}, computationally challenging when p is large. We

argue that, in a certain sense, for all large p the adjustment is redundant for

directional regression, as the method is consistent. The same arguments can be

applied to pHd and SAVE.

Our result is closely related to the work of Diaconis and Freedman (1984)

and Hall and Li (1993), who demonstrated the approximate normality of high-

dimensional X when projected onto a low-dimensional space. Following them, let

{(X(p) ∈ Rp, Y (p) ∈ R) : p ∈ N} be a series of random vectors in which each X(p)

is standardized and belongs to the distribution family (2.1). For each p ∈ N, let

δ(p) be defined as in Theorem 1 for X(p), and let S(β(p)) be the central subspace

for (X(p), Y (p)) with dimension d(p). We assume that

E

(
‖X(p)‖4

p2

)
→ 1 as p→∞, (5.1)

which is satisfied if each X(p) follows one of the distributions mentioned in Section

2. More discussion about this assumption can be found in Diaconis and Freedman

(1984) and Hall and Li (1993).

Based on Hall and Li (1993), Li and Wang (2007) argued that directional

regression is approximately consistent as p increases to infinity. However, the
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approximation rate was unclear. Under the quadratic variance condition (2.1),

this rate is infinity, in the sense that the consistency of the method holds exactly

for sufficiently large p.

Theorem 6. Suppose that, (a) d(p) = O(1); (b) there exists r > 0 such that

min{β(p)i

T
MDRβ

(p)
i , i = 1, . . . , d(p)}

max{β(p)i

T
MDRβ

(p)
i , i = 1, . . . , d(p)}

≥ r. (5.2)

Then for sufficiently large p, the eigenvectors of MDR associated with the greatest

d(p) eigenvalues span the central subspace.

Condition (a) regulates the sparsity of the signal from the predictor, and

condition (b) regulates the signal strength variation as the direction varies within

the central subspace. These conditions can be relaxed if a convergence order is

known for {δ(p)}. For example, if each δ(p) is zero or negative, which occurs in all

the examples in Section 2, then Theorem 1 indicates that δ(p) = O((p− d(p))−1).
Hence the consistency result for directional regression still holds if we require d(p)

and r(p), r(p) denoting the left-hand side of (5.2), to satisfy d(p) = o(p(r(p))1/2).

In particular, we now allow d(p), the dimension of the central subspace, to grow

to infinity with p.

6. Summary of Implementation

We summarize the implementation of the adjusted pHd and the adjusted

directional regression.

Step 0. If X is not standardized, do so by using Σ̂
−1/2
X {X− Ê(X)}, in which Σ̂X

and Ê(X) are the sample covariance matrix and the sample mean of X.

Step 1. For each i ∈ {1, . . . , p} and A ∈ {1, . . . , p}d such that i 6∈ A, linearly

regress X2
i on (1, ‖XA‖2). Let bi,A be the corresponding coefficient for ‖XA‖2.

Estimate δ by δ̂, the average value of {bi,A : (i, A) ∈ {1, . . . , p}d+1}.
Step 2. Estimate the kernel matrices MpHd by M̂pHd, and MDR by M̂DR; see Li

(1992) and Li and Wang (2007) for detail.

Step 3. For pHd, select the index set Â of eigenvalues that corresponds to

the central mean subspace by minimizing (3.2), where δ̂ is derived in Step 1;

for directional regression, select the Â that corresponds to the central subspace

by minimizing (4.2) with the same δ̂. The adjusted pHd estimates the central

mean subspace by S(Σ̂
−1/2
X βÂ(M̂pHd)), and the adjusted directional regression

estimates the central subspace by S(Σ̂
−1/2
X βÂ(M̂DR)).
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7. Simulation Studies

We illustrate the finite-sample effectiveness of the adjusted pHd and the ad-

justed directional regression, using simulation models and predictors that follow

various elliptical distributions. The conventional pHd and directional regression

are included in the comparison as references.

We generated X sequentially from a normal distribution, the uniform distri-

bution on a sphere in Rp, the uniform distribution in a ball in Rp, and the Pearson

Type II distribution with m = 1. The last distribution has a ball-shaped support,

but it typically generates a ring-shaped sample. Following Dong, Yu and Zhu

(2015), we generated X by applying the transformation X‖X‖/(1 + ‖X‖2) to

both the multivariate t-distribution with 5 degrees of freedom, and the mixture

normal distribution αZ + (1−α)(3Z), where Z is normal with zero mean and α

is an independent Bernoulli random variable with E(α) = 0.5. Again, we further

standardized X so that it has zero mean and identity covariance matrix.

Among these distributions, the last two violate the quadratic variance con-

dition (2.1). To see the severity of the violation at each dimension d from 1 to

p− 1, for each i in {1, . . . , p} and each A in {1, . . . , p}d that excludes i, we used

X2
i as the response and (1, ‖XA‖2) as the predictor, and conducted a goodness-

of-fit test with linear regression as the reduced model and polynomial regression

of degree 3 as the full model. The p-value was then averaged over all pairs of

(i, A). To further stabilize the result, we generated 500 samples and recorded

the average of the averaged p-values. For reference, we repeated the process for

the four other distributions of X. n was set at 500 for a reasonable choice to

control the sensitivity of the test, and p was set at 6, 10, and 20, sequentially.

The results are depicted in Figure 1 and summarized in Tables 2 and 3.

The large p-values for the first four distributions in Figure 1 show that the

quadratic variance condition (2.1) is satisfied in these distributions. They also

indicate an approximation of (2.1) at small d in the last two distributions. For

each fixed small d, such an approximation improves as p grows, as supported

by the generally increasing p-values in Tables 2 and 3. The improvement of the

approximation suggests a potentially wide application of (2.1) in the elliptical

distribution family in high-dimensional cases. As d increases towards p, the ap-

proximation fails no matter how large p is.

Based on these observations, we applied the inverse regression methods to

Models I–IV below, with X following each of the six distributions and the inde-

pendent error term ε following N(0, 0.52).
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Figure 1. Approximation of (2.1) in the distributions. In the upper-left, upper-right,
and bottom panels, p = 6, 10, and 20, respectively. In each panel, the x-axis is d that
runs from 1 to p− 1, and the y-axis is the averaged p-value for the goodness-of-fit test.
“◦” stands for the normal distribution, “4” for the uniform distribution on a sphere,
“+” for the uniform distribution in a ball, “×” for Pearson Type II distribution with
m = 1, “3” for the transformed t-distribution, and “5” for the transformed mixture
normal distribution. The dashed line stands for the 0.05 threshold.

I. Y = X2
1 +X2

2 + ε;

II. Y = X2
1 + 3X2

2 + ε;

III. Y = X1 sin(X1) +X2sign(ε);

IV. Y = 0.4(X1 +X2 +X3)
2 + |X1 +Xp−1 + 3Xp|1/2 + 0.4 ε.
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Table 2. The average p-value for testing the quadratic form of var(γTX|βTX), when X
follows the transformed multivariate t-distribution.

p
d

1 2 3 4 5 6 7 8 9

6 0.631 0.577 0.460 0.303 0.134 – – – –
10 0.635 0.622 0.597 0.570 0.536 0.487 0.431 0.349 0.240
20 0.601 0.601 0.597 0.588 0.577 0.566 0.558 0.549 0.540

Table 3. The average p-value for testing the quadratic form of var(γTX|βTX), when X
follows the transformed multivariate mixture normal distribution.

p
d

1 2 3 4 5 6 7 8 9

6 0.383 0.126 0.017 0.001 0.000 – – – –
10 0.584 0.521 0.413 0.279 0.150 0.052 0.008 0.000 0.000
20 0.580 0.589 0.591 0.582 0.579 0.564 0.554 0.539 0.515

A variation of Model III has been used in Li (1992), and Model IV has been

used in Li and Wang (2007). In all the models, the central dimension reduc-

tion subspace is low dimensional - in Model III, the central mean subspace is

1-dimensional and the central subspace is 2-dimensional; in the other models

the two spaces coincide and are 2-dimensional. Because Model I is invariant to

rotations in (X1, X2), the two eigenvalues associated with the central dimension

reduction subspace are equal. Thus we expect that as long as p > 4, the con-

ventional pHd without eigenvalue selection is consistent in Models I and III, and

the conventional directional regression is consistent in Model I.

To compare the adjusted and conventional methods, we let p = 6, 10, sequen-

tially. For the kernel matrices to be consistently estimated, we let n = 100, 200,

respectively. For each pair of (n, p), 500 samples were independently generated

from each model and each distribution of X. Given an estimate S(β̂), we mea-

sured its distance from the central dimension reduction subspace, denoted as

S(β(0)), by

m(S(β̂),S(β(0))) = ‖Π(β̂)−Π(β(0))‖.

The performances of the adjusted and the conventional pHd are recorded in Ta-

bles 4 and 5, with respect to different values of (n, p); likewise, the performances

of the adjusted and the conventional directional regression are recorded in Tables

6 and 7.

Because the same models are equipped with different distributions of X, a
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Table 4. Comparison between the adjusted and conventional pHd when n = 100 and
p = 6. In each cell, the number on the top (bottom) is the sample mean (standard
deviation) of the distance between the estimates and the central mean subspace. Column
“Normal” stands for cases with X normal, “Unif-S” for the uniform distribution on a
sphere, “Unif-B” for the uniform distribution in a ball, “Pearson” for the Pearson Type
II distribution with m = 1, “DYZ-t5” for the Dong, Yu and Zhu’s transformation on the
multivariate t-distribution, and “DYZ-MN” for the same transformation on the mixture
normal distribution.

Adjusted pHd Conventional pHd
I II III IV I II III IV

Normal
0.536 0.773 0.603 0.828 0.555 0.773 0.603 0.852

(0.160) (0.310) (0.302) (0.319) (0.151) (0.310) (0.302) (0.333)

Unif-S
0.334 0.482 0.457 0.486 0.322 10.41 0.457 10.41

(0.099) (0.209) (0.264) (0.273) (0.088) (0.049) (0.264) (0.110)

Unif-B
0.362 0.563 0.484 0.563 0.348 10.35 0.484 10.32

(0.094) (0.290) (0.261) (0.328) (0.087) (0.257) (0.261) (0.282)

Pearson
0.368 0.579 0.476 0.588 0.368 10.27 0.476 10.19

(0.094) (0.274) (0.254) (0.326) (0.094) (0.348) (0.254) (0.318)

DYZ-t5
0.391 0.603 0.512 0.634 0.381 10.08 0.512 10.14

(0.117) (0.284) (0.278) (0.330) (0.099) (0.453) (0.278) (0.439)

DYZ-MN
0.438 0.645 0.556 0.744 0.444 0.684 0.556 0.699

(0.118) (0.246) (0.254) (0.300) (0.114) (0.277) (0.254) (0.276)

Table 5. Comparison between the adjusted and conventional pHd when n = 200 and
p = 10. The abbreviations and other specifications are the same as described in the
legend of Table 4.

Adjusted pHd Conventional pHd
I II III IV I II III IV

Normal
0.571 0.813 0.521 0.857 0.571 0.813 0.521 0.873

(0.103) (0.253) (0.180) (0.265) (0.103) (0.253) (0.180) (0.276)

Unif-S
0.375 0.560 0.403 0.540 0.375 10.29 0.403 10.34

(0.065) (0.166) (0.130) (0.166) (0.065) (0.331) (0.130) (0.276)

Unif-B
0.420 0.600 0.434 0.596 0.420 10.13 0.434 10.21

(0.070) (0.188) (0.140) (0.198) (0.070) (0.426) (0.140) (0.387)

Pearson
0.419 0.589 0.433 0.583 0.419 10.01 0.433 10.11

(0.077) (0.169) (0.122) (0.172) (0.077) (0.445) (0.122) (0.428)

DYZ-t5
0.422 0.612 0.451 0.619 0.422 10.02 0.451 10.07

(0.075) (0.188) (0.170) (0.209) (0.075) (0.427) (0.170) (0.444)

DYZ-MN
0.493 0.751 0.512 0.794 0.493 0.751 0.512 0.805

(0.083) (0.215) (0.159) (0.248) (0.083) (0.215) (0.159) (0.252)

comparison between the columns within each table and each inverse regression

method cannot provide a guideline on which transformation of X should be
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Table 6. Comparison between the adjusted and conventional directional regression when
n = 100 and p = 6. In each cell, the number on the top (bottom) is the sample mean
(standard deviation) of the distance between the estimates and the central subspace.
“DR” stands for directional regression. Other abbreviations and specifications are the
same as described in the legend of Table 4.

Adjusted DR Conventional DR
I II III IV I II III IV

Normal
0.509 0.622 0.843 0.544 0.509 0.622 0.843 0.544

(0.148) (0.265) (0.292) (0.215) (0.148) (0.265) (0.292) (0.215)

Unif-S
0.639 0.836 0.976 0.841 0.856 1.23 0.996 10.05

(0.284) (0.333) (0.325) (0.315) (0.409) (0.271) (0.328) (0.366)

Unif-B
0.537 0.841 0.906 0.721 0.605 0.986 0.905 0.799

(0.208) (0.344) (0.331) (0.316) (0.313) (0.375) (0.317) (0.353)

Pearson
0.499 0.788 0.874 0.656 0.518 0.913 0.869 0.737

(0.192) (0.315) (0.319) (0.279) (0.230) (0.368) (0.328) (0.363)

DYZ-t5
0.501 0.768 0.827 0.617 0.505 0.815 0.827 0.647

(0.184) (0.337) (0.302) (0.273) (0.189) (0.362) (0.302) (0.294)

DYZ-MN
0.495 0.564 0.844 0.531 0.495 0.564 0.844 0.531

(0.130) (0.215) (0.284) (0.207) (0.130) (0.215) (0.284) (0.207)

Table 7. Comparison between the adjusted and conventional directional regression when
n = 200 and p = 10. The abbreviations and other specifications are the same as described
in the legends of Table 4 and Table 6.

Adjusted DR Conventional DR
I II III IV I II III IV

Normal
0.496 0.588 0.807 0.509 0.496 0.588 0.807 0.509

(0.099) (0.166) (0.243) (0.138) (0.099) (0.166) (0.243) (0.138)

Unif-S
0.474 0.755 0.758 0.602 0.474 0.881 0.828 0.639

(0.091) (0.269) (0.233) (0.193) (0.091) (0.357) (0.234) (0.266)

Unif-B
0.464 0.687 0.755 0.547 0.464 0.766 0.755 0.569

(0.116) (0.265) (0.230) (0.177) (0.116) (0.317) (0.230) (0.232)

Pearson
0.455 0.675 0.744 0.533 0.455 0.673 0.804 0.531

(0.086) (0.279) (0.210) (0.186) (0.086) (0.285) (0.226) (0.188)

DYZ-t5
0.461 0.662 0.833 0.541 0.461 0.696 0.833 0.552

(0.085) (0.245) (0.248) (0.171) (0.085) (0.299) (0.248) (0.175)

DYZ-MN
0.498 0.561 0.823 0.506 0.498 0.561 0.823 0.506

(0.093) (0.142) (0.216) (0.127) (0.093) (0.142) (0.216) (0.127)

made when applying sufficient dimension reduction. Thus such a comparison can

only be interpreted qualitatively; that is, using the normal distribution as the

reference, if an inverse regression method does not perform dramatically worse

when applied to a non-normal distribution of X, then it is considered effective

for that distribution. In this sense, these tables suggest that the adjusted pHd
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and the adjusted directional regression improve the conventional methods, in the

sense that their effectiveness only requires the quadratic variance condition (2.1)

on X.

Theoretically, the adjusted and conventional methods should coincide when

pHd is applied to Models I and III, or when directional regression is applied

to Model I, or when both methods are applied to a normal X. This can be

verified in the tables up to minor random errors, indicating the effectiveness of

the proposed eigenvalue selection criterion. An exception is that, when p = 6

and X is uniformly distributed on a sphere or in a ball, the improvement by

using the adjusted directional regression is significant in Model I. By carefully

examining which eigenvectors we selected in each sample, the improvement is due

to the non-negligible error in estimating the kernel matrix at the current sample

size, which makes the sample eigenvalues corresponding to the central subspace

possibly not the largest. From Table 7, this possibility vanishes as n increases.

Table 7 suggests that the adjusted and conventional directional regressions

nearly coincide in most cases when p = 10. From an omitted simulation study,

we observed the same phenomenon for the adjusted pHd when p = 20. This is

expected from Theorem 6: when X belongs to the quadratic variance ellipticity

family with sufficiently large dimension p, the conventional second-order inverse

regression methods are consistent and the proposed adjustments are redundant.

8. A Data Example

We applied the adjusted directional regression to the pen-based recognition

of handwritten digits data set, available in the UCI machine learning repository

at https://archive.ics.uci.edu/ml/machine-learning-databases/pendigits/; see also

Li and Wang (2007). Forty-four writers were collected in the data set, each of

whom was asked to write 250 randomly generated digits, ranging from 0 to 9,

on a tablet. The coordinate information of each written digit was recorded and

converted into a 16-dimensional predictor. Interest is in classifying digits based

on the coordinate information and, for this purpose, the data set was divided into

a training set, which consists of the first thirty writers, and a testing set, which

consists of the other fourteen. Since the digits 1 and 7 are sometimes difficult to

distinguish in practice, we focused on the classification of these two digits in the

training set, which includes 779 and 778 observations, respectively.

We assumed the predictor to be elliptically distributed. From an omitted

exploratory data analysis, most components of the predictor have heavy-tailed

https://archive.ics.uci.edu/ml/machine-learning-databases/pendigits/
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distributions, which would adversely affect the stableness of the sample moments.

To address this issue, we applied the transformation in Dong, Yu and Zhu (2015),

which preserves the ellipticity of the predictor. The transformation also enhances

the plausibility of the quadratic variance condition (2.1). For example, taking d =

3 as the working dimension and applying the goodness-of-fit test in the simulation

studies, the averaged p-value was less than 0.01 before the transformation and

0.25 after. Thus, it is reasonable to apply the adjusted directional regression to

the transformed data.

Following Luo and Li (2016), we assumed that d < p(log p)−1, so d ≤ 5.

For each working dimension d in this range, we found that the adjusted and

conventional directional regressions coincided when p was relatively large, which

again conformed to Theorem 6. Thus, we can apply the conventional directional

regression in the data set.

We applied the ladle estimator (Luo and Li, 2016) to determine that d = 3.

The scatter plots for the reduced predictor and its first component are shown

in the lower-left and upper-left panels of Figure 2, respectively. Following Li

and Wang (2007), we also include the response in the latter to enhance the

visualization. Clearly, the first component of the reduced predictor represents the

direction in which the groups mean of the original predictor differ, and the second

and third components represent those in which the group covariance matrices

differ. As the two digits are clearly distinguished in the scatter plot, the reduced

predictor from directional regression is an appropriate classifier.

For reference, we also applied SIR and SAVE. The corresponding scatter

plots are shown in the upper-right and lower-right panels of Figure 2, respec-

tively. Because the response is binary, SIR can only recover an univariate re-

duced predictor. From the scatter plots in the upper panels, this predictor has

the same effect as the first component from directional regression on differentiat-

ing the group means of the original predictor. Thus directional regression is more

comprehensive than SIR. On the other hand, SAVE is effective for the data set

without adjustment and produces similar results to directional regression, as the

corresponding scatter plots are nearly identical up to rotations. This similarity

can also be seen from the fact that the correlation matrix between the two sets

of reduced predictors has determinant 0.988.

Appendix

Proof of Theorem 1. By the ellipticity of X, the diagonal elements of Bγ are
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− −

Figure 2. The vertical axis in the upper panels represents the binary response. The
horizontal axis in the upper-left panel represents the reduced predictor from SIR; that
in the upper-right panel represents the first component of the reduced predictor from
directional regression. The axes in the lower-left panel represent the three components
of the reduced predictor from directional regression, as do those in the lower-right panel
for SAVE. (◦, +) represent observations with digits 1 and 7 correspondingly.

equal, as well as its off-diagonal elements. We denote them by δ and ρ accord-

ingly. Since E(γTX|βTX) = γTβ(βTβ)−1βTX = 0, we have var(γTX|βTX) =

E[(γTX)2|βTX]. By the symmetry of X, we have

0 = E{(γTX)2(βT1X)(βT2X)} = E{E[(γTX)2|βTX](βT1X)(βT2X)}
= aγE{(βT1X)(βT2X)}+ 2ρE{(βT1X)2(βT2X)2}.

Again by the symmetry of X, E[(βT1X)(βT2X)] = 0, which implies that ρ = 0.

Thus Bγ has the form δIp. We further have

1 = E(γTX)2 = aγ + dδ,
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E(X2
1X

2
2 ) = E{(γTX)2(βT1X)2} = aγ + δ{E(X4

1 ) + (d− 1)E(X2
1X

2
2 )},

which together imply that

δ =
E(X2

1X
2
2 )− 1

E(X4
1 ) + (d− 1)E(X2

1X
2
2 )− d

. (A.1)

By the symmetry of X,

E(‖X‖4) = pE(X4
1 ) + p(p− 1)E(X2

1X
2
2 ) = p2E(R4).

Writing U as (U1, . . . , Up)
T, then E(X4

1 )/E(X2
1X

2
2 ) = E(U4

1 )/E(U2
1U

2
2 ), which

is an invariant of R. If X is normally distributed, then this ratio is 3. Thus

E(X2
1X

2
2 ) = E(R4)p/(p + 2) and (A.1) can be written in the form of (2.3). To

see that δ increases with E(R4), by Jensen’s inequality, E(R4) ≥ E2(R2) = 1.

Writing E(R4) as t, we have

∂δ

∂t
∝ p{p (d+ 2) t− d(p+ 2)} − p(d+ 2){p t− (p+ 2)} = 2p(p+ 2) > 0.

Thus δ reaches the minimum value −1/(p − d) at t = 1, and converges to the

least upper bound 1/(d+ 2) if we (hypothetically) allow t to tend to infinity.

Proof of Theorem 2. Let λi(MpHd) be λi and Y −E(Y ) be Yc, where “c” means

“centered”, and assume that the central mean subspace is spanned by the first

d columns of Ip, denoted by {e1, . . . , ed}. By the ellipticity of X, for any i =

1, . . . d and j = d+ 1, . . . , p, we have E(XiXjYc) = E[XiXjE(Yc|X1, . . . , Xd)] =

E[XiE(Xj |X1, . . . , Xd)E(Yc|X1, . . . , Xd)] = 0. Thus

MpHdei = E(XXiYc) = (E(X1XiYc), . . . , E(XdXiYc), 0, . . . , 0)T

and MpHdei ∈ S(e1, . . . , ed), which means that SE(Y |X) can be spanned by a set

of eigenvectors of MpHd. To show (3.1), we can equivalently show that for any

unit-length γ ∈ S⊥(βA0
(MpHd)), γ

TMpHdγ = δ
∑

i∈A0
λi. Again by the ellipticity

of X, we only need to show this when γTX = Xp. By Theorem 1,

γTMpHdγ = E[X2
pYc] = E{E(X2

p |X1, . . . , Xd)Yc} = E{(1− dδ + δ
∑d

i=1X
2
i )Yc}

= δ
∑d

i=1E(X2
i Yc) = δ

∑
i∈A0

λi.

To show that 1 ∈ A0 when p > 2d and MpHd 6= 0, the latter implying λ1 6= 0,

it suffices to show that |δ
∑

i∈A0
λi| < |λ1|. This is straightforward, since the

left-hand side is bounded from above by d|δ||λ1| and, by Theorem 1, |δ| < 1/d

in this case.

Proof of Theorem 3. We denote β(MpHd) by β and λi(MpHd) by λi for each

i = 1, . . . , p, and denote β̂ similarly. By Theorem 2, βA0
spans the central mean

subspace. Let f be the mapping such that for any A ∈ {1, . . . , p}d,
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f(A) =
∑

j 6∈A |λj − δ
∑

i∈A λi|.

Then f ≥ 0 and the uniqueness of the solution to (3.1) is equivalent to the

uniqueness of the minimizer of f . Thus f(A) = 0 if and only if A = A0. For any

set A, denote (3.2) as f̂(A). Since δ̂ is a
√
n-consistent estimator of δ, by Li (1992)

and Zhao, Krishnaiah and Bai (1986), f̂(A) = f(A)+OP (n−1/2). Therefore, f̂ is

minimized at A0 in probability. To see the
√
n-consistency of the adjusted pHd,

by Zhao, Krishnaiah and Bai (1986) again, S(β̂A0
) is a

√
n-consistent estimator

of S(βA0
). Therefore, for any {cn : n ∈ N} ∈ R such that cn →∞,

P (‖Π(β̂Â)−Π(βA0
)‖ > cnn

−1/2)

= P (‖Π(β̂A0
)−Π(βA0

)‖ > cnn
−1/2|Â = A0)P (Â = A0)

+ P (‖Π(β̂Â)−Π(βA0
)‖ > cnn

−1/2|Â 6= A0)P (Â 6= A0)

≤ P (‖Π(β̂A0
)−Π(βA0

)‖ > cnn
−1/2) + P (Â 6= A0) = o(1).

This completes the proof.

Proof of Theorem 4. Here we assume that the central subspace is spanned by

the first d columns of the identity matrix Ip = {e1, e2, . . . , ep}. By Li and Wang

(2007), MDR can be alternatively written as

MDR = 2E{E2(XXT|Y )}+ 2E2{E(X|Y )ET(X|Y )}
+ 2E{ET(X|Y )E(X|Y )}E{E(X|Y )ET(X|Y )} − 2Ip.

By the ellipticity of X, for any i = 1, . . . d and j = d + 1, . . . , p, we have

E[Xj(1, Xi)|Y ] = E[E(Xj |X1, . . . , Xd)(1, Xi)|Y ] = 0. Thus

eTjMDRei = 2
∑p

l=1E{E(XjXl|Y )E(XlXi|Y )}
+ 2

∑p
l=1E{E(Xj |Y )E(Xl|Y )}E{E(Xl|Y )E(Xi|Y )}

+ 2
∑p

l=1E{E
2(Xl|Y )}E{E(Xj |Y )E(Xi|Y )} − 2eTj ei

= 0,

and MDRei ∈ S(e1, . . . , ed), which means that SY |X can be spanned by a set

of eigenvectors of MDR. To show (4.1), we can equivalently show that for any

unit-length γ ∈ S⊥Y |X , γTMDRγ is equal to the right-hand side of (4.1). Again

by the ellipticity of X, we only need to show this when γTX = Xp. For any

j = d + 1, . . . , p − 1, we have E(XpXj |Y ) = E{E(XpXj |X1, . . . , Xd)|Y } = 0.

Since E(X2
p |Y ) = E{E(X2

p |X1, . . . , Xd)|Y }, together with Theorem 1,

γTMDRγ = 2
∑p

l=1E{E
2(XpXl|Y )} − 2

= 2E{E2(X2
p |Y )} − 2
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= 2E[E2{E(X2
p |X1, . . . , Xd)|Y }]− 2

= 2E{E2(1− dδ + δ
∑d

i=1X
2
i |Y )} − 2

= 2(1− dδ)2 + 4δ(1− dδ)
∑d

i=1E(X2
i )

+ 2δ2
∑d

k=1

∑d
l=1E{E(X2

k |Y )E(X2
l |Y )} − 2

= − 2d2δ2 + 2δ2
∑d

k=1

∑d
l=1E{E(X2

k |Y )E(X2
l |Y )}.

To show that 1 ∈ A0 when p > 2d and MDR 6= 0, the latter implying λ1 6= 0,

it suffices to show that |γTMDRγ| < |λ1|. Since MDR is positive semi-definite

(Li and Wang (2007)), this is equivalent to that γTMDRγ < λ1. For each k =

1, . . . , d, we have

λ1 ≥ eTkMDRek ≥ 2
∑d

j=1E{E2(XkXj |Y )} − 2 ≥ 2E{E2(X2
k |Y )} − 2.

Since for each l = 1, . . . , d, E{E(X2
k |Y )E(X2

l |Y )} ≤
∑

i=k,lE{E2(X2
i |Y )}/2, we

have

eTpMDRep ≤ −2d2δ2 + d2δ2(λ1 + 2) = d2δ2λ1.

By Theorem 1, |δ| < 1/d in this case. Thus for any unit-length γ ∈ S⊥Y |X ,

γTMDRγ < λ1, which means that any eigenvector associated with λ1 must be in

SY |X . Hence 1 ∈ A0.

Proof of Theorem 5. The proof is similar to that of Theorem 3, and is omitted.

Proof of Theorem 6. Since E{(R(p))4} → 1, we have δ(p) → 0. By condition (a),

d(p) < 2p for all large p, thus max{β(p)i

T
MDRβ

(p)
i , i = 1, . . . , d(p)} = λ

(p)
1 . From

the proof of Theorem 4 we have that, for any unit-length γ ∈ S⊥Y |X ,

γTMDRγ ≤ [d(p)]2[δ(p)]2λ
(p)
1 = o(λ

(p)
1 ).

Condition (b) then implies the conclusion of the theorem.
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