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Abstract: We consider the problem of low rank matrix recovery in a stochastically

noisy high-dimensional setting. We propose a new estimator for the low rank ma-

trix, based on the iterative hard thresholding method, that is computationally effi-

cient and simple. We prove that our estimator is optimal in terms of the Frobenius

risk and in terms of the entry-wise risk uniformly over any change of orthonormal

basis, allowing us to provide the limiting distribution of the estimator. When the

design is Gaussian, we prove that the entry-wise bias of the limiting distribution

of the estimator is small, which is of interest for constructing tests and confidence

sets for low-dimensional subsets of entries of the low rank matrix.
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1. Introduction

High-dimensional data have generated a great challenge in different fields of

statistics, computer science, and machine learning. To consider cases where the

number of covariates is larger than the sample size, new methodologies, applica-

ble for the model under some structural constraints, have been developed. For

instance, there have been substantial works under the sparsity assumption, in-

cluding sparse linear regression, sparse covariance matrices estimation, and sparse

inverse covariance matrices estimation (see e.g. Meinshausen and Bühlmann

(2006); Bickel, Ritov and Tsybakov (2009); Huang, Ma and Zhang (2008); Fried-

man, Hastie and Tibshirani (2008); Cai and Zhou (2012)). In this paper, we

focus on the problem of low rank matrix recovery and uncertainty quantification.

There have been quite a few works on estimating low rank matrices in the

matrix regression setting (the trace regression setting, the matrix-compressed

sensing setting, or the quantum tomography setting when the parameter is a

density matrix). Many authors (e.g. Candès and Recht (2009); Candès and Tao
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(2010); Recht (2011); Gross (2011)) considered the exact recovery of a low-rank

matrix based on a subset of uniformly sampled entries. Recht (2011), Candès and

Plan (2011), Flammia et al. (2015), Gross et al. (2010), and Liu (2011) considered

matrix recovery based on a small number of noisy linear measurements in the

framework of the Restricted Isometry Property (RIP). Negahban and Wainwright

(2011) proved non-asymptotic bounds on the Frobenius risk, and investigated

matrix completion under a row/column weighted random sampling. Koltchinskii,

Lounici and Tsybakov (2011) proposed a nuclear norm minimisation method and

derived a general sharp oracle inequality under the condition of the restricted

isometry property. Cai and Zhang (2015) considered a rank-one projection model

and used constrained nuclear norm minimization method to estimate the matrix.

Flammia et al. (2015) and Gross et al. (2010) considered a specific quantum

tomography problem where the parameter is a density matrix (for more details,

please see Subsection 4.2), and Liu (2011) proved that the quantum tomography

design setting satisfies the RIP. Koltchinskii (2011) proposed an estimator based

on an entropy minimisation for solving a quantum tomography problem.

Goldfarb and Ma (2011) and Tanner and Wei (2012) adapted the iterative

hard thresholding method (first introduced in the sparse linear regression set-

ting, see e.g. Needell and Tropp (2009); Blumensath and Davies (2009)) to the

problem of low rank matrix recovery when the noise is non-stochastic and of

small L2 norm. This procedure has the advantage of being computationally effi-

cient. In the same vein, but applied to the more challenging stochastically noisy

setting, Agarwal, Negahban and Wainwright (2012) introduced a soft threshold-

ing technique that provides efficient result in this setting in Frobenius norm, see

also Bunea, She and Wegkamp (2011), Chen and Wainwright (2015), and Klopp

(2015) for other thresholding methods in related settings that provide results in

Frobenius norm.

An important problem is to understand the uncertainty associated to these

statistical methodologies, by e.g. characterizing the limiting distribution of the ef-

ficient estimators. Results in this area for high dimensional models are still scarce,

available mainly for the sparse (generalised) linear regression models (Zhang and

Zhang (2014); Javanmard and Montanari (2014); van de Geer et al. (2014); Nickl

and van de Geer (2014)). In the papers Zhang and Zhang (2014), Javanmard

and Montanari (2014), and van de Geer et al. (2014), the authors focus first on

constructing an estimator for the sparse parameter that has good properties in

L∞ risk, then use this result to exhibit the limiting distribution of their esti-

mator. Knowing this enables the construction of tests and confidence sets for
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low-dimensional subsets of parameters.

The construction of an estimator that has an explicit limiting distribution

does not exist in the low rank matrix recovery setting. To the best of our knowl-

edge, moreover, the theoretical results on the estimation of the parameter, in the

noisy setting, are derived in Frobenius risk.

We consider the problem of constructing an estimator for low-rank matrix in

a stochastically noisy high-dimensional setting, under the assumption that a RIP-

type isometry condition is satisfied. We provide error bounds for our estimator

in all p Schatten norms for p > 0. We prove in particular that this estimator

has optimal Frobenius and operator norm risk by proving that it has optimal

L∞ risk performance uniformly over any change of orthonormal basis. A slight

modification of our estimator has an explicit Gaussian limiting distribution with

bounded bias in operator norm and, when the design consists of uncorrelated

Gaussian entries, we prove that the bias in L∞ entry-wise norm is bounded

as well; the last is useful for testing hypotheses and constructing confidence

intervals for each parameter of interest, similar to the ideas in Zhang and Zhang

(2014), Javanmard and Montanari (2014), and van de Geer et al. (2014). Our

estimator is computationally efficient with an explicit algorithm. This algorithm

is inspired by the iterative hard thresholding that refines its estimation of the

matrix by iteratively estimating the low rank sub-space where the matrix’s image

is defined. It requires only O(log n) iteration steps to converge approximately,

and the computational complexity of the method is of order O(nd2 log n) where

d is the dimension of the matrix and n is the sample size.

We provide some simulations to illustrate the efficiency of our method and

explain how it can be used to create a confidence interval for the entries of the

low rank matrix. We apply our method to a specific quantum tomography appli-

cation, multiple ion tomography (see, e.g. Guta, Kypraios and Dryden (2012);

Gross et al. (2010); Butucea, Guţă and Kypraios (2015); Haeffner et al. (2005);

Acharya, Kypraios and Guta (2015); Holevo (2001); Nielsen and Chuang (2000)),

where the assumptions required by our method are naturally satisfied (see e.g.

Liu (2011); Flammia et al. (2015)). We compare our method with other exist-

ing estimation methods for the trace regression setting (Candès and Tao (2010);

Gross et al. (2010); Koltchinskii, Lounici and Tsybakov (2011); Flammia et al.

(2015)) using the gradient descent implementation of Agarwal, Negahban and

Wainwright (2012) and regularized maximum likelihood based procedures (Bu-

tucea, Guţă and Kypraios (2015); Acharya, Kypraios and Guta (2015)).

In the online supplementary material, we adapt our method to the setting of
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sparse linear regressionm and provide an estimator that has an explicit limiting

distribution (recovering the results of Zhang and Zhang (2014); Javanmard and

Montanari (2014); van de Geer et al. (2014)).

2. Setting

2.1. Preliminary notation

For T > 0, q ∈ N, and u ∈ Cq, we write bucT =: v for the hard thresholded

version of u at level T , vi = ui1{|ui| ≥ T} for i = 1, . . . , q. For q > 0 and u ∈ Rq,

we write ‖u‖2 =
√∑

i≤q |ui|2, and ‖u‖∞ = supi |ui|.
For a q× q complex matrix A, we write AT as the conjugate transpose of A,

tr(A) =
∑

k Ak,k for the trace of A, and diag(A) for the matrix whose diagonal

entries are the same as A while its non-diagonal entries are all zeros. We write

‖A‖∞ = maxi,j |Ai,j |, and ‖A‖22 =
∑

i,j A
2
i,j . We write the operator norm of A

as ‖A‖S = maxi λi, where the λi are the singular values of A, and the Schatten

p norm of A for p > 1 as ‖A‖Sp
= (
∑

i λ
p
i )

1/p, noting that ‖A‖S2
= ‖A‖2.

For T > 0, we write bAcT for the hard thresholded version of A at level T

for each entry, Vi,j = Ai,j1{|Ai,j | ≥ T} for i, j = 1, . . . , q.

2.2. Models

Let d, n ∈ N. Let M be the set of d × d matrices, M(k) be the set of

d × d complex matrices of rank less than or equal to k, and MΩ for the set of

orthonormal matrices in M.

For Xi ∈ M,Θ ∈ M, we consider the matrix regression problem, for any

i ≤ n,

Yi = tr
(
(Xi)TΘ

)
+ εi,

where ε ∼ N (0, In) (our results hold in the same way for any sub-Gaussian

independent noise ε: see Remark 3), and d ≤ n but d2 � n. We write X for the

linear operator such that, for any A ∈M,

X(A) = (tr((Xi)TA))i≤n.

The model can be rewritten as

Y = X(Θ) + ε,

where Y = (Yi)i≤n. This model is directly related to the quantum tomography

model (Flammia et al. (2015); Gross et al. (2010); Liu (2011); Gross (2011);

Koltchinskii (2011)), also to e.g. matrix completion (Negahban and Wainwright
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(2011); Koltchinskii (2011)).

Assumption 1. Let K ≤ d. For any k ≤ 2K, it holds that

sup
A∈M(k)

∣∣∣ 1
n
‖X(A)‖22 − ‖A‖22

∣∣∣ ≤ c̃n(k)‖A‖22,

where c̃n(k) > 0.

Remark 1. This assumption is related to the Restricted Isometry Property.

Typically, for uncorrelated Gaussian design with mean 0 and variance 1 entries,

it holds with probability larger than 1 − δ for c̃n(k) ≤ C
√
kd log(1/δ)/n, where

C > 0 is a universal constant. For the Pauli design used in quantum tomography,

it holds with probability larger than 1− δ for c̃n(k) ≤ C
√
kd log(d/δ)/n, where

C > 0 is a universal constant (Liu, 2011).

3. Main Results

As a generalization of sparsity constraints in linear regression models, we

impose a rank k ≤ d constraint on a matrix Θ ∈ Rd×d. This constraint arises

in such applications as quantum tomography, matrix completion, and matrix

compressed sensing (see e.g. Flammia et al. (2015); Gross et al. (2010); Liu

(2011); Gross (2011); Negahban and Wainwright (2011); Koltchinskii, Lounici

and Tsybakov (2011)).

3.1. Method

We take the parameters B > 0, δ > 0,K > 0. Here δ is a small probability

that calibrates the precision of the estimate. The parameter K is an upper bound

on two times the actual low rank of the parameter Θ; our final results will not

depend on it as long
√
Kc̃n(K) � 1. The parameter B is an upper bound on

the Frobenius norm of the parameter Θ.

We set the initial values for the estimator Θ̂0 and the threshold T0 as

Θ̂0 = 0 ∈ Rd×d, T0 = B ∈ R+.

We update the thresholds

Tr = 4c̃n(2K)
√
KTr−1 + υn := ρTr−1 + υn,

where υn = C
√
dlog(1/δ)/n, C is an universal constant (see Lemma 2 in online

supplement) and ρ := 4c̃n(2K)
√
K.

Set recursively, for r ∈ N, r ≥ 1,

Ψ̂r =
1

n

n∑
i=1

(Xi)T
(
Yi − tr(XiΘ̂r−1)

)
∈ Rd×d,
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and let U r, V r ∈ M2
Ω be two orthonormal matrices that diagonalise Θ̂r−1 + Ψ̂r.

Then set

Θ̂r = U rb(U r)T (Θ̂r−1 + Ψ̂r)V rcTr
(V r)T . (3.1)

This procedure provides a sequence of estimates, that is, with high probability,

close to the true Θ as soon as r is of order log(n).

Remark 2. For implementing our method we need the quantities ρ, υn, T0, and

the stopping time r. We describe in Subsection 3.3 how to choose ρ, υn, T0. In

particular, T0 can be chosen in a data driven way.

This method is related to Iterative Hard Thresholding (IHT), a method

that has been developed for the sparse regression setting (see e.g. Blumensath

and Davies (2009); Needell and Tropp (2009)). It is less straightforward to see

this in this setting. In the sparse regression setting, we adapt our method in

Subsection S2 of online supplement. For a discussion of the relation between our

method and IHT, see the Remark 2 in online supplement. The IHT algorithms

have been proved to work in settings where the noise is small and non-stochastic

(see e.g. Blumensath and Davies (2009); Needell and Tropp (2009); Goldfarb

and Ma (2011); Tanner and Wei (2012)), but apparently there are no results on

IHT in a stochastically noisy setting.

3.2. Results for the low rank matrix recovery

Main result for our thresholded estimator We now show that the estimate

Θ̂r after O(log(n)) iterations has at most rank k, and its entry-wise L∞ risk and

Frobenius risk are bounded with the optimal rates.

Theorem 1. If Assumption 1 holds and c̃n(2K)
√
K < 1/4, with r ≈ O(log(n)),

we have, for a constant C1 > 0, that with probability larger than 1 − δ and for

any k ≤ K/2,

sup
Θ∈M(k),‖Θ‖2≤B

‖Θ− Θ̂r‖S ≤ C1

√
d log(1/δ)

n
,

sup
Θ∈M(k),‖Θ‖2≤B

rank(Θ̂r) ≤ k,

and, for any p > 0,

sup
Θ∈M(k),‖Θ‖2≤B

‖Θ− Θ̂r‖Sp
≤ C1k

1/p

√
d log(1/δ)

n
.

Observe that our estimate attains the minimax optimal Schatten p risk; other

estimates in the literature also attain this for e.g. p = 2. It is also minimax-
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optimal in operator norm (or entry-wise matrix L∞ risk), and the entry-wise

error is not more than
√
d/n with high probability for any orthonormal change

of basis of the matrix Θ. This is useful for measuring the uncertainty of an

estimate (in particular since it does not require the a priori knowledge of the

rank of the matrix Θ).

Asymptotic normality results To prove asymptotic normality, we modify the

estimator of Theorem 1. Consider the estimator Θ̂r and define

Θ̂ = Θ̂r +
1

n

n∑
i=1

(Xi)T [Yi − tr((Xi)T Θ̂r)].

Theorem 2. If

Z :=
1√
n

∑
i≤n

(Xi)T εi,

∆ :=
√
n(Θ̂r −Θ)− 1√

n

∑
i≤n

(Xi)T tr
(
(Xi)T (Θ̂r −Θ)

)
,

then √
n(Θ̂−Θ) = ∆ + Z, (3.2)

where Z|X ∼ N
(

0,
(
1/n

∑
i≤n(Xi

j,j′X
i
l,l′)
)
j,j′,l,l′

)
.

For r ≈ O(log(n)), if Assumption 1 holds for someK > 0, c̃n(2K)
√
K = o(1),

the rank of Θ is smaller than 2K, and its Frobenius norm is bounded by B, there

is a constant C1 > 0 such that with probability larger than 1− δ
‖∆‖S√

d
≤ 4C1c̃n(2K)

√
K log(

1

δ
) = oP(1).

If the elements in the design matrices Xi ∈ M are i.i.d. Gaussian with mean 0

and variance 1, and max(K2d,Kd log(d)) = o(n), we have that ‖∆‖∞ = oP(1).

Note that this implies the previous result.

This result follows the works in the context of sparse linear regression of Zhang

and Zhang (2014), Javanmard and Montanari (2014), and van de Geer et al.

(2014), and implies that there exists an estimator of Θ that has a Gaussian lim-

iting distribution, and whose rescaled bias ∆ with respect to Θ can be bounded

in operator norm under Assumption 1, and in L∞ norm as well when the design

is Gaussian.

Remark 3. Theorems 1 and 2 are proved for Gaussian noise ε, but generalise to

independent, sub-Gaussian noise with a similar, but more technical proof based

on Talagrand’s inequality. Here Z, conditioned on the design X, would not be
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Gaussian, but would have a limiting Gaussian distribution using the Central

Limit Theorem.

Stopping rule r Theorem 1 applies after r = O(log(n)) iterations of our thresh-

olding strategy. It is possible to propose a data-driven stopping rule that per-

forms well: for a desired precision e > 0, stop the algorithm as soon (after having

thresholded a last time) as

Tr ≤ (1 + e)
1

1− ρ
vn. (3.3)

Write r̂ for the time the stopping rule stops.

Theorem 3. If Assumption 1 holds and c̃n(2K)
√
K < 1/8, for e ≤ 0.1 in (3.3),

Θ̂r̂ satisfies, with probability larger than 1− δ and for any k ≤ K/2,

sup
Θ∈M(k),‖Θ‖2≤B

‖Θ− Θ̂r̂‖S ≤
1.1

1− ρ
vn = 2.2C

√
d log(1/δ)

n
,

sup
Θ∈M(k),‖Θ‖2≤B

rank(Θ̂r̂) ≤ k,

and so for any p > 0,

sup
Θ∈M(k),‖Θ‖2≤B

‖Θ− Θ̂r̂‖Sp
≤ 2.2C(2k)1/p

√
d log(1/δ)

n
,

r̂ ≤ 1 +
log
(

10(1− ρ)T0/(vn)
)

log(1/ρ)
≤ O(log(n)).

This empirical stopping rule guarantees minimax optimal results in less than

log(n) iterations, and Theorem 2 holds using this stopping rule; this last can be

proved in the same way as Theorem 3 is proved.

3.3. Discussion

Comparison of our results with the literature Our Theorem 1 gives bounds

for our estimators in all Schatten p > 0 norms (including the operator norm,

and therefore uniform entry wise bounds in all rotation basis). These results

are minimax optimal in both Frobenius and operator norm. The corresponding

lower bound in Frobenius norm can be found in e.g. Candès and Plan (2011)

under a same assumption or Theorem 5 of Koltchinskii, Lounici and Tsybakov

(2011) under a related assumption. The corresponding lower bound in opera-

tor norm can be found in e.g. Carpentier et al. (2015). Koltchinskii and Xia

(2015) contains further lower bounds results proving that the operator norm rate
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d/n (and associated Schatten q norm k1/q

√
d/n) is optimal also in the case of

quantum tomography under the additional assumptions that the parameter is a

density matrix and that the design is random Pauli. Our method is apparently

the first iterative method that has such an optimality property in operator norm;

Koltchinskii and Xia (2015) provides results for Schatten norms with q ∈ [1, 2],

but not for other Schatten norms. A slight modification of our estimator has an

explicit Gaussian limiting distribution, and apparently the first iterative method

for low rank matrix recovery with such a property. The computational complexity

of our algorithm is as low as for any procedure based on iterative hard thresh-

olding; see the papers (Goldfarb and Ma (2011) and Tanner and Wei (2012)).

Our assumption 1 is a strong RIP condition. But it is satisfied in the interesting

application of multiple ion tomography for the natural Pauli design when the

number of settings is large enough, see Subsection 4.2.

Operator norm bounds provide an entrywise bound up to any change of or-

thonormal basis, and provide a bound on the eigen values; since these bounds do

not depend on the true rank k, they can be used to implement conservative con-

fidence sets. As highlighted in the papers Zhang and Zhang (2014), Javanmard

and Montanari (2014), and van de Geer et al. (2014), having a bound on the

entrywise risk, and then an estimator with explicit limiting distribution, leads

to construct tests and confidence intervals for subsets of coordinates of the pa-

rameter Θ. The bound on the bias term ∆ in L∞ norm in Theorem 2 requires

that the design be Gaussian, but the bound on it requires only the fact that

Assumption 1 is satisfied.

Stopping rule r We have defined an empirical stopping rule, see (3.3) and

Theorem 3, and use it for all the experiments in Section 4.

Calibration of the parameters of the proposed method There are three quan-

tities that need to be calibrated: ρ and υn enter in the definition of the thresholds

sequence (Tr)r. ρ controls the rate at which we make our threshold decay, and

υn/(1− ρ) is the quantity toward which it converges when r goes to infinity; T0

is the initialisation of the threshold sequences. Here are some comments on how

to choose them.

Rate of decay ρ: The parameter ρ can be taken between 1 and 4
√
Kc̃n(2K)

where K is an upper bound on the rank of the parameter and c̃n(2K) is the

constant associated to the design such that Assumption 1 in the Supplement

is satisfied. While one may be unable to compute K or c̃n(2K) without more

assumptions on the design, the random Pauli design for quantum tomography
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has an upper bound on c̃n(2K) for all K that is of order
√
Kd log(d)/n with high

probability. In this design if n is large enough, we know that taking ρ = 1/2 will

work.

Smallest threshold calibration υn: The interpretation and theoretical

value of υn is clear: it should be taken to be larger than the δ quantile of the

LHS quantity defined in Equation (S1.5), divided by ‖A‖2. As we do not have

access to this quantile, we calibrate it as an empirical estimator of this asymptotic

quantile (using Theorem 2).

Initialisation threshold T0: The constant T0 needs to be taken as an

upper bound on the Frobenius norm of Θ. Estimating an upper bound on ‖Θ‖22
from the data is easy under Assumption 1 in the Supplement:

1

n
‖Y ‖22(1 + κ)

overestimates ‖Θ‖22. In our simulations, we propose a slightly more refined heuris-

tic upper bound and use the same T0 and Tr in Section 4 and 4.2.

In specific cases, we know enough about the design and the noise level to

know that these calibrations will work, provided that the target matrix is indeed

low rank.

4. Experiments

In this section we present some experiments, first some simulation for the

construction of confidence intervals, and then a formal comparison of our thresh-

olded estimator with other methods for multiple ion tomography.

4.1. Simulation results for the construction of entry-wise confidence

intervals

We performed experiments for low-rank matrix recovery, with matrix di-

mension d. We considered a Gaussian design where the Xi
j,j′ ∼ N (0, 1) and

independent. We also considered a Gaussian uncorrelated noise ε ∼ N (0, In).

We took a parameter Θ of rank k stochastically generated in an isotropic way,

as

Θ =

k∑
l=1

NlN
T
l , where, Nl ∼ N (0, Id).

We implemented our method choosing a data-driven heuristic for the choice

of our parameters. We first set Θ̂0 = 0. We set, for any r ≥ 1,

σ̂2
r = ‖Y − (tr

(
(Xi)T Θ̂r−1

)
i≤n‖

2
2

1

n
, (4.1)
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υn(r) = σ̂r

√
d

n
q90%, (4.2)

where q90% is the 90% quantile of the N (0, 1). Here, υn(r) replaces υn, and is a

heuristic high probability bound on the error for each coordinate.

We set

T1 = B = σ̂1 + υn(1), (4.3)

which is by construction larger than the Frobenius norm of Θ with high proba-

bility, and

Tr = ρTr−1 + υn(r), (4.4)

where we took ρ = 1/2 (1/2 so that the decay is not too fast, but 1/(1 − ρ) is

not too large).

We used the heuristic stopping rule described in Equation (3.3), iterating

until

Tr ≤ (1 + e)× 1

1− ρ
υn(r) = 2.2υn(r),

for e = 0.1.

We constructed, using the limiting distribution results provided in Theorem

2, a confidence set for the all the entries of Θ so that, for any entry (m,m′),

Cm,m′

n = [θ̂m,m′ − cm,m′ , θ̂m,m′ + cm,m′ ],

where

cm,m′ = σ̂rΣ̂m,m′
q95%√
n
,

and Σ̂2
m,m′ = 1/n×

∑
i≤n(Xi

m,m′)2.

We provide several results, depending on the values of (n, p, k), averaged

over 100 iterations of simulations. For these simulations, we present three kinds

of results: Figure 1 presents, for different values of p, k, and increasing n, the

logarithm of the rescaled Frobenius risk of the estimate Θ̂,

log

(
‖Θ̂−Θ‖2
‖Θ‖2

)
.

Figure 2 presents, for different values of p, k, and increasing n, the logarithm of

the averaged diameter of the confidence intervals Cm,m′

n ,

log

(
1

d2

∑
m,m′

cm,m′

)
.

Figure 3 gives, for different values of p, k, and increasing n, the averaged coverage

probability of the confidence intervals Cm,m′

n ,
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Figure 1. Logarithm of the rescaled Frobenius risk of the estimate in function of n, for
different values of p, k. The solid line is the average over 100 iterations, the dotted lines
form 95% confidence intervals.

1

d2

∑
m,m′

1{θm,m′ ∈ Cm,m′

n }.

These graphs exhibit 95% confidence intervals (upper and lower 2.5% quantile

values from 100 iterations) around their means (dotted lines in the graphs, the

solid line being the mean).

These figures exhibit different behaviours depending on the difficulty of the

problems (increasing with p, and more importantly with k). The graphs in

Figure 1 for k = 3 and p ∈ {64, 100} exhibit first a fast decay of the risk, until

some critical threshold n = ckd, with c seemingly between 10 and 20. At this

point, one can see that the method recovers in most case the true rank k of the

matrix, whereas before it recovered only a smaller rank approximate of Θ—with

a too small n, it could not distinguish all the signal from the noise, and the fact

that it gradually does for larger n explains the fast decay of the logarithm of the

rescaled risk. Subsequently, the curve has a kink and the decay becomes slower,
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Figure 2. Logarithm of the averaged rescaled length of the confidence intervals of the in
function of n, for different values of p, k. The solid line is the average over 100 iterations,
the dotted lines form 95% confidence intervals.

after which all the k “rank directions” have been identified, and the logarithm

of the rescaled risk starts decreasing slower, according to the theoretical rate of

− log(n). The graphs in Figure 1 for k = 10 and p ∈ {64, 100} exhibit mainly the

first regime, since k is larger and the second regimes comes for larger values of

n—empirically, we can observe that the method recovers most of the time all k

“directions” as soon as n = 4,000 for p = 64, or as soon as n = 6,000 for p = 100.

Figure 2 is not surprising since length is supposed to reflect the risk. The

averaged coverage of these intervals in Figure 3 is in average larger than 87% in

all cases, and in more than 95% of the cases, it is higher than 74% in all cases.

4.2. Quantum tomography experiments

4.2.1. Description of the ion tomography setting

An important application to which our method can be applied is the estima-

tion of quantum states.

We consider estimating the joint quantum state of m two-dimensional sys-
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Figure 3. Averaged coverage of the confidence intervals of the in function of n, for
different values of p, k. The solid line is the average over 100 iterations the dotted lines
form 95% confidence intervals.

tems (qubits), as encountered in ion trap quantum tomography (see Guta, Kypraios

and Dryden (2012); Gross et al. (2010); Butucea, Guţă and Kypraios (2015); Ha-

effner et al. (2005); Acharya, Kypraios and Guta (2015), or Holevo (2001); Nielsen

and Chuang (2000) for textbooks on this problem). Such a system’s quantum

state can be represented by a positive semi-definite unit trace complex matrix Θ

(a density matrix ) of dimension d := 2m.

For each individual qubit, the experimenter can measure one of the three

Pauli observables described by the 2 by 2 Pauli matrices σ1, σ2, σ3, where

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
, (4.5)

and each of these measurements may yield one of two outcomes, denoted by +1

and −1 respectively.

An experiment that describes the measurement for each of the m qubits

is then defined by a setting S = (s1, . . . , sm) where each sl ∈ {σ1, σ2, σ3} for

l ≤ m, which specifies which of the 3 Pauli observables is measured for each
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qubit. For each fixed setting S, the measurement produces random outcomes

O ∈ {+1,−1}m, with expected probability pO,S = tr(PO,SΘ), where PO,S =

πo1,s1 ⊗ . . . ,⊗πom,sm , with πol,sl is the eigen projector of the the 2 by 2 Pauli

matrix sl associated to the eigen value ol
Set

σ0 =

[
1 0

0 1

]
(4.6)

for the last 2× 2 Pauli matrix such that (σi)i∈{0,...,3} form an orthogonal basis of

C2×2. Let O be the outcome of an experiment given a setting S = (s1, . . . , sm)

(where each sl ∈ σ1, σ2, σ3). Write S̃(E) for a setting where a subset E ⊂
{1, . . . ,m} of the m matrices sl of this setting have been replaced by σ0, and Õ(E)

for the outcome where the same subset E of the m elements ol have been replaced

by 1. Since the only eigen value of σ0 is 1, the outcome of the measurement of

a qubit by σ0 is always 1. This implies, in particular, that the distribution of

Õ(E) is the same as the distribution of the outcome of an experiment when the

measurement setting is S̃(E). For this reason, measuring according to setting

S gives information about all settings S̃(E) for any subset E of {1, . . . ,m}.
Instead of measuring all settings which are tensor products of 2×2 Pauli matrices

σ0, . . . , σ3, it is enough to measure all settings which are tensor products of

2×2 Pauli matrices {σ1, σ2, σ3}, as they provide information about corresponding

settings that involve σ0. If one measures all 3m settings that correspond to the

settings S = (s1, . . . , sm) where each sl ∈ {σ1, σ2, σ3}, we have observations

about all measurement directions, and our measurement setting is complete.

We are interested in dealing with situations where one does not want to

observe all 3m settings, and where one has only a number of settings N ≤ 3m.

We consider a random measurement setting as in Flammia et al. (2015):

each sl in S is chosen uniformly at random among σ1, . . . , σ3, with N the total

number of measurement settings. For each chosen measurement setting Si with

i ≤ N , we observe T independent outcomes Ot,Si

that are observations according

to setting Si.

4.2.2. Expression of the outcomes in the trace regression model

It is often convenient to express the information contained by a measurement

(S,O) in a way that involves tensor products of 2×2 Pauli matrices, rather than

their spectral projections, see Flammia et al. (2015). Indeed, the set of matrices

that are created by m tensor products of 2×2 Pauli matrices σ0, . . . , σ3 is exactly
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the set of 2m × 2m = d× d Pauli matrices rescaled by
√
d (introduced briefly in

Remark 1), the d× d rescaled Pauli basis. Indeed if f(O) =
∏

l ol, then

tr((s1 ⊗ · · · ⊗ sm)Θ)

=
∑

O∈{1,−1}m

(∏
l

ol

)
tr
(

(πs1,o1 ⊗ · · · ⊗ πsm,om)Θ
)

= EO|S
(
f(O)

)
,

where EO|S is the expectation according to the outcome O when measurement S

is chosen. In this sense, the measurement described by the d × d rescaled Pauli

matrix PS = s1 ⊗ · · · ⊗ sm can be measured by the parity of the spins f(O) that

one gets when performing measurement S: f(O)|S is a random variable that is 1

with probability
(
tr(PSΘ) + 1

)
/2, and −1 with probability 1−

(
tr(PSΘ) + 1

)
/2.

Its expectation is tr(PSΘ) as noted. We write R(tr(PSΘ)) for this distribution.

We observe at each measurement Si, for each replication t ≤ T and for all

E ⊂ {1, . . .m},
ySi,E = f(Õt,Si(E)) ∼ R(tr(PS̃i(E)Θ)).

In our trace regression model, we can average the observations f(Õt,Si(E))

to obtain, for any i ≤ s and for all E ⊂ {1, . . .m},

ȲSi,E =
1

T

∑
t≤T

ȳtSi,E = tr(PS̃i(E)Θ)) + ε̄Si,E ,

where ȳtSi,E is the tth repetition (among T iterations) of the observation and

where ε̄Si,E is the averaged noise and is such that E(Ot,Si )|Si ε̄Si,E = 0, and such

that ε̄Si,E is sub-Gaussian has a sum of bounded random variables satisfying

E(Ot,Si ))|Si exp(λε̄Si,E) ≤ exp(λ2/T ) for any λ ≥ 0.

For Assumption 1 to be satisfied for rank k matrices for a large enough

number of settings N , we need to rescale our data. We set

YSi,E =
√
d3−|E|/2

(3

4

)m/2
ȲSi,E =

√
d3−|E|/2

(3

4

)m/2
tr(PS̃i(E)Θ)) + εSi,E ,

where |E| is the cardinality of E, and where εSi,E is the rescaled noise such that

E(Ot,Si )|SiεSi,E = 0, and such that εSi,E is sub-Gaussian and satisfies E(Ot,Si )|Si

exp(λεSi,E) ≤ exp(λ23−|E|
(

3
2

)m
/T ) for any λ ≥ 0. It is a direct consequence

from results of Liu (2011) and our Remark 1 that if N ≥ O(k2d log(d)), then

with high probability on the random draws of our settings we have Assumption 1

satisfied for rank k matrices. We can therefore apply our method and other low

rank recovery methods such as trace regression methods to our rescaled data
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Figure 4. Squared Frobenius norm (L2), operator norm (Oper), entrywise L∞ norm
(Linf) and Shatten 1 norm (Shatten) of Θ̂−Θ in function of α (and therefore in function
og the number of settings N), for different values of d for replication T = d and k = 1
using the three methods described.

(
YSi,E ,

√
d3−|E|/2

(3

4

)m/2
PS̃i(E)

)
i≤N,E⊂{1,...,m}

. (4.7)

4.2.3. Experimental results

We let m ∈ {4, 5, 6} so that d ∈ {16, 32, 64}, and took k ∈ {1, 2} with

α ∈ {2, 3, 4, 5}. Consider N = αkd measurement settings, of which those with
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Figure 5. Squared Frobenius norm (L2), operator norm (Oper), entrywise L∞ norm
(Linf) and Shatten 1 norm (Shatten) of Θ̂−Θ in function of α, for different values of d
for replication T = d and k = 2 using three methods.

small k and α were chosen since we are more interested in the truncated mea-

surement setting (such that N ≤ 3m). For replications, we took T ∈ {d, 10d}.
Using the data (4.7), we estimated Θ by our proposed method (IHT), the trun-

cated maximum likelihood estimator (MLE) for the high dimensional multiple

ion tomography model as described in Acharya, Kypraios and Guta (2015), and

the nuclear norm penalization (NNP) method computed using a gradient descent

method (e.g. Agarwal, Negahban and Wainwright (2012)).
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Figure 6. Squared Frobenius norm (L2), operator norm (Oper), entrywise L∞ norm
(Linf) and Shatten 1 norm (Shatten) of Θ̂−Θ in function of α, for different values of d
for replication T = 10d and k = 1 using three methods.

We used the same tuning parameters as in (4.1), (4.2), (4.3), and (4.4) and

selected ρ = 1/2 and the same stopping rule as described in Section 4. For the

stepsize of the gradient descent method used to compute the NNP estimator,

we followed the recommendation in Subsection 3.1 in Agarwal, Negahban and

Wainwright (2012).

Figure 4 and 5 present the results when the number T of replications is

d, when the true rank is 1 or 2, respectively, and for four values of d. We
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Figure 7. Squared Frobenius norm (L2), operator norm (Oper), entrywise L∞ norm
(Linf) and Shatten 1 norm (Shatten) of Θ̂−Θ in function of α, for different values of d
for replication T = 10d when k = 2 using three methods.

provide average values of squared Frobenius norm, operator norm, entrywise L∞
norm, and Shatten 1 norm of Θ̂ − Θ averaged over 100 iterations. Dots, blank

triangles, and asterisks are average value of IHT, MLE, and NNP, respectively.

Intuitively when α increases these risks should decrease. Our estimator shows

almost comparable results to the MLE except when d = 4 and α = 2; then IHT

estimates Θ by 0 a few times and pretty well for most cases, so that on average

the Frobenius norm is still large. Figures 6 and 7 present the results with 10d
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replications when the true rank is 1 or 2, respectively, and for four values of

d. There are similar patterns as for the cases T = d, but IHT performs well,

especially for α ∈ {4, 5}. These pictures illustrate that IHT performs the best

relatively to other methods for a large number of replication T , and for difficult

problems with high d and k (see in particular the plots in Figure 7 for large d).

Our method is computationally more efficienct than the other two methods in

the sense that when d = 64, α = 5, k = 2, IHT takes about 40 seconds while MLE

(and even NNP) takes about 2.5 minutes for one iteration on a regular laptop.

Supplementary Materials

The online supplementary material contains proofs and results for the sparse

linear regression model. These materials are presented in Sections S1 and S2,

respectively.
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