
Statistica Sinica 28 (2018), 1307-1332
doi:https://doi.org/10.5705/ss.202016.0185

A FURTHER STUDY OF PROPENSITY SCORE

CALIBRATION IN MISSING DATA ANALYSIS

Peisong Han

University of Michigan

Abstract: Methods for propensity score (PS) calibration are commonly used in miss-

ing data analysis. Most of them are derived based on constrained optimizations

where the form of calibration is dictated by the objective function being optimized

and the calibration variables used in the constraints. Considerable efforts on pair-

ing an appropriate objective function with the calibration constraints are usually

needed to achieve certain efficiency and robustness properties for the final estima-

tors. We consider an alternative approach where the calibration is carried out by

solving the empirical version of certain moment equalities. This approach frees us

from constructing a particular objective function. Based on this approach, under

the setting of estimating the mean of a response, we establish intrinsic, improved

and local efficiency and multiple robustness in the presence of multiple data dis-

tribution models. A revisit to the generalized pseudo exponential tilting estimator

and generalized pseudo empirical likelihood estimator of Tan and Wu (2015) is also

provided.

Key words and phrases: Calibration, efficiency, empirical likelihood, missing at

random (MAR), multiple robustness, propensity score.

1. Introduction

For missing-at-random (MAR) (Rubin (1976)) data, a semiparametric ap-

proach through inverse probability weighting (IPW) (Horvitz and Thompson

(1952)) that weights the observed values by the inverse of the propensity score

(Rosenbaum and Rubin (1983)) has been widely used. Taking this approach,

Robins, Rotnitzky and Zhao (1994, 1995) proposed a large class of estimators,

called the augmented IPW (AIPW) estimators, by introducing augmentation

terms that were constructed based on models for the data distribution. A partic-

ular estimator in this class is locally efficient, in that it attains the semiparametric

efficiency bound if both the propensity score and the data distribution are cor-

rectly modeled. Scharfstein, Rotnitzky and Robins (1999) noted that consistency

of this estimator only requires correctly modeling either the propensity score or

the data distribution, but not both. This property is known as double robustness.

https://doi.org/10.5705/ss.202016.0185
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A variety of estimators based on the IPW approach have been proposed with

other nice properties. Estimators in Tan (2006, 2008, 2010), Chen, Leung and

Qin (2008), Chan (2012), and Rotnitzky et al. (2012) have intrinsic efficiency:

with a correctly specified propensity score model and a fixed user-specified func-

tion of observed data, each of these estimators is asymptotically equivalent to

the most efficient AIPW estimator among a class of AIPW estimators whose

augmentation terms are generated from this fixed function. Estimators in Rubin

and van der Laan (2008), Tan (2008, 2010), Cao, Tsiatis and Davidian (2009)

and Rotnitzky et al. (2012) have improved efficiency: with a correctly specified

propensity score model, each of these estimators is asymptotically equivalent to

the most efficient AIPW estimator among a class of AIPW estimators for which

the data distribution parameters in the augmentation terms are fixed but arbi-

trary. Estimators in Han and Wang (2013), Chan and Yam (2014), Han (2014a,b,

2016) and Chen and Haziza (2017) are multiply robust: with multiple models

for the propensity score and/or the data distribution, consistency is guaranteed

if any one of these models is correctly specified. Estimators in Tan (2006, 2010),

Qin and Zhang (2007), Kim (2009, 2010), Chan (2012), Han and Wang (2013),

Chan and Yam (2014) and Tan and Wu (2015) are convex combinations of the

observed outcomes, and thus always fall within the range of observed values,

known as sample boundedness property (Robins et al. (2007)).

While the propensity score is crucial for all of these methods, it is not always

incorporated in the same fashion. The IPW and AIPW estimators, as well as

many others, use the inverse of the raw propensity score as the weight. Prop-

erties of these estimators mainly rely on delicate construction of augmentation

terms and/or careful estimation of data distribution parameters. In recent lit-

erature, many researchers have proposed weights derived by modifying the raw

propensity score (Tan (2006, 2010); Qin and Zhang (2007); Chen, Leung and

Qin (2008); Qin, Shao and Zhang (2008); Kim (2009, 2010); Chan (2012); Han

and Wang (2013); Chan and Yam (2014); Han (2014a,b); Tan and Wu (2015);

Han (2016)). These modifications in essence agree with the idea of calibration

in survey sampling literature (Deville and Särndal (1992)). The new weight is

usually derived by optimizing an objective function subject to certain calibration

constraints. Mathematically, such a constrained optimization amounts to fitting

a hybrid propensity score model with a separate component that calibrates the

raw propensity score. In general, considerable efforts on pairing an appropriate

objective function with the calibration constraints are needed to achieve certain

efficiency and robustness properties for the final estimators (e.g. Kim (2009,
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2010); Tan (2010); Tan and Wu (2015)).

In this paper, we consider an alternative approach to calibrate the raw

propensity score. The calibration is done by solving the empirical version of

certain moment equalities rather than by constrained optimization, although the

numerical implementation benefits from treating those empirical equations as

the first-order conditions of certain objective functions. The spirit is the same

as solving estimating equations instead of maximizing a parametric likelihood

function for estimation. It frees us from the non-trivial work of constructing an

appropriate objective function for optimization so that the resulting calibrated

propensity score leads to desirable properties.

Using the calibrated propensity score based on this alternative approach, we

establish intrinsic, improved and local efficiency, and multiple robustness for our

estimators when multiple models for the data distribution are available. Intrinsic

efficiency guarantees that, with a correctly specified propensity score model, the

multiple data distribution models are optimally accommodated to maximize effi-

ciency. The efficiency usually increases as the number of models does, except for

the case in which one data distribution model is correctly specified as well, and

then all of our estimators attain the semiparametric efficiency bound, and thus

are locally efficient. Improved efficiency ensures that the parameters in all data

distribution models are simultaneously optimally estimated so that the efficiency

of our proposed estimators is maximized compared to the same estimators with

the data distribution parameters fixed but arbitrary. In addition to efficiency

advantages, our estimators are still consistent if the propensity score model is

misspecified but one data distribution model is correct. Furthermore, our esti-

mators are convex combinations of the observed outcomes, and thus are sample

bounded.

To make the paper focused, the proposed approach is only demonstrated in

estimating the mean of an outcome. It can be applied to causal inference prob-

lems and other more complex missing data problems such as regression analy-

sis. This paper is organized as follows. Section 2 introduces necessary notation

and discusses some existing methods. Section 3 investigates the alternative ap-

proach to propensity score calibration. Section 4 gives a revisit to the generalized

pseudo-exponential tilting estimator and generalized pseudo-empirical likelihood

estimator of Tan and Wu (2015). A numerical study is provided in Section 5.

Some discussion is given in Section 6. The Appendix provides some technical

details.
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2. Notation and Some Existing Methods

Let Y denote an outcome of interest that is subject to missingness, X a

vector of covariates that are always observed, and R the indicator of observing

Y , R = 1 if Y is observed and R = 0 if Y is missing. The observed data are

(Ri, RiYi,Xi), i = 1, . . . , n, which are independent and identically distributed.

The MAR mechanism in this setting is P (R = 1|Y,X) = P (R = 1|X). We use

π(X) to denote this propensity score. Our interest is to estimate µ0 = E(Y ),

the marginal mean of Y .

The IPW method (Horvitz and Thompson (1952)) models π(X) by π(α;X),

where α is a finite-dimensional unknown parameter that may be estimated by

the α̂ that maximizes the Binomial likelihood
n∏
i=1

{π(α;Xi)}Ri{1− π(α;Xi)}1−Ri . (2.1)

The IPW estimator of µ0 is µ̂ipw = n−1
∑n

i=1RiYi/π(α̂;Xi), where the observed

Yi is weighted by the inverse of the raw propensity score π(α̂;Xi). µ̂ipw is consis-

tent if π(α;X) is a correctly specified model in the sense that π(α0;X) = π(X)

for some α0.

To facilitate the discussion, for now we assume that π(α;X) is a correctly

specified model. Since the IPW method does not extract information implied by

the dependence of Y on X, µ̂ipw does not make efficient use of the observed data.

Robins, Rotnitzky and Zhao (1994) proposed a class of AIPW estimators

1

n

n∑
i=1

{
Ri

π(α̂;Xi)
Yi −

Ri − π(α̂;Xi)

π(α̂;Xi)
h(Xi)

}
,

where h(X) is an arbitrary user-specified function of X that can be constructed

based on a model for the data distribution. Within this class, estimators of the

form µ̂aipw(γ) with h(X) = a(γ;X) are of particular interest. Here a(γ;X) is

a model for E(Y |X) and γ is a finite-dimensional unknown parameter. Because

R ⊥ Y |X from the MAR mechanism, γ is conventionally estimated by γ̂ based

on a complete-case analysis. When a(γ;X) is a reasonable model for E(Y |X),

µ̂aipw(γ̂) usually has better efficiency than µ̂ipw. When a(γ;X) is correctly speci-

fied in that a(γ0;X) = E(Y |X) for some γ0, µ̂aipw(γ̂) attains the semiparametric

efficiency bound.

When a(γ;X) is incorrectly specified, µ̂aipw(γ̂) can be quite inefficient (Chen,

Leung and Qin (2008); Rubin and van der Laan (2008)). There have been many

recent developments on gaining efficiency in this case. Two main gains have
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been achieved: intrinsic efficiency and improved efficiency. Estimators that are

intrinsically efficient have influence functions of the form

Resid

{
R(Y − µ0)

π(X)
,
R− π(X)

π(X)
h(X)

}
.

Hereafter, for any random variable ξ and finite-dimensional random vector φ with

mean zero and finite second moments, Resid(ξ,φ) = ξ − E(ξφT){E(φφT)}−1φ

denotes the residual of the projection of ξ onto span{φ}, the linear space spanned

by components of φ. Apparently the projection residual has the smallest variance

among the class of influence functions R(Y −µ0)/π(X)−c{R−π(X)}h(X)/π(X)

with an arbitrary c. Various intrinsically efficient estimators have been proposed

and studied by Tan (2006, 2008, 2010), Chen, Leung and Qin (2008), Chan

(2012) and Rotnitzky et al. (2012). Improved efficiency, on the other hand, is

achieved by using an estimator γ̃ instead of γ̂, where γ̃ converges in probability

to the minimizer of the asymptotic variance of µ̂aipw(γ). Estimators of µ0 with

improved efficiency have been proposed and studied by Rubin and van der Laan

(2008), Tan (2008, 2010), Cao, Tsiatis and Davidian (2009) and Rotnitzky et al.

(2012). Many of these estimators are doubly robust: they are still consistent if

π(α;X) is misspecified but a(γ;X) is not.

Recently, many estimators of the form
∑n

i=1RiwiYi have been proposed

where the wi are derived by optimizing an objective function, such as the em-

pirical likelihood (Tan (2006, 2010); Qin and Zhang (2007); Chen, Leung and

Qin (2008); Kim (2009); Han and Wang (2013); Chan and Yam (2014)), the

exponential tilting (Kim (2010)) or some generalizations of them (Tan and Wu

(2015)), subject to certain constraints on the wi. Different objective functions

and/or sets of constraints lead to different wi, for which the two most common

forms are [π(α;Xi) exp{λTb(Xi)}]−1 or {π(α;Xi) + λTb(Xi)}−1, where λ is

a vector of Lagrange multipliers and λ and b(X) are determined by the spe-

cific optimization objective function and the particular constraints. In general,

λ and b(X) do not necessarily endow the final estimators of µ0 with desirable

efficiency and robustness properties unless an appropriate objective function is

paired with the right constraints (e.g. Tan (2010); Tan and Wu (2015)). Because

of this difficulty, we propose to circumvent the optimization and directly derive

the calibration on π(α;X) by solving certain empirical equations. In this way,

we are free to independently choose the calibration constraints and the functional

form of b(X), so that in combination they lead to certain desirable properties.

In particular, we use this approach to construct estimators that have intrinsic,

improved and local efficiency, and multiple robustness.
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3. The Proposed Approach

We first introduce some extra notation. Let ak(γk;X), k = 1, . . . ,K, denote

K models for E(Y |X), γ̂k the estimator of γk by fitting the k-th model based

on complete-case analysis, and γk∗ the probability limit of γ̂k. Write γT =

{(γ1)T, . . . , (γK)T}, γ̂T = {(γ̂1)T, . . . , (γ̂K)T}, and γT
∗ = {(γ1

∗)
T, . . . , (γK∗ )T}.

Let S(α;X, R) denote the score function of (2.1),

S(α;X, R) =
R− π(α;X)

π(α;X){1− π(α;X)}
πα(α;X),

where πα(α;X) = ∂π(α;X)/∂α. Let α∗ denote the probability limit of α̂.

When π(α;X) is a correctly specified model for π(X), α∗ = α0 and we write

S(X, R) = S(α0;X, R) and πα(X) = πα(α0;X). For any matrix A, let A⊗2 =

AAT. Hereafter, all linear spaces are subspaces of the Hilbert space H of all

mean-zero and finite-variance functions of (R,RY,X) equipped with the inner

product E(ξ1ξ2) for any ξ1, ξ2 ∈ H. For any φ whose components are all in H,

span{φ} denotes the linear space spanned by φ.

3.1. The proposed estimators and their properties

We have the moment equalities

E

(
R[π(α∗;X)− E{π(α∗;X)}]

π(X)

)
= 0,

E

(
R[ak(γk∗ ;X)− E{ak(γk∗ ;X)}]

π(X)

)
= 0. (k = 1, . . . ,K) (3.1)

The trivial empirical version of (3.1),

1

n

n∑
i=1

Ri{π(α̂;Xi)− θ̂}
π(α̂;Xi)

= 0,
1

n

n∑
i=1

Ri{ak(γ̂k;Xi)− η̂k}
π(α̂;Xi)

= 0,

where θ̂ = n−1
∑n

i=1 π(α̂;Xi) and η̂k = n−1
∑n

i=1 a
k(γ̂k;Xi), usually does not

hold with the observed data, even if π(α;X) is a correctly specified model.

Our approach is based on constructing an empirical version of (3.1) that does

hold. Following the form of exponential tilting weight (e.g. Kim (2010); Tan

and Wu (2015)), consider a calibration of the raw propensity score in the form

of π(α;X) exp{λTb(X)}, where b(X) is a vector of user-specified functions and

λ is a calibration parameter depending on b(X), so that

1

n

n∑
i=1

Ri{π(α̂;Xi)− θ̂}
π(α̂;Xi) exp{λTb(Xi)}

= 0,
1

n

n∑
i=1

Ri{ak(γ̂k;Xi)− η̂k}
π(α̂;Xi) exp{λTb(Xi)}

= 0.

The calibration here is completely determined by b(X) with no optimizations
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needed. Although these empirical equations can be solved for a rather arbitrary

b(X), we consider a particular selection that leads to desirable properties for

estimators of µ0. Write ĝ(α̂, γ̂) = {π(α̂;X)−θ̂, a1(γ̂1;X)−η̂1, . . . , aK(γ̂K ;X)−
η̂K}T and take b(X) = ĝ(α̂, γ̂){1 − π(α̂;X)}/π(α̂;X). This b(X) leads to

intrinsic efficiency of our proposed estimators.

Let λ̂ denote the solution to

1

n

n∑
i=1

Riĝi(α̂, γ̂)

π(α̂;Xi) exp[λTĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]
= 0. (3.2)

The existence and uniqueness of λ̂ will be shown in Section 3.2. Our first esti-

mator of µ0, denoted by µ̂1, is the solution to

1

n

n∑
i=1

Ri(Yi − µ)

π(α̂;Xi) exp[λ̂Tĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]
= 0. (3.3)

For now, we assume that π(α;X) is a correctly specified model. This as-

sumption will be relaxed later. To see the consistency of µ̂1, let θ∗, η
k
∗ and

λ∗ denote the probability limits of θ̂, η̂k and λ̂, respectively. It is clear that

θ∗ = E{π(α∗;X)} and ηk∗ = E{ak(γk∗ ;X)}. Write g(α∗,γ∗) = {π(α∗;X) −
θ∗, a

1(γ1
∗ ;X)− η1

∗, . . . , a
K(γK∗ ;X)− ηK∗ }T. Since the left-hand side of (3.2) con-

verges in probability to

E

(
Rg(α∗,γ∗)

π(X) exp[λT
∗ g(α∗,γ∗){1− π(X)}/π(X)]

)
and E{Rg(α∗,γ∗)/π(X)} = 0, we have λ∗ = 0, and thus λ̂ = op(1). Therefore,

µ̂1 =
(1/n)

∑n
i=1RiYi/[π(α̂;Xi){1 + op(1)}]

(1/n)
∑n

i=1Ri/[π(α̂;Xi){1 + op(1)}]
p−→ E

{
R

π(X)
Y

}
= µ0.

To assess the efficiency of µ̂1, we need to find its influence function. The

proof of the next result is given in the Appendix.

Theorem 1. When π(X) is correctly modeled by π(α;X), we have

√
n(µ̂1 − µ0) =

1√
n

n∑
i=1

Resid

{
Ri(Yi − µ0)

π(Xi)
,
Ri − π(Xi)

π(Xi)
Ξ1(Xi)

}
, (3.4)

where Ξ1(X) = [g(α0,γ∗)
T, πα(X)T/{1− π(X)}]T.

The projection structure of (3.4) indicates that µ̂1 is intrinsically efficient

and is at least as efficient as, generally more efficient than, µ̂ipw and any AIPW

estimator whose augmentation term is a linear combination of components of

{R − π(X)}g(α0,γ∗)/π(X). The projection structure also reveals the role the

models ak(γk;X) play in affecting efficiency. Since the larger K is, the larger
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span{{R−π(X)}Ξ1(X)/π(X)} is, and thus the smaller the projection residual,

assuming components of Ξ1(X) are linearly independent, to gain efficiency, it is

beneficial to postulate multiple models for E(Y |X). Each model is guaranteed

to improve the efficiency.

It is possible to gain efficiency without postulating more models for E(Y |X).

Consider augmenting ĝ(α̂, γ̂) by adding the components

πα(α̂;X)

1− π(α̂;X)
− 1

n

n∑
i=1

{
πα(α̂;Xi)

1− π(α̂;Xi)

}
,

and let µ̂aug
1 denote the resulting estimator. From Theorem 1, the influence

function of µ̂aug
1 is given by (3.4) with Ξ1(X) replaced by

Ξaug
1 (X) =

[
g(α0,γ∗)

T,
πα(X)T

1− π(X)
− E

{
πα(X)T

1− π(X)

}
,
πα(X)T

1− π(X)

]T

.

It is easy to verify that span{{R−π(X)}Ξaug
1 (X)/π(X)} is the same as span{{R−

π(X)}{1,Ξ1(X)T}T/π(X)}. Therefore, µ̂aug
1 is in general more efficient than µ̂1.

One exception occurs when π(α;X) is a logistic regression model with intercept,

in which case π(X) is a component of πα(X)/{1− π(X)}, and thus span{{R−
π(X)}{1,Ξ1(X)T}T/π(X)} is equal to span{{R− π(X)}Ξ1(X)/π(X)}, which

implies that µ̂aug
1 and µ̂1 are equally efficient.

Another way to gain efficiency is to increase the dimension of πα(X), or

equivalently the dimension of S(X, R). This may be achieved by including inter-

actions and higher-order terms of components of X when fitting π(α;X). When

π(X) is completely known and is used in (3.2) and (3.3) instead of π(α̂;X), the

projection in (3.4) is onto span{{R−π(X)}g(α0,γ∗)/π(X)} instead. Apparently

the new influence function has variance no smaller than that of the previous one.

This leads to the counter-intuitive conclusion that, even if π(X) is completely

known, correctly modeling π(X) may lead to efficiency gain. Refer to Robins,

Rotnitzky and Zhao (1995) for more discussion on this observation.

Efficiency cannot be enhanced without a limit. When one model for E(Y |X)

is correctly specified, E(Y |X)− µ0 is a component of g(α0,γ∗), and thus {R −
π(X)}{E(Y |X)−µ0}/π(X) is in span{{R−π(X)}Ξ1(X)/π(X)}. It is easy to

verify that

E

([
R

π(X)
(Y − µ0)− R− π(X)

π(X)
{E(Y |X)− µ0}

]{
R− π(X)

π(X)
h(X)

})
= 0

for any function h(X). Therefore, the influence function of µ̂1 simplifies to R(Y −
µ0)/π(X) − {R − π(X)}{E(Y |X) − µ0}/π(X). This is the efficient influence

function for estimating µ0 (Robins, Rotnitzky and Zhao (1994)). In other words,
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µ̂1 attains the semiparametric efficiency bound in this case. Postulating more

models for E(Y |X), augmenting ĝ(α̂, γ̂) and/or using π(α̂;X) instead of π(X)

will not yield further efficiency gain.

Now we study how to achieve improved efficiency when no model for E(Y |X)

is correctly specified. Let

Ψ(γ) = Resid

[
R(Y − µ0)

π(X)
,
R− π(X)

π(X)

{
g(α0,γ)T,

πα(X)T

1− π(X)

}T
]

denote the influence function in (3.4) viewed as a function of γ. To achieve

improved efficiency, in (3.2) and (3.3) we need to replace γ̂ by a γ̃ = {(γ̃1)T, . . . ,

(γ̃K)T}T whose probability limit minimizes σ2(γ) = Var{Ψ(γ)}. Such a γ̃ can

be obtained by minimizing a consistent estimator of σ2(γ). Let g[(α0,γ) =

[g(α0,γ)T, πα(α0;X)T/{1− π(α0;X)}]T,

L[(α0,γ) = E

{
R

π(α0;X)

1− π(α0;X)

π(α0;X)
(Y − µ0)g[(α0,γ)

}
,

G[(α0,γ) = E

{
R

π(α0;X)

1− π(α0;X)

π(α0;X)
g[(α0,γ)⊗2

}
.

We then have

Ψ(γ) =
R

π(X)
(Y − µ0)− R− π(X)

π(X)
L[(α0,γ)TG[(α0,γ)−1g[(α0,γ).

Simple algebra shows that

σ2(γ)=Var(Y )+E

[
R

π(X)

1−π(X)

π(X)
{Y−µ0−L[(α0,γ)TG[(α0,γ)−1g[(α0,γ)}2

]
.

Therefore, γ̃ may be taken as the minimizer of

1

n

n∑
i=1

[
Ri

π(α̂;Xi)

1− π(α̂;Xi)

π(α̂;Xi)
{Yi − µ̂1 − L̂[(α̂,γ)TĜ[(α̂,γ)−1ĝ[i (α̂,γ)}2

]
,

(3.5)

where ĝ[(α̂,γ), L̂[(α̂,γ) and Ĝ[(α̂,γ) are g[(α0,γ), L[(α0,γ) and G[(α0,γ),

respectively, with expectations replaced by sample averages, µ0 replaced by µ̂1

and α0 replaced by α̂. Let µ̂′1 denote the estimator with γ̂ in both (3.2) and (3.3)

replaced by γ̃. When π(X) is correctly modeled, µ̂′1 is consistent and has intrinsic

efficiency and improved efficiency. When E(Y |X) is also correctly modeled,

say, by ak0(γk0 ;X) so that ak0(γk00 ;X) = E(Y |X) for some γk00 , Lemma 2

in the Appendix shows that γ̃k0
p−→ γk00 . This implies that E(Y |X) − µ0 is a

component of g(α0,γ∗∗), where γ∗∗ is the probability limit of γ̃. Following the

same arguments as those for the local efficiency of µ̂1, µ̂′1 is also locally efficient.

We now relax the assumption that π(X) is correctly modeled; α̂
p−→ α∗ 6= α0.
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It turns out that both µ̂1 and µ̂′1 are still consistent if ak0(γk0 ;X) is a correctly

specified model for E(Y |X). To see this for µ̂1, notice that γ̂k0
p−→ γk00 and

µ̂1 = $1,n/$2,n, where

$1,n =
1

n

n∑
i=1

RiYi

π(α̂;Xi) exp[λ̂Tĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]
,

$2,n =
1

n

n∑
i=1

Ri

π(α̂;Xi) exp[λ̂Tĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]
.

Since

$1,n =
1

n

n∑
i=1

Ri{Yi − ak0(γ̂k0 ;Xi) + ak0(γ̂k0 ;Xi)− η̂k0 + η̂k0}
π(α̂;Xi) exp[λ̂Tĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]

=
1

n

n∑
i=1

Ri{Yi − ak0(γ̂k0 ;Xi)}
π(α̂;Xi) exp[λ̂Tĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]

+ η̂k0$2,n

= η̂k0$2,n + op(1),

where the second equality holds because of (3.2), we have µ̂1
p−→ µ0. As for µ̂′1,

since γ̃k0
p−→ γk00 from Lemma 2 in the Appendix, consistency follows exactly the

same arguments as above.

The estimators µ̂1 and µ̂′1 are based on a multiplicative calibration of the raw

propensity score in the form of the exponential tilting weight, π(α;X) exp{λT

b(X)}. We can also consider the additive calibration in the form of the empirical

likelihood weight, π(α;X) + λTb(X), (e.g. Tan (2006, 2010); Qin and Zhang

(2007); Chen, Leung and Qin (2008); Kim (2009); Chan (2012); Han and Wang

(2013); Chan and Yam (2014); Han (2014a,b); Tan and Wu (2015); Han (2016)).

Specifically, take b(X) = ĝ(α̂, γ̂){1− π(α̂;X)}. Let µ̂add,1 denote the solu-

tion to
1

n

n∑
i=1

Ri(Yi − µ)

π(α̂;Xi) + λ̂Tĝi(α̂, γ̂){1− π(α̂;Xi)}
= 0, (3.6)

where λ̂ solves

1

n

n∑
i=1

Riĝi(α̂, γ̂)

π(α̂;Xi) + λTĝi(α̂, γ̂){1− π(α̂;Xi)}
= 0. (3.7)

Here µ̂add,1 is an analogue of µ̂1 with additive calibration in replacement of mul-

tiplicative calibration.

When π(X) is correctly modeled, the left-hand side of (3.7) converges in

probability to
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E

(
Rg(α0,γ∗)

π(X) + λT
∗ g(α0,γ∗){1− π(X)}

)
.

Since E{Rg(α0,γ∗)/π(X)} = 0, we must have λ∗ = 0. In this case, the differ-

ence between π(α̂;X)+λ̂Tĝ(α̂, γ̂){1−π(α̂;X)} and π(α̂;X) exp[λ̂Tĝ(α̂, γ̂){1−
π(α̂;X)}/π(α̂;X)] is a term with order Op(n

−1), which does not play a role

in the first-order asymptotic results. Therefore, all previous discussion on the

asymptotic behavior of µ̂1 applies to µ̂add,1. Counterparts of µ̂aug
1 and µ̂′1 can be

similarly defined with the same properties as before.

3.2. Numerical implementation

Directly solving (3.2) or (3.7) is not the ideal way of deriving the calibration

parameter λ̂. For example, (3.7) may have multiple roots, as shown by Lemma

3 in the Appendix as an illustration when ĝ(α̂, γ̂) is one-dimensional. Therefore,

we view (3.2) and (3.7) as the first-order conditions of certain objective functions,

and derive λ̂ by optimization rather than by solving equations. Note that the

construction of objective functions here is only for implementation purposes,

which is different from existing methods where the calibration itself is defined

through constrained optimization. To facilitate the discussion, let m =
∑n

i=1Ri
denote the number of subjects with Y observed, and index these subjects by

i = 1, . . . ,m without loss of generality.

For (3.2), define

F1(λ) =
1

n

n∑
i=1

Ri
{1− π(α̂;Xi)} exp[λTĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]

.

From (3.1), it is easy to verify that E{g(α∗,γ∗)/π(X)|R = 1} = 0, which

implies that 0 is inside the convex hull of {ĝi(α̂, γ̂) : i = 1, . . . ,m}, at least

when n is large. Using this fact, Lemma 4 in the Appendix shows that F1(λ)

has a unique and global minimizer. This minimizer must satisfy the first-order

condition ∂F1(λ)/∂λ = 0, which turns out to be (3.2). On the other hand,

due to strict convexity, F1(λ) has no other stationary points different from the

minimizer. Therefore, (3.2) always has a solution and the solution is unique.

For (3.7), define

Fadd,1(λ) = − 1

n

n∑
i=1

Ri log[π(α̂;Xi) + λTĝi(α̂, γ̂){1− π(α̂;Xi)}]
1− π(α̂;Xi)

,

which is a strictly convex function on the domain

Dadd,1 = [λ : π(α̂;Xi) + λTĝi(α̂, γ̂){1− π(α̂;Xi)} > 0, i = 1, . . . ,m],



1318 HAN

a non-empty, open and convex set. When 0 is inside the convex hull of {ĝi(α̂, γ̂) :

i = 1, . . . ,m}, Lemma 5 in the Appendix shows that Fadd,1(λ) has a unique and

global minimizer inside Dadd,1. Since Dadd,1 is an open set, this minimizer must

satisfy the first-order condition, which is actually (3.7). On the other hand,

due to strict convexity, Fadd,1(λ) has no other stationary points inside Dadd,1.

Therefore, (3.7) has a unique solution inside Dadd,1.

This discussion reveals that λ̂ can be found by minimizing F1(λ) or Fadd,1(λ)

instead of directly solving (3.2) or (3.7). Such a convex minimization can be easily

implemented using the Newton–Raphson algorithm.

Some caution is needed in implementing µ̂aug
1 and µ̂aug

add,1 when π(α;X) is a

logistic regression model with intercept. In this case π(α;X) is a component of

πα(α;X)/{1−π(α;X)}, and thus π(α̂;X)− θ̂ should be removed from ĝ(α̂, γ̂)

to avoid collinearity.

3.3. Some remarks

Since λ̂ minimizes F1(λ) or Fadd,1(λ), the calibrated propensity scores π(α̂;

X) exp[λ̂Tĝ(α̂, γ̂){1−π(α̂;X)}/π(α̂;X)] and π(α̂;X)+λ̂Tĝ(α̂, γ̂){1−π(α̂;X)}
are positive for each i = 1, . . . ,m. Therefore, from (3.3) and (3.6), all the pro-

posed estimators are convex combinations of the observed outcomes and thus are

sample bounded.

It is easy to see that (3.1) holds not only for π(α;X) and ak(γk;X), k =

1, . . . ,K, but also for any functions of X. In other words, any functions of X

can be used to construct components of ĝ(α̂, γ̂). µ̂aug
1 and µ̂aug

add,1 are derived

based on this fact using πα(X)/{1− π(X)}. When π(X) is correctly modeled,

estimators derived in this way are intrinsically efficient, and usually have higher

efficiency as more functions are used. If E(Y |X) is not correctly modeled by

any single ak(γk;X) but by a linear combination of these models, the resulting

estimators still achieve the semiparametric efficiency bound. In this case, these

estimators are still consistent even if π(X) is incorrectly modeled. However, it

is worth pointing out that, even though theoretically the asymptotic efficiency

of our estimators is an increasing function of K, the small sample behavior may

not necessarily be this case. The numerical performance may deteriorate as the

dimension of ĝ(α̂, γ̂) gets too large. Therefore, reasonably modeling E(Y |X) is

still necessary to balance efficiency gain and numerical performance.

Directly minimizing (3.5) in the calculation of µ̂′1 is challenging, if not infea-

sible, due to the complicated dependence on γ. A technique employed by Tan

(2008) and Cao, Tsiatis and Davidian (2009) may help simplify the minimization.



PROPENSITY SCORE CALIBRATION 1319

Let

v̂(α̂,γ, τ ) =
1

n

n∑
i=1

[
Ri

π(α̂;Xi)

1− π(α̂;Xi)

π(α̂;Xi)
{Yi − µ̂1 − τTĝ[i (α̂,γ)}2

]
. (3.8)

The minimizer of v̂(α̂,γ, τ ) must satisfy the first-order condition

0T =
∂

∂τT
v̂(α̂,γ, τ )

=
1

n

n∑
i=1

[
Ri

π(α̂;Xi)

1− π(α̂;Xi)

π(α̂;Xi)
{Yi − µ̂1 − τTĝ[i (α̂,γ)}ĝ[i (α̂,γ)T

]
.

It is easy to see that the solution to this equation at any γ is given by {γT, L̂[(α̂,

γ)TĜ[(α̂,γ)−1}T. Therefore, γ̃ minimizing (3.5) is actually the corresponding

subvector of (γ̃T, τ̃T)T minimizing v̂(α̂,γ, τ ). The latter minimization is rela-

tively straightforward due to the distinctness of γ and τ . However, this technique

does not always work, since γ and τ in (3.8) are not always identifiable. As an

illustration, consider a scalar covariate X, a simple linear model for E(Y |X),

and let ĝ[(α,γ) = γ(X −X) by ignoring the other components, where X is the

sample average of Xi over the whole sample. Now (3.8) is

1

n

n∑
i=1

[
Ri

π(α̂;Xi)

1− π(α̂;Xi)

π(α̂;Xi)
{Yi − µ̂1 − τγ(Xi −X)}2

]
,

where τ and γ are apparently not identifiable. Therefore, minimizing (3.8) may

not be as straightforward as it seems, and achieving improved efficiency based on

an intrinsically efficient estimator is in general much more difficult than based

on a conventional AIPW estimator µ̂aipw(γ), as in Cao, Tsiatis and Davidian

(2009).

As pointed out by one referee, for IPW-type estimators with a correctly

specified propensity score model, linear models for E(Y |X) with polynomial

terms of X as regressors often lead to good enough efficiency in practice if those

terms catch the overall shape of dependence of E(Y |X) on X. For our proposed

estimators, in case ak(γk;X), k = 1, . . . ,K, are all linear models, improved

efficiency can be easily achieved. Without loss of generality, assume the linear

models are also linear in X. Consider µ̂1 with g(α,γ) replaced by g(α) =

[π(α;X) − E{π(α;X)},XT − E(XT)]T. Then the projection structure of the

influence function of µ̂1 automatically leads to improved efficiency.

4. A Revisit to the GPEL and GPET Estimators

Our approach to propensity score calibration can be applied to moment
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equalities other than (3.1). As an example, consider

E

{
R

π(X)
− 1

}
= 0, E

[{
R

π(X)
− 1

}
π(α∗;X)

]
= 0,

E

[{
R

π(X)
− 1

}
ak(γk∗ ;X)

]
= 0, (k = 1, . . . ,K). (4.1)

Write g\(α,γ) = {1, π(α;X), a1(γ1;X), . . . , aK(γK ;X)}T. One can now cali-

brate π(α;X) to be π(α;X) exp[λ̂Tg\(α,γ){1 − π(α;X)}/π(α;X)], where λ̂

solves

1

n

n∑
i=1

[{
Ri

π(α̂;Xi) exp[λ̂Tg\i (α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]
− 1

}
g\i (α̂, γ̂)

]
= 0,

(4.2)

an empirical version of (4.1), and then consider the estimator µ̂2 solving

1

n

n∑
i=1

Ri(Yi − µ)

π(α̂;Xi) exp[λ̂Tg\i (α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]
= 0. (4.3)

One can also calibrate π(α;X) to be π(α;X) + λ̂Tg\(α,γ){1−π(α;X)} where

λ̂ solves

1

n

n∑
i=1

[{
Ri

π(α̂;Xi) + λTg\i (α̂, γ̂){1− π(α̂;Xi)}
− 1

}
g\i (α̂, γ̂)

]
= 0, (4.4)

and then consider the estimator µ̂add,2 solving

1

n

n∑
i=1

Ri(Yi − µ)

π(α̂;Xi) + λ̂Tg\i (α̂, γ̂){1− π(α̂;Xi)}
= 0.

The estimators µ̂2 and µ̂add,2 are actually the generalized pseudo exponen-

tial tilting (GPET) estimator and the generalized pseudo empirical likelihood

(GPEL) estimator proposed in Tan and Wu (2015); see also Kim (2010) and

Tan (2010). In Tan and Wu (2015), the above propensity score calibration for

µ̂2 and µ̂add,2 is derived by minimizing a particular version of the modified for-

ward and backward Kullback–Leibler distances between the desired weight wi
and the propensity score π(α;Xi) for the complete cases, subject to the con-

straints wi > 0,
∑m

i=1wi = 1 and
∑m

i=1wig
\
i (α,γ) = n−1

∑n
i=1 g

\
i (α,γ). Our

approach, in contrast, derives the calibration by solving equations that are the

empirical version of (4.1). While the constrained optimization approach is more

principled and fundamental, our approach may provide a more flexible solution

in cases where it is not straightforward to formulate a constraint optimization,

such as the calibration in Section 3 done based on moment equalities (3.1). This

is similar to the quasi-likelihood (Wedderburn (1974)) and estimating equations
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are powerful alternatives to the likelihood approach for certain problems where

the specification of a parametric distribution is not straightforward, although the

principle of maximum likelihood is more fundamental.

As in Section 3, µ̂2 and µ̂add,2 are consistent if either π(α;X) or one of

ak(γk;X) is correctly specified. In addition, both estimators are intrinsically

and locally efficient, and have the following asymptotic expansion when π(α;X)

is correctly specified:
√
n(µ̂2 − µ0) =

√
n(µ̂add,2 − µ0) + op(1)

=
1√
n

n∑
i=1

Resid

[
Ri(Yi − µ0)

π(Xi)
,
Ri − π(Xi)

π(Xi)
Ξ2(Xi)

]
+ op(1),

where Ξ2(X) = [g\(α0,γ∗)
T, πα(X)T/{1 − π(X)}]T. Due to the asymptotic

equivalence between µ̂2 and µ̂add,2, we will focus on µ̂2 only.

From its asymptotic expansion, the influence function of µ̂2 has exactly the

same structure as that of µ̂1, but with Ξ2(X) in place of Ξ1(X). Simple al-

gebra shows that span{{R − π(X)}Ξ2(X)/π(X)} is the same as span{{R −
π(X)}Ξaug

1 (X)/π(X)}. Therefore, µ̂2 and µ̂aug
1 have the same efficiency, and

both are in general more efficient than µ̂1 under the same multiple models for

E(Y |X). An exception occurs when π(α;X) is a logistic regression model with

intercept, in which case µ̂2, µ̂aug
1 and µ̂1 are equally efficient. Similar to µ̂aug

1 , µ̂aug
2

can be defined by adding the components πα(α;X)/{1− π(α;X)} to g\(α,γ),

but it is easy to see that the influence function of µ̂aug
2 is the same as that of µ̂2.

Hence, µ̂aug
2 and µ̂2 have equal efficiency.

To achieve improved efficiency, γ̂ in (4.2) and (4.3) needs to be replaced by

a γ̃ whose probability limit minimizes the asymptotic variance of µ̂2. This γ̃ can

be derived as was that for µ̂1 in Section 3.

For numerical implementation, from Tan (2010) and Tan and Wu (2015), λ̂

solving (4.2) can be derived by minimizing

F2(λ) =
1

n

n∑
i=1

{
Ri

{1− π(α̂;Xi)} exp[λTg\i (α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi)]

+ λTg\i (α̂, γ̂)

}
,

and λ̂ solving (4.4) can be derived by minimizing

Fadd,2(λ) = − 1

n

n∑
i=1

(
Ri log[π(α̂;Xi)+λ

Tg\i (α̂, γ̂){1−π(α̂;Xi)}]
1− π(α̂;Xi)

−λTg\i (α̂, γ̂)

)



1322 HAN

over the region

Dadd,2 = [λ : π(α̂;Xi) + λTg\i (α̂, γ̂){1− π(α̂;Xi)} > 0, i = 1, . . . ,m].

Under the condition

Λn = {λ : λ 6= 0, λTg\i (α̂, γ̂) ≥ 0 for i = 1, . . . ,m,

and λTn−1
n∑
i=1

g\i (α̂, γ̂) ≤ 0} = ∅,

Tan (2010) showed that these minimizations have unique solutions. Here we

give a justification of this condition: Lemma 6 in the Appendix shows that

P (Λn = ∅)→ 1 as n→∞.

5. Numerical Studies

Our numerical studies adopt the simulation setting of Kang and Schafer

(2007). The data were generated as X = {X(1), . . . , X(4)}T ∼ N(0, I4), Y |X ∼
N{a(X), 1}, and R|X ∼ Bernoulli{π(X)}, where I4 is the 4×4 identity matrix,

π(X) = [1 + exp{X(1) − 0.5X(2) + 0.25X(3) + 0.1X(4)}]−1 and a(X) = 210 +

27.4X(1) +13.7{X(2) +X(3) +X(4)}. The true π(X) leads to approximately 50%

of the subjects with missing Y . As in Kang and Schafer (2007), the following

variables were calculated: Z(1) = exp{X(1)/2}, Z(2) = X(2)/[1+exp{X(1)}]+10,

Z(3) = {X(1)X(3)/25 + 0.6}3 and Z(4) = {X(2) +X(4) + 20}2. We considered two

models for π(X):

π1(α1;X) = [1 + exp{α1
1 + α1

2X
(1) + α1

3X
(2) + α1

4X
(3) + α1

5X
(4)}]−1,

π2(α2;X) = [1 + exp{α2
1 + α2

2Z
(1) + α2

3Z
(2) + α2

4Z
(3) + α2

5Z
(4)}]−1,

and four models for E(Y |X):

a1(γ1;X) = γ1
1 + γ1

2Z
(1) + γ1

3Z
(2),

a2(γ2;X) = γ2
1 + γ2

2Z
(3) + γ2

3Z
(4),

a3(γ3;X) = γ3
1 + γ3

2Z
(1) + γ3

3Z
(2) + γ3

4Z
(3) + γ3

5Z
(4),

a4(γ4;X) = γ4
1 + γ4

2X
(1) + γ4

3X
(2) + γ4

4X
(3) + γ4

5X
(4).

Here π1(α1;X) and a4(γ4;X) are correctly specified and the rest are incorrectly

specified. Due to the similarity in efficiency and robustness properties between

our proposed estimators and Tan and Wu’s (2015) GPET and GPEL estimators

(µ̂2, µ̂aug
2 , µ̂add,2 and µ̂aug

add,2), we included all of them in our simulation studies.

The simulation results were summarized based on the same 2,000 replications,

and thus comparisons can be made across different tables.
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Table 1. Efficiency assessment under different combinations of models for E(Y |X).
Each combination is indicated by the functions inside { }, where ak is model ak(γk;X),
k = 1, 2, 3, 4, and {Z} means replacing all models for E(Y |X) by Z. Here π(X) is
correctly modeled by π1(α1;X). The results are summarized based on 2,000 replications
and have been multiplied by 100. µ0 = E(Y ) = 210.

{a2} {a1, a2} {Z} {a1, a2, a3, a4}
Estimator Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

n = 200

µ̂1 −50 310 213 −7 304 212 −13 275 184 4 261 179

µ̂aug
1 −43 302 207 5 299 205 5 266 183 4 261 180

µ̂add,1 −49 312 214 −8 306 213 −6 274 185 4 261 179

µ̂aug
add,1 −42 302 207 5 301 205 6 268 183 3 264 179

µ̂2 −50 310 214 −8 304 211 −11 275 184 4 261 179

µ̂aug
2 −42 302 207 5 300 204 6 266 183 4 261 179

µ̂add,2 −49 312 216 −8 307 212 −8 274 185 4 261 179

µ̂aug
add,2 −41 303 206 5 301 206 7 266 183 4 261 179

n = 1,000

µ̂1 −19 139 93 −3 132 88 −4 115 78 −1 112 75

µ̂aug
1 −15 136 90 2 129 86 2 113 74 −1 112 75

µ̂add,1 −18 140 93 −3 132 89 −2 115 78 −1 112 75

µ̂aug
add,1 −14 136 89 2 129 87 2 113 74 −1 112 75

µ̂2 −19 139 92 −3 132 88 −3 115 78 −1 112 75

µ̂aug
2 −15 136 90 2 129 85 3 113 74 −1 112 75

µ̂add,2 −18 140 93 −3 132 88 −2 115 78 −1 112 75

µ̂aug
add,2 −13 136 89 2 129 87 2 113 74 −1 112 75

RMSE: root mean square error. MAE: median absolute error.

Table 1 focuses on efficiency assessments under different combinations of

models for E(Y |X) when π(X) is correctly modeled by π1(α1;X). Compared

to µ0 = E(Y ) = 210, all estimators have ignorable bias. When models a1(γ1;X)

and a2(γ2;X) are used instead of a2(γ2;X) only, each estimator has smaller

root mean square error (RMSE), consistent with the intrinsic efficiency prop-

erty. Since a1(γ1;X) and a2(γ2;X) are linear models, improved efficiency can

be easily achieved by replacing them with Z in g(α,γ) and g\(α,γ). Indeed, all

estimators have noticeably smaller RMSE when Z is used. When all four models

for E(Y |X) are used, all estimators achieve the semiparametric efficiency bound

since a4(γ4;X) is correctly specified. This is confirmed by comparing the RMSE

of all estimators to that of µ̂aipw using π1(α1;X) and a4(γ4;X) (in Table 3),

which is known to be semiparametrically efficient. Since π1(α1;X) is a logistic

regression with intercept, under the same combination of models for E(Y |X),

all estimators in Table 1 have equal efficiency. Comparison among them indi-

cates that µ̂aug
1 , µ̂aug

add,1, µ̂aug
2 and µ̂aug

add,2 have better numerical performance than
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Table 2. Robustness assessment where π(X) is incorrectly modeled by π2(α2;X). Each
combination of models for E(Y |X) is indicated by the functions inside { }, where ak is
model ak(γk;X), k = 1, 2, 3, 4. The results are summarized based on 2,000 replications
and have been multiplied by 100. µ0 = E(Y ) = 210.

{a1, a4} {a2, a4} {a3, a4} {a1, a2, a3, a4}
Estimator Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

n = 200

µ̂1 6 273 179 5 262 179 8 279 180 7 275 182

µ̂aug
1 4 261 179 4 261 179 4 261 180 18 306 186

µ̂add,1 5 263 179 4 261 178 4 261 180 6 271 182

µ̂aug
add,1 4 261 179 4 261 179 4 261 180 16 398 189

µ̂2 4 261 179 4 262 179 4 261 180 6 273 181

µ̂aug
2 4 261 179 4 261 179 4 261 180 9 265 183

µ̂add,2 4 261 179 4 261 178 4 261 180 5 262 181

µ̂aug
add,2 4 261 179 4 261 179 4 261 180 9 265 183

n = 1,000

µ̂1 9 207 75 5 151 76 6 181 75 2 136 76

µ̂aug
1 −1 112 75 −1 112 75 −1 112 75 0 118 75

µ̂add,1 −1 112 74 1 120 76 1 148 75 5 187 75

µ̂aug
add,1 −1 112 75 −1 112 75 −1 112 75 −1 112 75

µ̂2 0 129 75 1 134 76 0 129 75 0 129 76

µ̂aug
2 −1 112 75 −1 112 75 −1 112 75 0 117 75

µ̂add,2 −1 112 75 −1 112 75 −1 112 75 −1 112 75

µ̂aug
add,2 −1 112 75 −1 112 75 −1 112 75 −1 112 75

RMSE: root mean square error. MAE: median absolute error.

µ̂1, µ̂add,1, µ̂2 and µ̂add,2, respectively. There does not seem to be a noticeable

difference in performance either between estimators based on different moment

equalities (3.1) and (4.1), or between the multiplicative and additive calibrations.

Table 2 demonstrates multiple robustness. Here despite that π(X) is in-

correctly modeled by π2(α2;X), each estimator is consistent due to the correct

model a4(γ4;X). Indeed, each estimator in Table 2 has ignorable bias. If all four

models for E(Y |X) are used, the RMSE of µ̂aug
1 and µ̂aug

add,1 is noticeably larger

than that of µ̂1 and µ̂add,1, respectively, when n = 200, and is noticeably smaller

when n = 1,000, indicating the sensitivity of µ̂aug
1 and µ̂aug

add,1 to the number of

models when n is not large. Other than this case, µ̂aug
1 , µ̂aug

add,1, µ̂aug
2 and µ̂aug

add,2 in

general have similar or noticeably smaller RMSE than µ̂1, µ̂add,1, µ̂2 and µ̂add,2,

respectively, especially when n = 1,000. Estimators based on moment equalities

(3.1) generally have similar or noticeably larger RMSE compared to those based

on (4.1). The comparison between multiplicative and additive calibrations does

not seem to yield a superiority of one over the other.

Table 3 contains the comparison of the calibration-based estimators with
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Table 3. Comparison of different estimators. All estimators are based on one model
for π(X) and one model for E(Y |X). Each combination of models is indicated by the
functions inside { }, where πj is model πj(αj ;X) and ak is model ak(γk;X), j = 1, 2
and k = 1, 2, 3, 4. The results are summarized based on 2,000 replications and have been
multiplied by 100. µ0 = E(Y ) = 210.

{π1, a4} {π1, a3} {π2, a4} {π2, a3}
Estimator Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

n = 200

µ̂ipw −9 388 241 −9 388 241 154 863 315 154 863 315

µ̂aipw 4 261 179 37 352 234 3 261 179 −416 813 351

µ̂CTD 4 261 179 0 277 189 5 261 178 −182 351 243

µ̂RLSR 4 261 179 31 297 202 3 262 178 −170 356 244

µ̂1 4 261 180 42 308 215 5 263 179 −197 394 259

µ̂aug
1 4 261 179 17 298 201 4 261 179 −171 350 244

µ̂add,1 4 261 180 38 307 216 4 261 179 −208 378 265

µ̂aug
add,1 4 261 179 15 298 203 4 261 180 −173 351 247

µ̂2 4 261 180 41 308 215 4 261 179 −201 372 259

µ̂aug
2 4 261 179 18 298 201 4 261 179 −171 350 244

µ̂add,2 4 261 179 37 308 216 4 261 179 −209 378 265

µ̂aug
add,2 4 261 179 15 298 204 4 261 180 −173 351 247

n = 1,000

µ̂ipw −5 176 111 −5 176 111 465 1154 242 465 1,154 242

µ̂aipw −1 112 75 9 157 107 −1 112 75 −792 1,428 485

µ̂CTD −1 112 75 −4 115 75 −1 112 75 −194 234 195

µ̂RLSR −1 112 75 6 121 84 −1 113 76 −257 324 269

µ̂1 −1 112 75 11 130 89 10 185 75 −217 308 221

µ̂aug
1 −1 112 75 2 129 86 −1 112 75 −175 219 175

µ̂add,1 −1 112 75 9 130 89 5 154 75 −235 288 239

µ̂aug
add,1 −1 112 75 2 129 86 −1 112 75 −177 221 178

µ̂2 −1 112 75 10 130 89 −1 112 75 −221 278 222

µ̂aug
2 −1 112 75 3 129 87 −1 112 75 −175 220 175

µ̂add,2 −1 112 75 8 130 89 −1 112 74 −239 275 238

µ̂aug
add,2 −1 112 75 2 129 86 −1 112 75 −177 221 178

RMSE: root mean square error. MAE: median absolute error.

some existing ones, including µ̂ipw, µ̂aipw, µ̂CTD (Cao, Tsiatis and Davidian

(2009)) and µ̂RLSR (Rotnitzky et al. (2012)). For the data generating process

under consideration, the values of π2(α̂2;X) for a few complete cases are erro-

neously close to zero, yielding extremely large inverse probability weights (Robins

et al. (2007)). Therefore, in our comparison we use some variants of the IPW and

AIPW estimators, still denoted by µ̂ipw and µ̂aipw, where, for models π(α;X)

and a(γ;X), µ̂ipw = {
∑n

i=1RiYi/π(α̂;Xi)}/{
∑n

i=1Ri/π(α̂;Xi)} and µ̂aipw =

n−1
∑n

i=1 a(γ̂;Xi) + [
∑n

i=1Ri{Yi − a(γ̂;Xi)}/π(α̂;Xi)}]/{
∑n

i=1Ri/π(α̂;Xi)}
(Kang and Schafer (2007)). Again, it is seen that µ̂aug

1 , µ̂aug
add,1, µ̂aug

2 and µ̂aug
add,2 in
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general have similar or better performance than µ̂1, µ̂add,1, µ̂2 and µ̂add,2, respec-

tively, and estimators based on moment equalities (4.1) occasionally have better

performance than those based on (3.1). The two types of calibration have similar

overall performance with neither one dominating the other. Both µ̂ipw and µ̂aipw

have unsatisfactory performance due to their lack of desirable efficiency proper-

ties and sensitivity to extreme inverse probability weights. The propensity score

calibration greatly reduces the impact of extreme values of π2(α̂2;X) when both

π(X) and E(Y |X) are incorrectly modeled.

6. Discussion

We have investigated an alternative approach to propensity score calibra-

tion. Unlike existing methods where the calibration is derived by constrained

optimizations, our approach carries out the calibration by solving the empirical

version of certain moment equalities. This approach saves the non-trivial work

of constructing an objective function for optimization in order to achieve some

desirable properties for the final estimators. We expect that this approach can

be generalized to solve many problems more complex than the ones we have

considered, such as causal inference problems or regression analysis with missing

data.

Numerical performance of the proposed estimators may be unstable when

the number of models for E(Y |X) gets too large, especially if those models

lead to collinearity among components of ĝ(α̂, γ̂) or g\(α̂, γ̂). One way to avoid

collinearity is to check the correlation coefficient (or other quantities that measure

the correlation) among the fitted values ak(γ̂;X), k = 1, . . . ,K, and remove the

model that has very high correlation with others or combine the highly correlated

models into one. More generally, it is worthwhile to study how to balance the

number of models and the numerical performance. With multiple models allowed,

the focus is no longer on how well an individual model is fitted, but rather on

how well these models could work together to ensure a better performance of the

final estimator. More investigation on this is needed.
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Appendix

Proof of Theorem 1. Taking a Taylor expansion of the left-hand side of (3.2) at

(λT
∗ = 0T,αT

0 ,γ
T
∗ )T and solving for

√
nλ̂ leads to

√
nλ̂ = G−1

{
1√
n

n∑
i=1

Ri − π(Xi)

π(Xi)
gi(α0,γ∗)−B

√
n(α̂−α0)

}
+ op(1),

where

G = E

{
1− π(X)

π(X)
g(α0,γ∗)

⊗2

}
, B = E

{
g(α0,γ∗)

π(X)

∂π(α0;X)

∂αT

}
.

Using this result, taking a Taylor expansion of the left-hand side of (3.3) at

(λT
∗ = 0T,αT

0 ,γ
T
∗ , µ0)T and solving for

√
n(µ̂1 − µ0) leads to

√
n(µ̂1 − µ0) =

1√
n

n∑
i=1

{
Ri

π(Xi)
(Yi − µ0)−LTG−1Ri − π(Xi)

π(Xi)
gi(α0,γ∗)

}
−E

{
Y − µ0 −LTG−1g(α0,γ∗)

π(X)

∂π(α0;X)

∂αT

}√
n(α̂−α0)

+op(1),

where L = E[{1− π(X)}(Y − µ0)g(α0,γ∗)/π(X)]. It is easy to verify that

E

{
Y − µ0 −LTG−1g(α0,γ∗)

π(X)

∂π(α0;X)

∂α

}
= −E

[
∂

∂α

{
R(Y − µ0)

π(α0;X)
−LTG−1R− π(α0;X)

π(α0;X)
g(α0,γ∗)

}]
= E

[{
R(Y − µ0)

π(X)
−LTG−1R− π(X)

π(X)
g(α0,γ∗)

}
S(X, R)

]
,

where the last equality follows from the generalized information equality (e.g.

Lemma 9.1 in Tsiatis (2006)). Therefore, from the asymptotic expansion
√
n(α̂−

α0) = n−1/2
∑n

i=1[E{S(X, R)⊗2}]−1S(Xi, Ri) + op(1), we have
√
n(µ̂1 − µ0) =

1√
n

n∑
i=1

Resid

{
Ri(Yi − µ0)

π(Xi)
−LTG−1Ri − π(Xi)

π(Xi)
gi(α0,γ∗),S(Xi, Ri)

}
+ op(1).

On the other hand, it is easy to verify that

Ri(Yi − µ0)

π(Xi)
−LTG−1Ri − π(Xi)

π(Xi)
gi(α0,γ∗)

= Resid

{
Ri(Yi − µ0)

π(Xi)
,
Ri − π(Xi)

π(Xi)
gi(α0,γ∗)

}
.

These facts, together with Lemma 1, imply the desired result.
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Lemma 1. Resid{Resid(ξ,φ),ϕ} = Resid{ξ, (φT,ϕT)T} for any ξ ∈ H and φ

and ϕ two finite-dimensional random vectors with components all in H.

Proof. Let Hφ = span{φ}, Hϕ = span{ϕ} and Hφ,ϕ = span{(φT,ϕT)T}.
Through the Gram–Schmidt process, we can find three mutually orthogonal sub-

spaces of H, namely H1, H2 and H3, such that Hφ = H1 ⊕H2, Hϕ = H2 ⊕H3

and Hφ,ϕ = H1 ⊕ H2 ⊕ H3, where ⊕ denotes direct sum. Let ProjHφ(ξ) =

E(ξφT)E(φφT)−1φ denote the projection of ξ onto Hφ, then Resid(ξ,φ) =

ξ − ProjHφ(ξ) = ξ − ProjH1
(ξ)− ProjH2

(ξ). Therefore, we have

Resid{Resid(ξ,φ),ϕ} = Resid(ξ,φ)− ProjHϕ{Resid(ξ,φ)}

= ξ − ProjH1
(ξ)− ProjH2

(ξ)− ProjH2
{Resid(ξ,φ)} − ProjH3

{Resid(ξ,φ)}
= ξ − ProjH1

(ξ)− ProjH2
(ξ)− ProjH3

(ξ) = ξ − ProjHφ,ϕ
(ξ)

= Resid{ξ, (φT,ϕT)T},

where the third equality follows from the facts that projection is a linear operator

and H1, H2 and H3 are mutually orthogonal. (This proof was provided by an

undergraduate student supervised by the author.)

Lemma 2. If ak0(γk0 ;X) is a correctly specified model for E(Y |X) such that

ak0(γk00 ;X) = E(Y |X) for some γk00 , and v(α∗,γ, τ ) defined below has a unique

minimizer, then γ̃k0
p−→ γk00 independent of π(X) being correctly modeled by

π(α;X).

Proof. Define

v(α∗,γ, τ ) = E

[
R

π(α∗;X)

1− π(α∗;X)

π(α∗;X)
{Y − µ0 − τTg[(α∗,γ)}2

]
.

The minimizer of v(α∗,γ, τ ) must satisfy the first-order condition

0T =
∂

∂τT
v(α∗,γ, τ )

= E

[
R

π(α∗;X)

1− π(α∗;X)

π(α∗;X)
{Y − µ0 − τTg[(α∗,γ)}g[(α∗,γ)T

]
.

It is easy to see that the solution to this equation at any γ is given by {γT,L[(α∗,

γ)TG[(α∗,γ)−1}T. Therefore, the minimizer of v{α∗,γ,G[(α∗,γ)−1L[(α∗,γ)}
is actually a subvector of the minimizer of v(α∗,γ, τ ). More specifically, since

v{α∗,γ,G[(α∗,γ)−1L[(α∗,γ)} is the probability limit of (3.5) due to the multi-

ple robustness of µ̂1, γ∗∗, the probability limit of γ̃, is the subvector of (γT
∗∗, τ

T
∗∗)

T

minimizing v(α∗,γ, τ ). When E(Y |X) is correctly modeled by ak0(γk0 ;X),

v(α∗,γ, τ ) attains its minimum 0 by taking γk0 = γk00 and τ with the (k0 +1)-th
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component 1 and all other components zeros. Therefore, we have γk0∗∗ = γk00

assuming that v(α∗,γ, τ ) has a unique minimizer.

Lemma 3. (3.7) has multiple roots when ĝ(α̂, γ̂) is one-dimensional.

Proof. Let f(λ) denote the left-hand side of (3.7). Let λ̃i = −π(α̂;Xi)/[ĝi(α̂,

γ̂){1 − π(α̂;Xi)}], i = 1, . . . ,m. We consider the non-trivial case where there

are at least three different values among λ̃i, i = 1, . . . ,m. Order the λ̃i’s and

take three adjacent values λ̃j , λ̃l and λ̃r with λ̃j < λ̃l < λ̃r. It is easy to see that

limλ↓λ̃j
f(λ) = ∞ and limλ↑λ̃l

f(λ) = −∞. Therefore, due to the continuity of

f(λ) on the interval (λ̃j , λ̃l), there must exist a root of (3.7) between λ̃j and λ̃l.

Similarly, there must also exist a root between λ̃l and λ̃r, proving the existence

of multiple roots.

Lemma 4. F1(λ) has a unique and global minimum if 0 is inside the convex

hull of {ĝi(α̂, γ̂) : i = 1, . . . ,m}.

Proof. We need only show existence. The uniqueness and globalness then come

from the strict convexity of F1(λ). Since 0 is inside the convex hull of {ĝi(α̂, γ̂) :

i = 1, . . . ,m}, it is also inside the convex hull of {ti : i = 1, . . . ,m} where ti =

ĝi(α̂, γ̂){1− π(α̂;Xi)}/π(α̂;Xi). Therefore, for any λ̄ with ‖λ̄‖ = 1, 0 is inside

the convex hull of {λ̄Tti : i = 1, . . . ,m}, and thus maxi=1,...,m(−λ̄Tti) > 0. Let

S = {λ̄ : ‖λ̄‖ = 1} denote the unit sphere. Due to the compactness of S, there

exists λ̄† ∈ S such that infλ̄∈S maxi=1,...,m(−λ̄Tti) = maxi=1,...,m(−λ̄T
† ti) > 0.

Now let c = infλ F1(λ). Apparently −∞ < c < ∞. Let {λj : j ≥ 1} be

a sequence such that limj→∞ F1(λj) = c. Without loss of generality, assume

λj 6= 0 for any j ≥ 1. Write λj = ljλ̄j , where lj = ‖λj‖ and λ̄j = λj/lj .

If lim supj→∞ lj = ∞, then lim supj→∞maxi=1,...,m(−λT
j ti) ≥ lim supj→∞ lj

maxi=1,...,m(−λ̄T
† ti) = ∞, and thus lim supj→∞ F1(λj) = ∞, which contradicts

limj→∞ F1(λj) = c < ∞. Thus we must have lim supj→∞ lj < ∞. In other

words, {λj : j ≥ 1} is inside a compact set D1. Due to the compactness, we

can find {λj′ : j′ ≥ 1}, a subsequence of {λj : j ≥ 1}, that converges to λ~

and λ~ ∈ D1. Since {F1(λj′) : j′ ≥ 1} is a subsequence of {F1(λj) : j ≥ 1},
we must have F1(λ~) = F1(limj′→∞ λj′) = limj′→∞ F1(λj′) = c, where the sec-

ond equality comes from the continuity of F1(λ). That is, a minimum of F1(λ)

exists.

Lemma 5. Fadd,1(λ) has a unique and global minimum on Dadd,1 if 0 is inside

the convex hull of {ĝi(α̂, γ̂) : i = 1, . . . ,m}.
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Proof. We need only show existence. The uniqueness and globalness then come

from the strict convexity of Fadd,1(λ). Note that Dadd,1 = {λ : 1 + λTti >

0, i = 1, . . . ,m} with ti = ĝi(α̂, γ̂){1−π(α̂;Xi)}/π(α̂;Xi). With the arguments

in the proof of Lemma 3, there exists λ̄† ∈ S = {λ̄ : ‖λ̄‖ = 1} such that

infλ̄∈S maxi=1,...,m(−λ̄Tti) = maxi=1,...,m(−λ̄T
† ti) > 0. For any λ ∈ Dadd,1 and

λ 6= 0, write λ = lλ̄, where l = ‖λ‖ and λ̄ = λ/l. Since 1+λTti = 1+ lλ̄Tti > 0,

i = 1, . . . ,m, we have 1 > lmaxi=1,...,m(−λ̄Tti) ≥ lmaxi=1,...,m(−λ̄T
† ti) > 0,

which yields l ≤ {maxi=1,...,m(−λ̄T
† ti)}−1 < ∞. Therefore, Dadd,1 is a bounded

set. Let c = infλ∈Dadd,1
Fadd,1(λ). Apparently c < ∞. Let {λj : j ≥ 1} be a

sequence in Dadd,1 such that limj→∞ Fadd,1(λj) = c. Define

W1 = {i : 1 ≤ i ≤ m, lim inf
j→∞

[π(α̂;Xi) + λT
j ĝi(α̂, γ̂){1− π(α̂;Xi)}] = 0},

W2 = {i : 1 ≤ i ≤ m, i /∈ W1}, and

fi(λ) = − log[π(α̂;Xi) + λTĝi(α̂, γ̂){1− π(α̂;Xi)}]
1− π(α̂;Xi)

, i = 1, . . . ,m.

For any i ∈ W1, we have lim supj→∞ fi(λj) = ∞, and for any i ∈ W2, we have

−∞ < lim infj→∞ fi(λj) ≤ lim supj→∞ fi(λj) < ∞, where the first inequality

comes from the boundedness of Dadd,1. If W1 6= ∅, then lim supj→∞ Fadd,1(λj) =

∞, which contradicts limj→∞ Fadd,1(λj) = c < ∞. Therefore, we must have

W1 = ∅. This implies that, there exists a 1 < δ < ∞, such that for any j ≥ 1,

λj ∈ D′add,1 = [λ : δ−1 ≤ π(α̂;Xi) + λTĝi(α̂, γ̂){1 − π(α̂;Xi)} ≤ δ, i =

1, . . . ,m] ∩ {λ : ‖λ‖ ≤ δ}, where the boundedness on the right comes from

the boundedness of Dadd,1. Since D′add,1 is compact and Fadd,1(λ) is continuous,

Fadd,1(D′add,1) is compact, and thus c = limj→∞ Fadd,1(λj) ∈ Fadd,1(D′add,1) and

c > −∞. Due again to the compactness of D′add,1, we can find {λj′ : j′ ≥ 1},
a subsequence of {λj : j ≥ 1}, that converges to λ~, and λ~ ∈ D′add,1. Since

{Fadd,1(λj′) : j′ ≥ 1} is a subsequence of {Fadd,1(λj) : j ≥ 1}, we must

have Fadd,1(λ~) = Fadd,1(limj′→∞ λj′) = limj′→∞ Fadd,1(λj′) = c. That is, a

minimum of Fadd,1(λ) exists.

Lemma 6. P (Λn = ∅)→ 1 as n→∞.

Proof. Noting that

Λn =
{
λ : λ 6= 0, λTRig

\
i (α̂, γ̂) ≥ 0 for all i, λTn−1

n∑
i=1

Rig
\
i (α̂, γ̂)

π(Xi)
≥ 0,

and λTn−1
n∑
i=1

g\i (α̂, γ̂) ≤ 0
}
,
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we just need to prove that, with probability approaching one, there does not

exist λ 6= 0 that simultaneously satisfies the three inequality restrictions above.

For any λ 6= 0 satisfying the latter two inequalities, since n−1
∑n

i=1 g
\
i (α̂, γ̂) =

n−1
∑n

i=1Rig
\
i (α̂, γ̂)/π(Xi) + op(1), we must have (i) λTn−1

∑n
i=1Rig

\
i (α̂, γ̂)/

π(Xi) = op(1). On the other hand, since the components of g\(α∗,γ∗)/π(X)

are linearly independent because the K models for E(Y |X) are different, we

have P (λTg\(α∗,γ∗)/π(X) 6= 0|R = 1) > 0, which, together with P (R = 1) >

0, implies that (ii) P (λTRg\(α∗,γ∗)/π(X) 6= 0) > 0. If λ also satisfies the

first inequality, or equivalently λTRig
\
i (α̂, γ̂)/π(Xi) ≥ 0 for all i, then from

(ii) we must have λTn−1
∑n

i=1Rig
\
i (α̂, γ̂)/π(Xi) bounded away from zero with

probability approaching one, which contradicts (i).
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