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In this supplementary material, we present the proofs for Lemma 1,

Lemma 2, Lemma 4 and Theorem 2 in the main article.

S1 Technical Proofs

Proof of Lemma 1. We first assume f ∈ FΦ. If f = sf,x, there is nothing to

prove. If f 6= sf,x, without loss of generality, we write

f(x) =
n+m∑
i=1

αiΦ(x, xi),

for an extra set of distinct points {xn+1, . . . , xn+m} ⊂ Ω. Now partition

(Ai,j) = Φ(xi, xj), 1 ≤ i, j ≤ n+m into

A =

(A1)n×n (A2)n×m

(A3)m×n (A4)m×m

 ,
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where A3 = AT
2 because Φ is symmetric.

Let y = (f(x1), . . . , f(xn))T, a1 = (α1, . . . , αn)T, a2 = (αn+1, . . . , αn+m)T.

Clearly, y = A1a1 + A2a2. By the definition of sf,x, we have

sf,x(x) =
n∑
i=1

uiΦ(x, xi),

with u = (u1, . . . , un)T satisfying y = A1u. Then from (??) we obtain

〈sf,x, f − sf,x〉NΦ(Ω)

=

〈
n∑
i=1

uiΦ(x, xi),
n∑
i=1

(αi − ui)Φ(x, xi) +
n+m∑
i=n+1

αiΦ(x, xi)

〉
NΦ(Ω)

=

(
uT 0

)A1 A2

A3 A4


a1 − u

a2


= uT(A1a1 + A2a2 − A1u)

= uT(y − y) = 0. (S1.1)

For a general f ∈ NΦ(Ω), we can find a sequence fn ∈ FΦ with fn → f

in NΦ(Ω) as n → ∞. The desired result then follows from a limiting form

of (S1.1).

Proof of Lemma 2. For any g ∈ L2(Rd) ∩ C(Rd), its native norm admits

the representation

‖g‖2
NΦ(Rd) = (2π)−d/2

∫
Rd

|g̃(ω)|2

Φ̃(ω)
dω, (S1.2)
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where g̃ and Φ̃ denote the Fourier transforms of g and Φ respectively. See

Theorem 10.12 of Wendland [2005]. The (fractional) Sobolev norms have a

similar representation

‖g‖2
Hs(Rd) = (2π)−d/2

∫
Rd

|g̃(ω)|2(1 + ‖ω‖2)sdω. (S1.3)

See Adams and Fournier [2003] for details. Tuo and Wu [2016] show that

C̃υ,γ(ω) = 2d/2(4υγ2)υ
Γ(υ + d/2)

Γ(ν)
(4υγ2 + ‖ω‖2)−(υ+d/2).

Using the inequality

(1 + b) min(1, a) ≤ a+ b ≤ (1 + b) max(1, a),

for a, b ≥ 0, we obtain

C̃υ,γ(ω) ≤ 2d/2(4υγ2)υ
Γ(υ + d/2)

Γ(υ)
max

{
1, (4υγ2)−(υ+d/2)

}
(1 + ‖ω‖2)−(υ+d/2)

≤ 2d/2
Γ(υ + d/2)

Γ(υ)
max

{
(4υγ2

2)υ, (4υγ2
1)−d/2

}
(1 + ‖ω‖2)−(υ+d/2)

=: C1(1 + ‖ω‖2)−(υ+d/2), (S1.4)

and

C̃υ,γ(ω) ≥ 2d/2(4υγ2)υ
Γ(υ + d/2)

Γ(υ)
min

{
1, (4υγ2)−(υ+d/2)

}
(1 + ‖ω‖2)−(υ+d/2)

≥ 2d/2
Γ(υ + d/2)

Γ(υ)
min

{
(4υγ2

1)υ, (4υγ2
2)−d/2

}
(1 + ‖ω‖2)−(υ+d/2)

=: C2(1 + ‖ω‖2)−(υ+d/2), (S1.5)

hold for all ω ∈ Rd.
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Now we apply the extension theorem of the native spaces (Theorem

10.46 of Wendland, 2005) to obtain a function fE ∈ NCυ,γ (Rd) such that

fE|Ω = f and ‖f‖NCυ,γ (Ω) = ‖fE‖NCυ,γ (Rd) for each γ ∈ [γ1, γ2]. We use

(S1.2)-(S1.4) to obtain

‖f‖2
NCυ,γ (Ω) = ‖fE‖2

NCυ,γ (Rd) = (2π)−d/2
∫
Rd

|f̃E(ω)|2

C̃υ,γ(ω)
dω

≥ C−1
1 (2π)−d/2

∫
Rd

|f̃E(ω)|2(1 + ‖ω‖2)υ+d/2dω

= C−1
1 ‖fE‖2

Hυ+d/2(Rd) ≥ C−1
1 ‖f‖2

Hυ+d/2(Ω), (S1.6)

where the last inequality follows from the fact that fE|Ω = f . On the other

hand, because Ω is convex, f has an extension fE ∈ Hυ+d/2(Rd) satisfying

‖fE‖Hk(Rd) ≤ c‖f‖Hk(Ω) for some constant c independent of f . Then we

use (S1.2), (S1.3) and (S1.5) to obtain

‖fE‖2
Hk(Ω) ≥ c−2‖f‖2

Hk(Ω)

= c−2(2π)−d/2
∫
Rd

|f̃E(ω)|2(1 + ‖ω‖2)υ+d/2dω

≥ c−2C2(2π)−d/2
∫
Rd

|f̃E(ω)|2

C̃υ,γ(ω)
dω

= c−2C2‖fE‖2
NCυ,γ (Rd) ≥ c−2C2‖f‖2

NCυ,γ (Ω),

where the last inequality follows from the restriction theorem of the native

space, which states that the restriction f = fE|Ω is contained in NCυ,γ (Ω)

with a norm that is less than or equal to the norm ‖fE‖NCυ,γ (Rd). See The-

orem 10.47 of Wendland [2005]. The desired result is proved by combining
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(S1.6) and (S1.7).

Proof of Lemma 4. For f ∈ NΦ(Ω), define

M(f) = L(f(x1), . . . , f(xn)) + ‖f‖2
NΦ(Ω).

Now consider sf̂ ,X , i.e., the interpolant of f̂ over X = {x1, . . . , xn} using

the kernel function Φ. Because f̂(xi) = sf̂ ,X(xi) for i = 1, . . . , n, we have

L(f(x1), . . . , f(xn)) = L(sf̂ ,X(x1), . . . , sf̂ ,X(xn)). (S1.7)

In addition, it is easily seen from Lemma 1, (9) and (10) in the main article

that

‖sf̂ ,X‖
2
NΦ(Ω) ≤ ‖f̂‖2

NΦ(Ω), (S1.8)

and the equality holds if and only if sf̂ ,X = f̂ . By combining (S1.7) and

(S1.8) we obtain

M(sf̂ ,X) ≤M(f̂). (S1.9)

Because f̂ minimizes M(f), the reverse of (S1.9) also holds. Hence we

deduce sf̂ ,X = f̂ , which proves the theorem according to the definition of

the interpolant.

Proof of Theorem 2. We first rewrite the minimization problem (16) in the
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main article as the following iterated form

min
θ∈Θ

f∈NCυ,γ (Ω)

n∑
i=1

(ypi − ys(xi, θ)− f(xi))
2 +

σ2

τ 2
‖f‖2

NCυ,γ (Ω)

= min
θ∈Θ

min
f∈NCυ,γ (Ω)

n∑
i=1

(ypi − ys(xi, θ)− f(xi))
2 +

σ2

τ 2
‖f‖2

NCυ,γ (Ω)(S1.10)

Now we apply Lemma 4 to the inner minimization problem in (S1.10) and

obtain the following representation for ∆̂:

∆̂ =
n∑
i=1

αiCυ,γ(xi, ·),

with an undetermined vector of coefficients α = (α1, . . . , αn)T. Using the

definition Σγ = (Cυ,γ(xi, xj))ij, clearly we have the matrix representation

∆̂(x) = Σγα. (S1.11)

Now using (7) in the main article we have

‖∆̂‖2
NCυ,γ (Ω) =

〈
n∑
i=1

αiCυ,γ(xi, ·),
n∑
i=1

αiCυ,γ(xi, ·)

〉
NCυ,γ (Ω)

= αTΣγα.

The minimization problem (16) in the main article then reduces to

argmin
θ∈Θ
α∈Rn

‖yp − ys(x, θ)− αΣγ‖2 +
σ2

τ 2
αTΣγα.

Applying a change-of-variable argument using (S1.11) we obtain the follow-

ing optimization formula

argmin
θ∈Θ

∆(x)∈Rn

‖yp − ys(x, θ)−∆(x)‖2 +
σ2

τ 2
∆(x)TΣ−1

γ ∆(x).
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Elementary calculations show its equivalence to the definition of (θ̂KO, δ̂(x)).
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