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Abstract: Kennedy and O’Hagan (2001) propose a model for calibrating some un-

known parameters in a computer model and estimating the discrepancy between

the computer output and physical response. This model is known to have certain

identifiability issues. Tuo and Wu (2016) show that there are examples for which

the Kennedy-O’Hagan method renders unreasonable results in calibration. In spite

of its unstable performance in calibration, the Kennedy-O’Hagan approach has a

more robust behavior in predicting the physical response. In this work, we present

some theoretical analysis to show the consistency of predictor based on their cali-

bration model in the context of radial basis functions.
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1. Introduction

With the development of mathematical models and computational technique,

simulation programs or software have become increasingly powerful for the pre-

diction, validation and control of many physical processes. A computer simu-

lation run, based on a virtual platform, requires only computational resources

that are rather inexpensive in today’s computing environment. In contrast, a

physical experiment usually requires more facilities, materials, and human la-

bor. As a consequence, a typical computer simulation run is much cheaper than

its corresponding physical experiment trial. The economic benefits of computer

simulations make them particularly useful and attractive in scientific and engi-

neering research. As a branch of statistics, design of experiments mainly studies

the methodologies on the planning, analysis and optimization of physical exper-

iments (Wu and Hamada (2011)). Given the rapid spread of computer simula-

tions, it is beneficial to develop theory and methods for the design and analysis

of computer simulation experiments. This emerging field is commonly referred

to as computer experiments. We refer to Santner, Williams and Notz (2003) for
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more details.

The input variables of a computer experiment normally consist of factors

which can be controlled in the physical process, referred to as the control vari-

ables, as well as some model parameters. These model parameters represent

certain intrinsic properties of the physical system. For example, to simulate a

heat transfer process, we need to solve a heat equation. The formulation of the

equation requires the environmental settings and the initial conditions of the

system that can be controlled physically, as well as the thermal conductivity

which is uncontrollable and cannot be measured directly in general. For most

computer simulations, the prediction accuracy of the computer model is closely

related to the choice of the model parameters. A standard method for deter-

mining the unknown model parameters is to estimate them by comparing the

computer outputs and the physical responses. Such a procedure is known as

calibration for computer models, and the model parameters to be identified are

called the calibration parameters. Kennedy and O’Hagan (2001) first study the

calibration problem using ideas and methods in computer experiments. They

propose a Bayesian hierarchical model to estimate the calibration parameters

by computing their posterior distributions. Tuo and Wu (2016) show that the

Kennedy-O’Hagan method may render unreasonable estimates for the calibra-

tion parameters. Given the widespread use of the Kennedy-O’Hagan method, it

is desirable to make a comprehensive assessment of this method. For brevity, we

sometimes refer to Kennedy-O’Hagan as KO.

This paper endeavors to study the prediction performance of the Kennedy-

O’Hagan approach. First, we adopt the framework of Tuo and Wu (2016) which

assumes the physical observations to be non-random. Interpolation theory in the

native spaces becomes the key mathematical tool in this part. Then, we study

the more realistic situation where the physical data are noisy. We employ the

asymptotic theory of the smoothing splines in Sobolev spaces to obtain the rate

of convergence of the KO predictor in this case.

This article is organized as follows. In Section 2 we review the Bayesian

method proposed by Kennedy and O’Hagan (2001) for calibrating the model

parameters and predicting for new physical responses. In Section 3 we present

our main results on the asymptotic theory on the prediction performance of the

KO method. Concluding remarks and further discussions are made in Section 4.

Some proofs are given in the supplementary material.
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2. Review on the Kennedy-O’Hagan Method

In this section we review the Bayesian method proposed by Kennedy and

O’Hagan (2001). The formulation of this approach can be generalized to some

extent. See, for example, Higdon et al. (2004).

Denote the experimental region for the control variables as Ω. We suppose

that Ω is a convex and compact subset of Rd. Let {x1, . . . , xn} ⊂ Ω be the set of

design points for the physical experiment. Denote the responses of the n physical

experimental runs by yp1 , . . . , y
p
n, respectively, with p standing for “physical”. Let

Θ be the domain of the calibration parameter. In this article, we suppose the

computer model has computer output as a deterministic function of the control

variables and the calibration parameters, denoted by ys(x, θ) for x ∈ Ω, θ ∈ Θ

with s standing for “simulation”.

We consider two types of computer models. The first is called “cheap com-

puter simulations”. In these problems each run of the computer code takes only

a short time so that we can call the computer simulation code inside our sta-

tistical analysis program which is usually based on an iterative algorithm like

Markov Chain Monte Carlo (MCMC). The second is called “expensive computer

simulations”. In these problems each run of the computer code takes a long

time so that it is unrealistic to embed the computer simulation code into an it-

erative algorithm. A standard approach in computer experiments is to run the

computer code over a set of selected points, and build a surrogate model based

on the obtained computer outputs to approximate the underlying true function.

The surrogate model can be evaluated much faster. In the statistical analysis,

the response values from the surrogate model are used instead of those from the

original computer model.

2.1. The case of cheap computer simulations

We model the physical response yp in the following nonparametric manner,

ypi = ζ(xi) + ei, (2.1)

where ζ(·) is an underlying function, referred to as the true process, and the ei’s

are the observation error. We assume the ei’s are independent and identically

distributed normal random variables with mean zero and unknown variance σ2.

The computer output function and the physical true process are linked by

ζ(·) = ys(·, θ) + δ(·), (2.2)

where θ denotes the “true” calibration parameter in the sense of a “best fitting”
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value of the calibration parameter (Kennedy and O’Hagan (2001)), and δ denotes

an underlying discrepancy function between the physical process and the com-

puter model under the true calibration parameters. It is reasonable to believe

that in most computer experiment problems, the discrepancy function δ should

be nonzero and possibly highly nonlinear because the computer codes are usually

built under assumptions or simplifications that do not hold true.

To estimate θ and δ, we follow a standard Bayesian procedure by imposing

certain prior distributions on the unknown parameters θ and σ2 and the unknown

function δ(·). In the computer experiment literature, a prominent method is to

use a Gaussian process as the prior for an unknown function (Santner, Williams

and Notz (2003)). There are two major reasons for choosing Gaussian processes.

First, the sample paths of a Gaussian process are smooth if a smooth covariance

function is chosen, which can be beneficial when the target function is smooth as

well. Second, the computational burden of the statistical inference and prediction

for a Gaussian process model is relatively low. Specifically, we use a Gaussian

process with mean zero and covariance function τ2Cγ(·, ·) as the prior of δ(·),
where Cγ is a stationary kernel with hyper-parameter γ.

In view of the finite-dimensional distribution of a Gaussian process, given

τ2 and γ, δ(x) = (δ(x1), . . . , δ(xn))T follows the multivariate normal distribution

N(0, τ2Σγ), where Σγ = (Cγ(xi, xj))ij . In order to discuss the prediction problem

later, we apply the data augmentation algorithm of Tanner and Wong (1987) and

consider the posterior distribution of (θ, δ(x), σ2, γ) given by

π(θ, δ(x), τ2, σ2, γ|yp)
∝ π(yp|θ, δ(x), τ2, σ2, γ)π(δ(x)|θ, τ2, σ2, γ)π(θ, τ2, σ2, γ)

∝ σ−n/2 exp

{
− 1

2σ2
‖yp − ys(x, θ)− δ(x)‖2

}
× τ−n/2 (det Σγ)−1/2 exp

{
−
δ(x)TΣ−1

γ δ(x)

2τ2

}
π(θ, τ2, σ2, γ), (2.3)

where yp = (yp1 , . . . , y
p
n)T, ys(x, θ) = (ys(x1, θ), . . . , y

s(xn, θ))
T. It is not time-

consuming to evaluate the posterior density function π(·, ·, ·, ·, ·|yp) because the

computer code is cheap to run. A standard MCMC procedure can then be

employed to draw samples from the posterior distribution. We refer to Higdon

et al. (2004) for further details.

In this work, we pay special attention to the prediction for a new physical

reponse at an untried point xnew, denoted as yp(xnew). Samples from the pos-

terior predictive distribution of yp(xnew) can be drawn along with the MCMC
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sampling. To see this, we note that in view of the Gaussian process assumption,

given δ(x) and γ, δ(xnew) follows the normal distribution

N(ΣT
1 Σ−1

γ δ(x), τ2(Cγ(xnew, xnew)− ΣT
1 Σ−1

γ Σ1)),

where Σ1 = (Cγ(x1, xnew), . . . , Cγ(xn, xnew))T. Because in each iteration of the

MCMC procedure a sample of (δ(x), θ, γ, σ2) is drawn, we can draw a sample of

yp(xnew) from its posterior distribution π(yp(xnew)|yp, δ(x), θ, τ2, γ, σ2), which is

the multivariate normal distribution

N(ys(xnew, θ) + ΣT
1 Σ−1

γ δ(x), τ2(Cγ(xnew, xnew)− ΣT
1 Σ−1

γ Σ1) + σ2). (2.4)

2.2. The case of expensive computer simulations

When the computer code is expensive to run, it is intractable to run MCMC

based on (2.3) directly. Instead, we need a surrogate model to approximate

the computer output function ys(·, ·). In this setting Kennedy and O’Hagan

(2001) use the Gaussian process model again. Suppose we first run the computer

simulation over a set of design points {(xs1, θs1), . . . , (xsl , θ
s
l )} ⊂ Ω×Θ. We choose

a Gaussian process with mean mβ(·) and covariance function τ ′2Csγ′(·, ·) as the

prior for ys, where β, τ ′ and γ′ are hyper-parameters. Besides, the prior processes

of ys and δ are assumed to be independent.

The Bayesian analysis for the present model is similar to that in Section 2.1,

but with more cumbersome derivations. We write ys := (ys(xs1, θ
s
1), . . . , ys(xsl ,

θsl ))
T and define (n+ l)-dimensional vectors

xE = (xE1 , . . . , x
E
n+l)

T := (x1, . . . , xn, x
s
1, . . . , x

s
l )

T,

θE = (θE1 , . . . , θ
E
n+l)

T := (θ, . . . , θ, θs1, . . . , θ
s
l )

T.

By (2.1) and (2.2), the joint distribution of yp and ys conditional on θ, σ2, γ, β,

and τ is

(yp,ys)|σ2, γ, β, τ2, τ ′2, γ′ ∼ N

(
mβ(xE),ΣE +

(
Σ11 + σ2In 0

0 0

))
,

where mβ(xE) = (mβ(xE1 ), . . . ,mβ(xEn+l))
T and

ΣE =
(
τ ′2Csγ′

((
xEi , θ

E
i

)
,
(
xEj , θ

E
j

)))
ij
,

Σ11 =
(
τ2Cγ (xi, xj)

)
ij
.

Then the posterior distribution of the parameters is given by

π(θ, σ2, γ, β, τ2, τ ′2, γ′|yp,ys)
∝ π(yp,ys|θ, σ2, γ, β, τ2, τ ′2, γ′)π(θ, σ2, γ, β, τ2, τ ′2, γ′).
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The parameter estimation proceeds in a similar manner to the MCMC scheme

discussed in Section 2.1. As before, the prediction for the true process can be done

along with the MCMC iterations. Noting the fact that (yp(xnew),yp,ys) follows

a multivariate normal distribution given the model parameters, the posterior

predictive distribution of yp(xnew) can be obtained using the Bayes’ theorem.

It can be seen that the modeling and analysis for the KO method with ex-

pensive computer code is much more complicated than that with cheap computer

code. For the ease of mathematical analysis, our theoretical studies in the next

section considers only the cases with cheap code. Hence, we omit the detailed

formulae of the posterior density of the model parameters and the posterior pre-

dictive distribution of yp(xnew) in this section.

3. Theoretical Studies

In this section we conduct some theoretical study of the power of prediction

of the KO method. We consider the case of cheap computer code, but we believe

that this simplification does not affect our general conclusion.

The asymptotic theory for the KO method depends on the choice of the

correlation family Cγ . In the present work, we restrict ourselves to the Matérn

family of kernel functions (Stein (1999)), defined as

Cυ,γ(s, t) =
1

Γ(υ)2υ−1

(
2
√
υγ‖s− t‖

)υ
Kυ

(
2
√
υγ‖s− t‖

)
, (3.1)

where Kυ is the modified Bessel function of the second kind. In the Matérn

family, the model parameter υ dominates the smoothness of the process and γ

is a scale parameter. Because the smoothness parameter υ has an effect on the

rate of convergence of the prediction, for simplicity we suppose it is fixed in the

entire data analysis.

All proofs in this section are given in the supplementary material.

3.1. A function approximation perspective

We follow the theoretical framework of Tuo and Wu (2016) to study the

prediction performance of the KO method. Under this framework, the physical

responses are assumed to have no random error, the ei’s in (2.1) are zero. This

is an unrealistic assumption in practice, but it simplifies the model structure, so

that we are able to find mathematical tools that help us to understand certain

intrinsic properties of the KO method.

From (2.1), we have ypi = ζ(xi), where ζ is a deterministic function (as

the expectation of the physical response). Therefore, we regard the Gaussian
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process modeling technique used in the KO method as a way of reconstructing

the function ζ based on samples ζ(xi).

An immediate consequence of the deterministic assumption is that δ(x) =

yp − ys(x, θ) is determined by θ given the observations. Thus (2.3) is not appli-

cable. Instead, we have

π(θ, τ2, γ|yp) ∝ π(yp|θ, τ2, γ)π(θ, τ2, γ)

∝ (det Σγ)−1/2 exp

{
−1

2
(yp − ys(x, θ))TΣ−1

γ (yp − ys(x, θ)
}
π(θ, τ2, γ).

To differentiate between the true process ζ and its estimate based on the

observations, we denote a draw from the predictive distribution π(ζ(xnew)) by

ζrep(xnew). Then the posterior predictive distribution π(ζrep(xnew)|θ, γ,yp) is

N
(
ys(xnew, θ) + ΣT

1 Σ−1
γ (yp − ys(x, θ)), τ2(Cυ,γ(xnew, xnew)− ΣT

1 Σ−1
γ Σ1)

)
.

(3.2)

We now suppose the prior distribution π(θ, τ2, γ) is separable, π(θ, τ2, γ) =

π(θ)π(τ2)π(γ). Let Sθ, Sτ2 , and Sγ denote the supports of the distributions

π(θ), π(τ2), and π(γ), respectively. For the ease of mathematical treatment, we

further suppose that Sθ is a compact subset of R, and Sτ2 ⊂ [0, τ2
0 ], Sγ ⊂ [γ1, γ2]

for some 0 < τ2
0 < +∞, 0 < γ1 < γ2 < +∞. The independence assumption of

the prior distributions can be replaced with a more general assumption, which

would not affect the validity of our theoretical analysis. However, the compact

support assumption is technically unavoidable in the current treatment. Because

we focus on the posterior mode, the use of the compact support assumption does

not affect the practical applicability of the results.

The aim of this section is to study the asymptotic behavior of

µ̂θ,γ = ys(xnew, θ) + ΣT
1 Σ−1

γ (yp − ys(x, θ)),
ς̂2
τ2,γ = τ2(Cυ,γ(xnew, xnew)− ΣT

1 Σ−1
γ Σ1),

as the design points become dense in Ω, for (θ, τ2, γ) ∈ Sθ, Sτ2 , Sγ . Clearly, the

true posterior mean of ζrep(xnew) given by (3.2) is

E[ζrep(xnew)|yp] = E[µ̂θ̂,γ̂ |y
p],

where (θ̂, γ̂) follows the posterior distribution π(θ, γ|yp). Here

|E[ζrep(xnew)|yp]− ζ(xnew)|

=
∣∣∣E {E[ζrep(xnew)− ζ(xnew)|yp, θ̂, γ̂]

∣∣yp}∣∣∣
≤ sup

θ∈Sθ,γ∈Sγ
|E[ζrep(xnew)− ζ(xnew)|yp, θ, γ]|
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= sup
θ∈Sθ,γ∈Sγ

|µ̂θ,γ − ζ(xnew)|,

thus the bias of the posterior predictive mean can be bounded by the supremum

of |µ̂θ,γ − ζ(xnew)|. Similarly, we find

Var(ζrep(xnew)|yp) ≤ sup
τ2∈Sτ2 ,γ∈Sγ

ς̂2
τ2,γ .

In this section we bound supθ∈Sθ,γ∈Sγ |µ̂θ,γ−ζ(xnew)| and supτ2∈Sτ2γ∈Sγ ς̂
2
τ2,γ .

To this end, we resort to the theory of native spaces. We refer to Wendland (2005)

for detailed discussions. For a symmetric and positive definite function Φ over

Ω× Ω, consider the linear space

FΦ(Ω) :=

{
m∑
i=1

αiΦ(si, ·) : m ∈ N+, αi ∈ R

}
,

equipped with the inner product〈
m∑
i=1

αiΦ(si, ·),
l∑

j=1

βjΦ(tj , ·)

〉
=

m∑
i=1

l∑
j=1

αiβjΦ(si, tj). (3.3)

The completion of FΦ(Ω) with respect to its inner product is called the native

space generated by Φ, denoted by NΦ(Ω). Denote the inner product and the

norm of NΦ(Ω) by 〈·, ·〉NΦ(Ω) and ‖ · ‖NΦ(Ω), respectively.

Now we state the interpolation scheme in the native space. Let f ∈ NΦ(Ω)

and x = {x1, . . . , xn} be a set of distinct points in Ω. Let y = (f(x1), . . . , f(xn))T

be the observerd data. Define

sf,x(x) =

n∑
i=1

uiΦ(xi, x), (3.4)

where u = (u1, . . . , un)T is given by the linear equation

y = Φ(x,x)u

for (Φ(x,x))ij = Φ(xi, xj).

Clearly, sf,x ∈ FΦ and thus sf,x ∈ NΦ(Ω). The next lemma can be found in

Wendland (2005). For the completeness, we provide its proof in the supplemen-

tary material.

Lemma 1. For f ∈ NΦ(Ω) and a set of design points x ⊂ Ω,

〈sf,x, f − sf,x〉NΦ(Ω) = 0.

From Lemma 1 we can deduce the Pythagorean identity

‖sf,x‖2NΦ(Ω) + ‖f − sf,x‖2NΦ(Ω) = ‖f‖2NΦ(Ω). (3.5)
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Now we consider an arbitrary function h ∈ NΦ(Ω) that interpolates f over x,

denoted as f |x = h|x. Then we have sf,x = sh,x and thus (3.5) also holds true

if we replace f with h. This suggests ‖sf,x‖NΦ(Ω) ≤ ‖h‖NΦ(Ω), which yields the

optimality condition

sf,x = argmin
h∈NΦ(Ω)
h|x=f |x

‖h‖NΦ(Ω). (3.6)

It can be shown that the native space generated by the Matérn kernel Cυ,γ
for υ ≥ 1 coincides with the (fractional) Sobolev space Hυ+d/2(Ω) (Adams and

Fournier (2003)), and the norms are equivalent. See Tuo and Wu (2016) for

details. We can also prove that the norms of the native spaces generated by Cυ,γ
for a set of γ values bounded away from 0 and +∞ are equivalent.

Lemma 2. Suppose υ ≥ 1. There exist constants c1, c2 > 1, so that

c1‖f‖Hυ+d/2(Ω) ≤ ‖f‖NCυ,γ (Ω) ≤ c2‖f‖Hυ+d/2(Ω) (3.7)

holds for all f ∈ Hυ+d/2(Ω) and all γ ∈ [γ1, γ2].

Next, we turn to the error estimate of the interpolant sf,x. Wendland (2005)

shows that for u ∈ Hµ(Ω) with u|x = 0 and bµc > d/2,

‖u‖L∞(Ω) ≤ Ch
µ−d/2
x,Ω ‖u‖Hµ(Ω),

provided that x is “sufficiently dense”, where C is independent of x and u; hx,Ω
is the fill distance of the design x defined as

hx,Ω = sup
x∈Ω

min
xj∈x
‖x− xj‖.

Here “x is sufficiently dense” means that its fill distance hx,Ω is less than a

constant h0 depending only on Ω and µ. Noting that (f − sf,x)|x = 0 and

f − sf,x ∈ Hυ+d/2(Ω), we obtain that, for υ ≥ 1,

‖f − sf,x‖L∞(Ω) ≤ Chυx,Ω‖f − sf,x‖Hυ+d/2(Ω),

which, together with (3.5), yields

‖f − sf,x‖L∞(Ω) ≤ Chυx,Ω‖f‖Hυ+d/2(Ω). (3.8)

Then we apply Lemma 2 to prove Lemma 3.

Lemma 3. Suppose υ ≥ 1. For f ∈ Hυ+d/2(Ω), let sf,x be the interpolant of f

over x with the kernel Cγ,υ, γ ∈ [γ1, γ2]. Then for sufficiently dense x

‖f − sf,x‖L∞(Ω) ≤ Chυx,Ω‖f‖NCυ,γ (Ω),

where C is independent of the choices of f , x and γ.
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Following the notation of Tuo and Wu (2016), we define ε(x, θ) = ζ(x) −
ys(x, θ). It is commented by Tuo and Wu (2016) that in general θ is not es-

timable due to the identifiability problem, and thus neither is δ(·) = ε(·, θ).
However, as is shown later, the function ε(·, ·) can be consistently estimated

using KO calibration. Suppose ε(·, θ) ∈ Hυ+d/2(Ω) for each θ ∈ Sθ. Let

ε(x, θ) = (ε(x1, θ), . . . , ε(xn, θ))
T. Clearly, yp − ys(x, θ) = ε(x, θ) and thus

sε(·,θ),x(xnew) = ΣT
1 Σ−1

γ (yp − ys(x, θ)).

By (3.8) we obtain

|µ̂θ,γ − ζ(xnew)| = |ε(xnew, θ)− sε(·,θ),x(xnew)|
≤ Chυx,Ω‖ε(·, θ)‖Hυ+d/2(Ω)

≤ Chυx,Ω sup
θ∈Sθ
‖ε(·, θ)‖Hυ+d/2(Ω). (3.9)

The error bound for the variance term can be obtained similarly. Elementary

calculations show that

ΣT
1 Σ−1

γ Σ1 = sCυ,γ(·,xnew),x(xnew).

Hence we apply Lemma 3 to find

|τ2(Cυ,γ(xnew, xnew)− ΣT
1 Σ−1

γ Σ1)| = τ2|Cυ,γ(xnew, xnew)− sCυ,γ(·,xnew),x(xnew)|
≤ τ2

0Ch
υ
x,Ω‖Cυ,γ(·, xnew)‖NCυ,γ (Ω)

= τ2
0Ch

υ
x,Ω, (3.10)

where the last equality follows from the fact that ‖Cυ,γ(·, xnew)‖NCυ,γ (Ω) = 1. We

summarize our findings in (3.9) and (3.10) as Theorem 1.

Theorem 1. If υ ≥ 1, γ ∈ [γ1, γ2], and τ ≤ τ0, then for a sufficiently dense

design x, we have the upper bound for the predictive mean as

sup
θ∈Sθ,γ∈Sγ

|µ̂θ,γ − ζ(xnew)| ≤ Chυx,Ω sup
θ∈Sθ
‖ε(·, θ)‖Hυ+d/2(Ω),

and the upper bound for the predictive variance as

sup
τ2∈S2

τ ,γ∈Sγ
ς̂2
τ2,γ ≤ τ2

0Ch
υ
x,Ω,

with a constant C depending only on Ω, υ, γ1, γ2.

From Theorem 1, the rate of convergence is O(hυx,Ω), known to be optimal

in the current setting (Wendland (2005)). The predictive behavior of the KO

calibration is more robust than in the case of estimation as shown by Tuo and Wu

(2016), Theorem 4.2. Specifically, they show the KO calibration estimator tends

to the minimizer of a norm involving the prior assumption. By comparison, the
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predictive performance does not depend on the choice of the prior asymptotically.

3.2. A nonparametric regression perspective

Now we turn to the more realistic case, where the physical observations

have random measurement errors. As before, we treat the true process ζ(·) as a

deterministic function. For the ease of mathematical treatment, in this section

we fix the value of γ. Our analysis later will show that the resulting rate of

convergence is not influenced by the choice of γ. Other parameters are either

estimated or chosen to vary along with the sample size n.

To study the predictive behavior of the KO method asymptotically, the key

is to understand the posterior mode of δ(x) in (2.3). We first introduce the

representer theorem (Schölkopf, Herbrich and Smola (2001); Wahba (1990)), and

give its proof, using Lemma 1, in the supplementary material.

Lemma 4 (Representer Theorem). Let x1, . . . , xn be a set of distinct points in

Ω and L : Rn → R be an arbitrary function. If f̂ is the minimizer of the problem

min
f∈NΦ(Ω)

L(f(x1), f(x2), . . . , f(xn)) + ‖f‖2NΦ(Ω),

then f̂ possesses the representation

f̂ =

n∑
i=1

αiΦ(xi, ·),

with coefficients αi ∈ R, i = 1, . . . , n.

We first fix the values of τ2, σ2, and γ in their domain. Then we consider the

profile posterior density function of δ(x) that, according to (2.3), is proportional

to

πτ2,σ2,γ(θ, δ(x)) = exp

{
− 1

2σ2
‖yp − ys(x, θ)− δ(x)‖2 −

δ(x)TΣ−1
γ δ(x)

2τ2

}
.

(3.11)

The profile posterior mode (θ̂KO, δ̂(x)) maximizes πτ2,σ2,γ(·, ·). Using the

representer theorem, we show an equality between δ̂(x) and the solution to a

penalized least squares problem.

Theorem 2. Let (θ̂, ∆̂) be the solution to

argmin
θ∈Θ

f∈NCυ,γ (Ω)

n∑
i=1

(ypi − y
s(xi, θ)− f(xi))

2 +
σ2

τ2
‖f‖2NCυ,γ (Ω). (3.12)

Then θ̂ = θ̂KO and (∆̂(x1), . . . , ∆̂(xn))T =: ∆̂(x) = δ̂(x).
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Now we are ready to state the main asymptotic theory. We first investigate

the asymptotic properties of the predictive mean, then consider the consistency

of the predictive variance.

From (2.4), the predictive mean of the KO model is

ζrep(xnew) = ys(xnew, θ̂KO) + ΣT
1 (xnew)Σ−1

γ δ̂(x), (3.13)

where Σ1(xnew) = (Cυ,γ(xnew, x1), . . . , Cυ,γ(xnew, xn))T. Invoking Theorem 2,

we have δ̂(x) = ∆̂(x) with ∆̂ defined in (3.12). Using (3.4), it can be seen that

ζ̂(·) − ys(·, θ̂KO) is the kernel interpolant of the data (x, ∆̂(x)). Hence, from

Lemma 4 and Theorem 2 we have

ζ̂(·)− ys(·, θ̂KO) = ∆̂(·).

The ratio of the variances σ2/τ2 plays an important role in (3.12). In the

nonparametric regression literature, such a quantity is commonly referred to as

the smoothing parameter, a tuning parameter to balance the bias and variance

of the estimator. It can be seen that as σ2/τ2 → ∞, ε̂ tends to 0, while as

σ2/τ2 ↓ 0, ε̂ eventually interpolates (xi, y
p
i − ys(xi, θ̂KO)), typically an over-fit.

We take σ2/τ2 = rn when the sample size is n. According to Theorem 3, the

optimal rate for rn is rn ∼ nd/(2υ+2d). van der Vaart and van Zanten (2008)

have it that the optimal tuning rate can be automatically achieved by following

a standard Bayesian analysis procedure. We do not pursue this approach here.

Some asymptotic theory for the penalized least squares problem (3.12) is

available in van der Geer (2000). To use this, we need to choose the smoothing

parameter rn to diverge at an appropriate rate as n goes to infinity. For con-

venience, we suppose that the design points are randomly chosen. We consider

the rate of convergence of the penalized least squares estimator under the L2

metric. We assume that ys is Lipschitz continuous. Then the metric entropy

of {ys(·, θ) : θ ∈ Θ} is dominated by that of the unit ball of the nonparametric

class NCυ,γ (Ω), see van der Vaart and Wellner (1996). Theorem 3 then is a direct

consequence of Theorem 10.2 of van der Geer (2000), where the required upper

bound for the metric entropy is obtained from (3.6) of Tuo and Wu (2015).

Theorem 3. Suppose the design points {xi} are independently uniform over Ω.

Let υ ≥ 1, ys be Lipschitz continuous, and rn ∼ nd/(2υ+2d). Under (2.1) with

σ2 > 0, the KO predictor ζ̂ at (3.13) satisfies

1

n

n∑
i=1

(ζ̂(xi)− ζ(xi))
2 = Op(n

−(2υ+d)/(2υ+2d)), (3.14)

‖ζ̂ − ζ‖L2(Ω) = Op(n
−(υ+d/2)/(2υ+2d)), (3.15)
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‖ζ̂ − ζ‖Hυ+d/2(Ω) = Op(1). (3.16)

Since the native space NCυ,γ(Ω) is equivalent to the Sobolev space Hυ+d/2(Ω),

the rate of convergence in (3.15) is optimal according to Stone (1982). According

to Adams and Fournier (2003),

‖ζ̂ − ζ‖L∞(Ω) ≤ K‖ζ̂ − ζ‖
d/(2(υ+d/2))
Hυ+d/2(Ω)

‖ζ̂ − ζ‖1−d/(2(υ+d/2))
L2(Ω) ,

with constant K depending only on Ω and υ. In view of (3.15) and (3.16), we

have

‖ζ̂ − ζ‖L∞(Ω) = Op(n
−υ/(2υ+2d)), (3.17)

which gives the rate of convergence of the predictive mean under the uniform

metric.

For treating the consistency of the predictive variance, we denote the true

value of σ2 by σ2
0. Consider the profile posterior mode of σ2 in (2.3) with the

non-informative prior for σ2, π(σ2) ∝ 1. The limiting value of the posterior

mode of σ2 is not affected by the choice of π(σ2), provided σ2
0 is contained in the

support of π(σ2). From (2.3) the posterior mode of σ2 is

σ̂2 =
‖yp − ys(x, θ̂KO)− δ̂(x)‖2

n

=
1

n

n∑
i=1

{ei + (ζ̂(xi)− ζ(xi))}2

=
1

n

n∑
i=1

e2
i +

2

n

n∑
i=1

ei(ζ̂(xi)− ζ(xi)) +
1

n

n∑
i=1

(ζ̂(xi)− ζ(xi))
2,

which yields the inequality∣∣∣∣∣σ̂2 − 1

n

n∑
i=1

e2
i

∣∣∣∣∣ ≤
∣∣∣∣∣ 2n

n∑
i=1

ei(ζ̂(xi)− ζ(xi))

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(ζ̂(xi)− ζ(xi))
2

∣∣∣∣∣ . (3.18)

If

Imax = sup
ζ′∈Hυ+d/2(Ω)

1/n
∑n

i=1 ei(ζ̂(xi)− ζ(xi))

(1/n
∑n

i=1(ζ ′(xi)− ζ(xi))2)(2υ)/(2υ+d)‖ζ ′ − ζ‖d/(2υ+d)
Hυ+d/2(Ω)

,

then ∣∣∣∣∣ 1n
n∑
i=1

ei(ζ̂(xi)− ζ(xi))

∣∣∣∣∣
≤ Imax

(
1

n

n∑
i=1

(ζ̂(xi)− ζ(xi))
2

)(2υ)/(2υ+d)

‖ζ̂ − ζ‖d/(2υ+d)
Hυ+d/2(Ω)
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≤ ImaxOp(n
−(2υ+d)/(2υ+2d)·(2υ)/(2υ+d)) = ImaxOp(n

−υ/(υ+d)), (3.19)

where the second inequality follows from Theorem 3. According to the standard

theory of empirical processes (see (10.6) of van der Geer (2000)),

Imax = Op(n
−1/2). (3.20)

Combining Theorem 3, (3.18), and (3.19), we obtain∣∣∣∣∣σ̂2 − 1

n

n∑
i=1

e2
i

∣∣∣∣∣ = Op(n
(2υ+d)/(2υ+2d)) = op(n

−1/2),

which, together with the Central Limit Theorem, implies

|σ̂2 − σ2| = Op(n
−1/2). (3.21)

From (2.4), the predictive variance of the KO model is

ς̂2(xnew) = τ2(Cγ(xnew, xnew)− ΣT
1 Σ−1

γ Σ1) + σ̂2. (3.22)

As discussed in Section 3.2, Cγ(xnew, xnew) − ΣT
1 Σ−1

γ Σ1 is the approximation

error of the kernel interpolation for the function Cγ(·, xnew). Clearly, the error

from the interpolation problem discussed in Section 3.2 should be no more than

that for the smoothing problem discussed in the current section, because of the

presence of the random error in the latter situation. Thus we have

sup
xnew∈Ω

|τ2(Cγ(xnew, xnew)− ΣT
1 Σ−1

γ Σ1)|

= sup
xnew∈Ω

|r−1
n σ̂2(Cγ(xnew, xnew)− ΣT

1 Σ−1
γ Σ1)|

= Op(n
−d/(2υ+2d)n−υ/(2υ+2d)) = Op(n

−1/2), (3.23)

where the second equality follows from the assumption rn ∼ nd/(4υ+4d) in Theo-

rem 3, (3.22) and (3.17). Combining (3.22) and (3.23) we obtain Theorem 4.

Theorem 4. Under the conditions of Theorem 3, the error bound for the pre-

dictive variance under the uniform metric is

‖ς̂2(·)− σ2
0‖L∞(Ω) = Op(n

−1/2).

Here σ2
0 is the variance of the random noise, which is present in prediction for

a new physical response. Theorems 3 and 4 reveal that the predictive distribution

given by the KO method can capture the true uncertainty of the physical data

in the asymptotic sense.

4. Discussion

In this work, we prove some error bounds for the predictive error given by
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the Kennedy-O’Hagan method when the physical observations have no random

error, and when they are noisy. We only consider the Matérn correlation family,

but, were a different covariance structure used, we believe that the consistency

for the predictive mean and the predictive variance still holds. Additional study

is required to obtain the appropriate rate of convergence. We have ignored the

estimation of some model parameters, like γ and τ2. It is still unclear how the

theory can be developed to account for this.

We have taken the smoothness parameter υ as given. From Theorems 1

and 3, a better rate of convergence comes from a larger υ, provided the target

function still lies in NCυ,γ (Ω). Ideally, one should choose υ to be close to, but

no more than the true degree of smoothness of the target function. There are

different ways of choosing data-dependent υ, but the mathematical analysis is

much more involved. We refer to Loh (2015) and the references therein for some

related discussions.

We have assumed that the design points xi’s are random samples over Ω.

In practice, one might choose design points using a systematic (deterministic)

scheme. In general, if a sequence of fixed designs is used, the same (optimal) rate

of convergence is retained if these designs satisfy certain space-filling conditions.

We refer to Utreras (1988) for the results and necessary mathematical tools.

We have allowed the number of physical measurements to grow to infinity to

obtain the rate of convergence. By comparing our results and the standard ones

using radial basis functions or smoothing spline approximation, we find that the

rate of convergence is not elevated by doing calibration. But there are heuristics

to suggest that by doing KO calibration the predictive error can be improved by

a constant factor. From the proof of Theorem 1, it can be seen that if we fix Φ

and γ, the predictive error is bounded by

|µ̂θ,γ − ζ(xnew)| ≤ Chυx,Ω‖ε(·, θ)‖Hυ+d/2(Ω), (4.1)

for an arbitrarily chosen θ ∈ Θ. So the rate of convergence is given by O(hυx,Ω),

and ‖ε(·, θ)‖Hυ+d/2(Ω) acts as a constant factor. Tuo and Wu (2016) show that,

under certain conditions, the KO estimator for the calibration parameter con-

verges to

θ′ = argmin
θ∈Θ

‖ε(·, θ)‖NΦ(Ω),

as the design points become dense over Ω. Since ‖ · ‖NΦ(Ω) is equivalent to

‖ · ‖Hυ+d/2(Ω), estimating the calibration parameter via the KO method is appar-

ently beneficial for prediction in the sense that the upper error bound is reduced
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because ‖ε(·, θ′)‖NΦ(Ω) ≤ ‖ε(·, θ)‖NΦ(Ω) for all θ ∈ Θ. This also holds for the

stochastic case, using the arguments in the proof of Theorem 10.2 of van der

Geer (2000).

Supplementary Materials

Proofs of Lemma 1, Lemma 2, Lemma 4, and Theorem 2 are in the online

supplement.
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