
Statistica Sinica 28 (2018), 577-600
doi:https://doi.org/10.5705/ss.202016.0138

EXPLOITING VARIANCE REDUCTION POTENTIAL

IN LOCAL GAUSSIAN PROCESS SEARCH

Chih-Li Sung1, Robert B. Gramacy2 and Benjamin Haaland1,3

1Georgia Institute of Technology, 2Virginia Tech and 3University of Utah

Abstract: Gaussian process models are commonly used as emulators for computer

experiments. However, developing a Gaussian process emulator can be computation-

ally prohibitive when the number of experimental samples is even moderately large.

Local Gaussian process approximation (Gramacy and Apley (2015)) was proposed

as an accurate and computationally feasible emulation alternative. Constructing

local sub-designs specific to predictions at a particular location of interest remains a

substantial computational bottleneck to the technique. In this paper, two computa-

tionally efficient neighborhood search limiting techniques are proposed, a maximum

distance method and a feature approximation method. Two examples demonstrate

that the proposed methods indeed save substantial computation while retaining

emulation accuracy.

Key words and phrases: Emulation, feature approximation, large-scale data, local

Gaussian process, locality sensitive hashing

1. Introduction

Due to continual advances in computational capabilities, researchers across

fields increasingly rely on computer simulations in lieu of prohibitively costly or

infeasible physical experiments. One example is Eckstein (2013), who use com-

puter simulations to investigate the interaction of energetic particles with solids.

Physical effects such as elastic energy loss when a particle penetrates a solid,

particle transmission through solids, and radiation damage are explored. These

processes can be approximated by simulating the trajectories of all moving par-

ticles in a solid based on mathematical models. An example in linguistics is the

study of language evolution (Cangelosi and Parisi (2012)), which is made chal-

lenging by the unobserved nature of language origin. Modeling techniques such

as genetic algorithms can be used to simulate the process of natural selection and

make it possible to explore a virtual evolution. While computer simulations pro-

vide a feasible alternative to many physical experiments, simulating from mathe-

matical models is often itself expensive, in terms of both time and computation,

https://doi.org/10.5705/ss.202016.0138


578 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

and many researchers seek inexpensive approximations to their computationally

demanding computer models—so-called emulators.

Gaussian process (GP) models (Sacks et al. (1989)) play an important role

as emulators for computationally expensive computer experiments. They pro-

vide an accurate approximation to the relationship between simulation output

and untried inputs at a reduced computational cost, and provide appropriate

(statistical) measures of predictive uncertainty. A major challenge in building

a GP emulator for a large-scale computer experiment is that it necessitates de-

composing a large (N ×N) correlation matrix. For dense matrices, this requires

around O(N3) time, where N is the number of experimental runs. Inference for

unknown parameters can demand hundreds of such decompositions to evaluate

the likelihood, and its derivatives, under different parameter settings for even the

simplest Newton-based maximization schemes. This means that for a computer

experiment with as few as N = 104 input-output pairs, accurate GP emulators

cannot be constructed without specialized computing resources.

There are several recent approaches to emulating large-scale computer ex-

periments, most of which focus on approximation of the GP emulator due to the

infeasibility of actual GP emulation. Examples include covariance tapering which

replaces the dense correlation matrix with a sparse version (Furrer, Genton and

Nychka (2006)), multi-step interpolation which successively models global, then

more and more local behavior while controlling the number of non-zero entries

in the correlation matrix at each stage (Haaland et al. (2011)), and multireso-

lution modeling with Wendland’s compactly supported basis functions (Nychka

et al. (2015)). Alternatively, Paciorek et al. (2015) developed an R package called

bigGP that combines symmetric-multiprocessors and GPU facilities to handle N

as large as 67, 275 without approximation. Nevertheless, computer model emula-

tion is meant to avoid expensive computer simulation, not be a major consumer

of it. Another approach, proposed by Plumlee (2014), is to sample input-output

pairs according to a specific design structure, which leads to substantial savings

in building a GP emulator. That method, however, can be limited in practice

due to the restriction to sparse grid designs.

In this paper, Gramacy and Apley (2015)’s local GP approach is considered.

The approach is modern, scalable, and easy to implement with limited resources.

The essential idea focuses on approximating the GP emulator at a particular

location of interest via a relatively small subset of the original design, thus re-

quiring computation on only a modest subset of the rows and columns of the

large (N ×N) covariance matrix. This process is then repeated across predictive



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 579

locations of interest, ideally largely in parallel. The determination of this local

subset for each location of interest is crucial since it greatly impacts the accuracy

of the corresponding local GP emulator. Gramacy and Apley (2015) proposed a

greedy search to sequentially augment the subset according to an appropriate cri-

teria and that approach yields reasonably accurate GP emulators. More details

are presented in Section 2.

A bottleneck in this approach is that a complete iterative search for the

augmenting point requires looping over O(N) data points at each iteration. In

Section 3, motivated by the intuition that there is little potential benefit in includ-

ing a data point far from the prediction location, two new neighborhood search

limiting techniques are proposed, the maximum distance method and the feature

approximation method. Two examples in Section 4 show that the proposed meth-

ods substantially speed up the local GP approach while retaining its accuracy.

A brief discussion follows in Section 5. Mathematical proofs are provided in the

online supplement.

2. Preliminaries

2.1. Gaussian process model

A Gaussian process (GP) is a stochastic process whose finite dimensional

distributions are defined via a mean function µ(x) and a covariance function

Σ(x, x′), for d-dimensional inputs x and x′. In particular, for N input x-values,

say XN , which define the N -vector µ(XN ) and N × N matrix Σ(XN , XN ),

and a corresponding N -vector of responses YN , the responses have distribution

YN ∼ N (µ(XN ),Σ(XN , XN )). The scale σ2 > 0 is commonly separated from the

process correlation function, YN ∼ N (µ(XN ), σ2Φ(XN , XN )), where the N ×N
matrix Φ(XN , XN ) = (Φ(xi, xj)) is defined in terms of a correlation function

Φ(·, ·), with Φ(x, x) = 1. As an example, consider the often-used separable Gaus-

sian correlation function

ΦΘ(x, x′) = exp

−
d∑
j=1

(xj − x′j)2

θj

 , (2.1)

where Θ = (θ1, . . . , θd), θj > 0, j = 1, . . . , d.

As this correlation decays exponentially fast in the squared distance between

xj and x′j at rate θj , the sample paths are infinitely differentiable and the resulting

predictor is an interpolator.

The GP model is popular because inference for µ(·), σ2, and Θ is easy and



580 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

prediction is highly accurate. A popular inferential choice is maximum likelihood,

with corresponding log likelihood (up to an additive constant)

`(µ, σ2,Θ) = −1

2

{
n log(σ2) + log(det(ΦΘ(XN , XN )))

+ (YN − µ(XN ))TΦΘ(XN , XN )−1 (YN − µ(XN ))

σ2

}
and the MLEs of µ(·), σ2, and Θ are

(µ̂(·), σ̂2, Θ̂) = arg max
µ,σ2,Θ

`(µ, σ2,Θ). (2.2)

Here, µ(·) and its estimate are described somewhat vaguely. Common choices

are µ(·) ≡ 0, µ(·) = µ, or µ(·) = h(·)Tβ, for a vector of relatively simple basis

functions h(·). More details on inference can be found in Fang, Li and Sud-

jianto (2005) or Santner, Williams and Notz (2013). Importantly, the predictive

distribution of Y (x) at a new setting x can be derived for fixed parameters by

properties of the conditional multivariate normal distribution. In particular, it

can be shown that Y (x)|XN , YN ∼ N (µN (x), VN (x)), where

µN (x) = µ(x) + ΦΘ(x,XN )ΦΘ(XN , XN )−1(YN − µ(XN )), (2.3)

VN (x) = σ2(ΦΘ(x, x)− ΦΘ(x,XN )ΦΘ(XN , XN )−1ΦΘ(XN , x)). (2.4)

In a practical context, the parameters µ(·), σ2, and Θ can be replaced by their

estimates (2.2) and it can be argued that the corresponding predictive distribu-

tion is better approximated by a t-distribution than normal (see 4.1.3 in Santner,

Williams and Notz (2013)). Either way, µN (x) is commonly taken as the emula-

tor, and VN (x) captures uncertainty.

2.2. Local Gaussian process approximation

A major difficulty in computing the emulator (2.3) and its predictive variance

(2.4) is solving the linear system ΦΘ̂(XN , XN )y = ΦΘ̂(XN , x), since it requires

O(N2) storage and around O(N3) computation for dense matrices. A promising

approach is to search small sub-designs that approximate GP prediction and

inference from the original design (Gramacy and Apley (2015)). The idea of the

method is to focus on prediction at a location, x, using a subset of the full data

Xn(x) ⊆ XN . Intuitively, the sub-design Xn(x) may be expected to be comprised

of XN close to x. For typical choices of ΦΘ(x, x′), correlation between elements

x, x′ in the input space decays quickly for x′ far from x, and x′’s that are far

from x have vanishingly small influence on prediction. Ignoring them in order to

work with much smaller, n×n matrices brings big computational savings, ideally



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 581

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
0

0.
5

1.
0

N = 21

x

T r
ue

 a
nd

 P
re

di
ct

ed
 y

( )

Figure 1. An example sub-design X7(x) for a one dimensional input. Dots represent
the full design, X21, the triangle represents the point of interest x = 0.5 and the
diamonds represent the sub-design, X7(x). Based on the sub-design X7(x), the emulator
is represented as the dotted line, with the shaded region providing a pointwise 95%
confidence band.

with little impact on accuracy. Figure 1 displays a smaller sub-design (n = 7)

near location x = 0.5 extracted from the original design (N = 21). Although the

emulator (dotted line) performs very poorly from 0 to 0.3 and from 0.6 to 1.0,

the sub-design provides accurate and robust prediction at x = 0.5.

For an accurate and robust emulator, a smaller predictive variance (2.4) for

each x is desirable. We seek a small sub-design Xn(x) ⊆ XN for each location

of interest x, which minimizes the predictive variance (2.4) corresponding to the

sub-design Xn(x). This procedure is then repeated for each location of interest x.

The identification of sub-designs and subsequent prediction at each such x can

be parallelized immediately, providing a substantial leap in computational scala-

bility. However, searching for the optimal sub-design, which involves choosing n

from N input sites, is a combinatorially huge undertaking. A sensible idea is to

build up Xn(x) by n nearest neighbors (NNs) close to x, and the result is a valid

probability model for Y (x)|Xn(x), Y (Xn(x)) (Datta et al. (2016)). Gramacy and

Apley (2015) proposed a greedy, iterative search for the sub-design, starting from

a small NN set Xn0
and sequentially choosing the xj+1 which provides the great-

est reduction in predictive variance to augment Xj(x), for j = n0, n0 + 1, . . . , n.

That is,

xj+1 = arg min
u∈XN\Xj(x),
Xj+1=Xj(x)∪u

Vj+1(x) (2.5)

and Xj+1(x) = Xj(x) ∪ xj+1. Both the greedy and NN schemes can be shown



582 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

to have computational order O(n3) (for fixed N) when the scheme is efficiently

deployed for each update j → j + 1. Specifically, the matrix inverse ΦΘ(Xj+1,

Xj+1)−1 in Vj+1(x) can be updated efficiently using partitioned inverse equations

(Harville (1997)). Before the greedy subsample selection proceeds, correlation

parameters can be initialized to reasonable fixed values to be used throughout the

sub-design search iterations. After a sub-design has been selected for a particular

location, a local MLE can be constructed. Thus, only O(n3) cost is incurred

for building the local subset and subsequent local parameter estimation. For

details and implementation, see the laGP package for R (Gramacy (2016)). An

initial overall estimate of the correlation parameters can be obtained using the

Latin hypercube design-based block bootstrap subsampling scheme proposed by

Liu and Hung (2015), which has been shown to consistently estimate overall

lengthscale θj-values in a computationally tractable way, even with large N .

The greedy scheme, searching for the next design point in XN \ Xj(x) to

minimize the predictive variance (2.5), is still computationally expensive, espe-

cially when the design size N is large. For example, the new xj+1 based on (2.5)

involves searching over N − j candidates. In that case, the greedy search method

still contains a serious computational bottleneck in spite of its improvements rel-

ative to solving the linear system in (2.3) for GP prediction and inference. Gra-

macy, Niemi and Weiss (2014) recognized this issue and accelerated the search

by exporting computation to graphical processing units (GPUs). They showed

that the GPU scheme with local GP approximation and massive parallelization

can lead to an accurate GP emulator for a one-million-run full design, with the

GPUs providing approximately an order of magnitude speed increase. Gramacy

and Haaland (2016) noticed that the progression of xj+1, j = 1, 2, . . . qualita-

tively takes on a ribbon and ring pattern in the input space and suggested a

computationally efficient heuristic based on one dimensional searches along rays

emanating from the predictive location of interest x.

In Section 3, two computationally efficient and accuracy preserving neighbor-

hood search methods are proposed. Both neighborhood searches reduce computa-

tion by decreasing the number of candidate design points examined. It is shown

that only locations within a particular distance of either the prediction location

x or the current sub-design, or locations in particular regions within a feature

space, can have substantial influence on prediction. Using these techniques, it is

possible to search a much smaller candidate set at each stage, leading to huge

reductions in computation and increases in scalability.



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 583

3. Reduced Search in Local Gaussian Process

For prediction at location x, there is intuitively little benefit to considering

input locations that are distant from x (relative to the correlation decay) as

the response value at these locations is nearly independent of the response at

x. In Section 3.1, a maximum distance bound and corresponding algorithm are

provided, and in Section 3.2, a feature approximation bound and corresponding

modification to the algorithm are provided. The algorithms furnish a dramati-

cally reduced set of potential design locations which need to be examined, in a

computationally efficient and scalable manner. Notably, for the algorithms pre-

sented below, Θ is fixed. Updating of Θ could follow Gramacy and Apley (2015),

where an overall estimate of Θ is generated initially, then the local design formed,

then a local Θ estimated. The below algorithms, and subsquent complexity com-

parison, focus on updating the local design, while the updating of Θ is considered

as an offline procedure.

3.1. Maximum distance method

Here x is the particular location of interest, in terms of emulation/prediction,

and Xj(x) is the greedy sub-design at stage j. To augment the sub-design Xj(x),

we downplay locations distant from x with little loss.

Assume that the underlying correlation function is radially decreasing after

appropriate linear transformation of the inputs: there is a strictly decreasing

function φ so that ΦΘ(x, x′) = φ(‖Θ(x − x′)‖2) for some Θ. In practice, Θ can

be estimated using the local MLE as discussed in Section 2.2, using as a starting

value the overall, consistent estimate from the sub-design search iterations. Now,

consider a candidate input location xj+1 at stage j + 1 of the greedy sub-design

search for an input location to add to the design and take dmin(xj+1) to be the

minimum (Mahalanobis-like) distance between the candidate point xj+1 and the

current design and location of interest,

dmin(xj+1) = min{‖Θ(x− xj+1)‖2, ‖Θ(x1 − xj+1)‖2,
‖Θ(x2 − xj+1)‖2, . . . , ‖Θ(xj − xj+1)‖2}. (3.1)

We use the term Mahalanobis-like distance to emphasize that the rescaling and

rotation of the inputs induced by Θ is not related to the variance-covariance

matrix of the input locations. For example, consider the sub-design Xj(x) with

two-dimensional inputs shown in Figure 2 for j = 8.

Based on the local design scheme introduced in Section 2 and (2.5), the sub-

design Xn(x) is built up through the choices of xj+1 to sequentially augment



584 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

-10 -5 0 5 10

-1
0

-5
0

5
10

x1

x2 ●
●

●

●

●

●

●

●

●

Figure 2. An example sub-design X8(x) with two-dimensional inputs. The circled ×
represents the location of interest. With Θ = diag(1/

√
3, 1/
√

3), the dots • represent
current design points X8(x), the dot • represents the new input location x9, and the
shaded region represents the candidate points x∗ with dmin(x∗) < 3.07.

Xj(x), at each stage aiming to minimize predictive variance. Proposition 1 pro-

vides an alternate formula for this variance, which is used to greatly reduce the

number of candidates in the minimization problem.

Proposition 1. The predictive variance Vj(x) in (2.4) can be represented via

the recurrence

Vj+1(x) = Vj(x)− σ2R(xj+1). (3.2)

Here, R(xj+1) is the (scaled) reduction in variance,

R(xj+1) =
(ΦΘ(x, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj , Xj)

−1ΦΘ(Xj , x))2

ΦΘ(xj+1, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj , Xj)−1ΦΘ(Xj , xj+1)
. (3.3)

The recurrence relation (3.2) is useful for searching candidates to entertain.

Further, minimizing variance after adding the new input location xj+1 is equiva-

lent to maximizing reduction in variance R(xj+1).

Theorem 1. Suppose Φ : Ω× Ω→ R is a symmetric positive-definite kernel on

a compact set Ω ⊆ Rd and there exists a strictly decreasing function φ : R+ → R
such that ΦΘ(x, y) = φ(‖Θ(x− y)‖2) for some Θ. Then, for δ > 0, R(xj+1) ≤ δ
if

dmin(xj+1) ≥ φ−1

(√
δ

(1 +
√
j‖ΦΘ(Xj , Xj)−1ΦΘ(Xj , x)‖2)2 + jδ/λmin

)
,

(3.4)

where λmin is the minimum eigenvalue of ΦΘ(Xj , Xj).



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 585

This result indicates that candidate locations that are sufficiently distant

from the location of interest and the current sub-design do not have potential to

reduce the variance more than δ. Importantly, if the full set of design locations

XN is stored in a data structure such as a k-d tree (Bentley (1975)), then the set

of candidate locations that do not satisfy (3.4) can be identified in O(logN) time,

with constant depending on δ, dimension of the input space, and stage j; This

provides a computationally efficient and readily scalable technique for reducing

the set of potential candidate locations.

Our Algorithm 1 is a starting point for efficiently selecting sub-designs for

prediction at location x. In the algorithm, a larger value of δ is desirable since

this leads to fewer candidate design locations to search. One way to obtain a

relatively large value of δ is to examine the variance reductions on the set of

k nearest neighbors which are not yet in the sub-design, as is shown in Step

2. The number of nearest neighbors k is a tuning parameter. A larger value

of k provides a larger variance reduction and therefore excludes more candidate

design locations, albeit at an additional computational expense since the variance

reduction must be checked at each of these locations. Intuitively, larger-scale and

higher-dimensional problems might be expected to benefit from a larger k—larger-

scale problems because the cost of computing the variance reductions across k

might be relatively modest compared to the potential cost of computing the

variance reductions across a large candidate set, higher-dimensional problems

because more points are needed to explore the surface of the hyper-sphere of

points near the location of interest. A large value of δ can be obtained by applying

the heuristic proposed in Gramacy and Haaland (2016). From the result of

Theorem 1, T (Xj) in Step 3, which indicates the region such that

dmin(xj+1) ≤ φ−1

(√
δ

(1 +
√
j‖ΦΘ(Xj , Xj)−1ΦΘ(Xj , x)‖2)2 + jδ/λmin

)
,

(3.5)

gives the subset of candidate locations that have potential to reduce the variance

more than δ.

For each update j → j + 1, the algorithm ideally involves O(j2 + j logN)

computations in Step 3: O(j logN) for eliminating search locations, and O(j2)

for computing the right-hand side of (3.5). In particular, the matrix inverse

ΦΘ(Xj , Xj)
−1 can be updated via the partitioned inverse equations (Harville

(1997)) with O(j2) cost at each iteration. Analysis of the computational com-

plexity of obtaining (an approximation to) the minimum eigenvalue of ΦΘ(Xj , Xj)



586 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

is more challenging. It is convenient to work with the reciprocal of the maximum

eigenvalue of ΦΘ(Xj , Xj)
−1, for which relatively efficient algorithms, such as the

power or Lanczos method, exist (Golub and Van Loan (1996)). If the starting

vector is not orthogonal to the target eigenvector, then convergence of the (less

efficient, but easier to analyze) power method is geometric with rate depending

on the ratio between the two largest eigenvalues of ΦΘ(Xj , Xj)
−1 (see equation

9.1.5 in Golub and Van Loan (1996)). While this rate and the constants in front

are not fixed across j, they can be bounded, with the exception of the influence

of the starting vector, across all subsets of the full dataset. The starting vec-

tor might be expected to be increasingly collinear with the target eigenvector

as j increases, thereby improving the rate bound. All together this implies an

approximately constant number of iterations, each costing O(j2), is required to

approximate λmin for each j. Another perspective chooses a random starting

vector, for which Kuczynski and Wozniakowski (1992) provide respective average

and probabilistic bounds of O(j2 log j) for the power method and O(j2 log2 j) for

the Lanczos method. If standard eigen-decomposition routines that return all

the eigenvalues are used, then the j2 term in the computational complexity is j3.

The inverse function φ−1 : R→ R can be computed in roughly constant time by

a root-finding algorithm or even computed exactly for many choices of Φ. For

example, for the power correlation function, ΦΘ(x, y) = exp{−‖Θ(x− y)‖p2}, the

φ can be formed as φ(u) = exp{−up}, so φ−1(v) = (− log v)1/p. When a large n is

required, computation of λmin might be numerically unstable. A remedy in that

case may be to stop the search when λmin falls below a prespecified threshold, or

perhaps to introduce a penalty inversely proportional to λmin.

3.2. Feature approximation method

In addition to the maximum distance method and associated algorithm, an

approximation via eigen-decomposition can be applied to reduce the potential

locations in a computationally efficient manner. Suppose that Φ is a symmetric

positive-definite kernel on a compact set Ω ⊆ Rd and P : L2(Ω) → L2(Ω) is the

integral operator

Pv(x) :=

∫
Ω

Φ(x, y)v(y)dy, v ∈ L2(Ω), x ∈ Ω. (3.8)

Mercer’s theorem guarantees the existence of a countable set of positive eigen-

values {λj}∞j=1 and an orthonormal set {ϕj}∞j=1 in L2(Ω) consisting of the cor-

responding eigenfunctions of P , Pϕj = λjϕj (Wendland (2004)). The eigen-

functions ϕ’s here are continuous on Ω and Φ has the absolutely and uniformly



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 587

Algorithm 1 Maximum distance search method in local Gaussian process.

1: Set j = 1 and x1 as the point closest to the predictive location x. Throughout, let
Xj(x) ≡ Xj = {x1, x2, . . . , xj}, dropping the explicit (x) argument.

2: Let Njk(x) denote the k nearest neighbors to x in XN \Xj , the candidate locations
not currently in the sub-design. Set δj+1 equal to the maximum variance reduction
from Njk(x),

δj+1 = max
u∈Njk(x)

R(u), (3.6)

where R(·) is shown in (3.3).

3: Set y = φ−1

(√
δj+1

(1 +
√
j‖ΦΘ(Xj , Xj)−1ΦΘ(Xj , x)‖2)2 + jδj+1/λmin

)
, where ΦΘ(x,

x′) = φ(‖Θ(x− x′)‖2) and λmin is the minimum eigenvalue of ΦΘ(Xj , Xj). For

T (Xj) = {u ∈ XN \Xj : ‖Θ(u− v)‖2 ≤ y for some v ∈ {x,Xj}}, (3.7)

take
xj+1 = arg max

u∈T (Xj)
R(u).

4: Set j = j + 1 and repeat 2 and 3 until either the reduction in variance R(xj+1) falls
below a prespecified threshold, or the local design budget is met.

convergent representation

Φ(x, y) =

∞∑
j=1

λjϕj(x)ϕj(y).

In particular, Φ can be approximated uniformly over inputs in terms of a

finite set of eigenfunctions

Φ(x, y) ≈
D∑
j=1

λjϕj(x)ϕj(y) (3.9)

for some moderately large integer D. For some kernel functions, closed form

expressions exist. For example, the Gaussian correlation function (2.1) (on Rd,
with weighted integral operator) has eigenfunctions given by products of Gaus-

sian correlations and Hermite polynomials (Zhu et al. (1997)). More generally,

Williams and Seeger (2001) show high-quality approximations to these eigen-

decompositions can be obtained via Nyström’s method.

Theorem 2. Assume Φ : Ω × Ω → R is a symmetric positive-definite kernel

on a compact set Ω ⊆ Rd which can be approximated via D eigenfunctions (3.9).

Then, the reduction in variance (3.3) has approximate representation

R(xj+1) ≈ ‖CXj
(x)‖22 cos2(ϑ), (3.10)



588 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

where ϑ is the angle between CXj
(x) and CXj

(xj+1),

CXj
(t) = [I − U(Xj)[U

T (Xj)U(Xj)]
−UT (Xj)]U(t),

U(t) =
(√

λ1ϕ1(t), . . . ,
√
λDϕD(t)

)T
, and

U(Xj) = [U(x1), . . . , U(xj)] ,

for eigenfunctions ϕi(t), t ∈ Ω and corresponding ordered eigenvalues λ1 ≥ . . . ≥
λD.

According to this approximation, the candidate set can be reduced by trans-

forming the inputs into a feature space. A modified algorithm is suggested as

follows. The variance reduction threshold in (3.6) now places a restriction on

the angle between CXj
(x) and CXj

(xj+1), where we would like to exclude points

outside the cones

cos2(ϑ) ≤ δj+1

‖CXj
(x)‖22

. (3.11)

A feature approximation is shown in Algorithm 2. To reduce the computa-

tional burden in checking (3.11), the values of the first D eigenfunctions at the

full dataset XN , U(XN ), could be computed in advance and stored based on a

locality-sensitive hashing (LSH) scheme (Indyk and Motwani (1998)). LSH is a

method for answering approximate similarity-search queries in high-dimensional

spaces. The basic idea is to use special locality-sensitive functions to hash points

into “buckets” such that “nearby” points map to the same bucket with high prob-

ability. Many similarity measures have corresponding LSH functions that achieve

this property. For instance, the hashing functions for cosine-similarity are the

normal vectors of random hyperplanes through the origin, denoted for example as

v1, . . . , vk. Depending on its side of these random hyperplanes, a point p is placed

in bucket h1(p), . . . , hk(p), where hi(p) = sign(vTi p). A simple example, follow-

ing Van Durme and Lall (2010), is provided in Figure 3. Figure 3a illustrates

the hashing process for a point p, where the point p is hashed into the bucket

(h1(p), . . . , h6(p)) = (−1,−1, 1, 1, 1, 1) by the definition hi(p) = sign(vTi p), i =

1, . . . , 6 (when the point p is above the hyperplane, the inner product is negative,

otherwise the inner product is positive). Similarly, other points are placed in their

corresponding buckets. In the search process, shown in Figure 3b, the query point

q is mapped to the bucket (h1(q), . . . , h6(q)) = (−1, 1, 1, 1, 1, 1), which matches

the bucket of point p′. Thus, the hashing and search processes retrieve p′ as the

most similar neighbor of q. Also, since the one different label in the buckets of

p and q implies that the angular difference is close to π/6 (six hyperplanes), p is



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 589

O

v1
v2

v3v4v5v6
p

(a) Hashing.

O

v1
v2

v3v4v5v6
p

p' q

(b) Search.

Figure 3. Illustration of locality-sensitive hashing (LSH) scheme. Lines — are random
hyperplanes through origin, and v1, . . . , v6 (arrows →) are the corresponding normal vectors.
Dots • present stored data points, and the dot • with circle presents the query data point.

retrieved when querying the points whose angular difference from q is less than

π/6. Many more than six hyperplanes are needed to ensure that the returned

angle similarity is approximately correct. In a standard LSH scheme, the hash-

ing process is performed several times by different sets of random hyperplanes,

and the search procedure iterates over these random sets of hyperplanes. More

details and examples can be seen in Indyk and Motwani (1998),Van Durme and

Lall (2010), and Leskovec, Rajaraman and Ullman (2014).

Apart from cosine-similarity, Jain, Kulis and Grauman (2008) showed for

the pairwise similarity
yTk Ajyh

‖Gjyk‖2‖Gjyh‖2
,

where yk, yh ∈ Rd, GTj Gj = Aj and Aj is a d× d positive-definite matrix that is

updated for each iteration j, the hash function can be defined as:

hAj
(y) =

{
1 rTGjy ≥ 0

0 otherwise
, (3.12)

where the vector r is chosen at random from a d-dimensional Gaussian distribu-

tion. Let Gj = I−U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj) and Aj = Gj (Gj is symmetric

and idempotent), then cos(ϑ) in (3.10) can be represented as

cos(ϑ) =
U(xj+1)TAjU(x)

‖GjU(xj+1)‖2‖GjU(x)‖2
.

Thus, in the feature approximation method, an LSH scheme can be employed by

storing U(XN ) in advance and updating the hash function (3.12) at each iteration,

where y is replaced by U(y). At query time, similar points are hashed to the same



590 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

bucket with the query U(x) and the results are guaranteed to have a similarity

within a small error after repeating the procedure several times. In particular, for

each update j → j+ 1, given that the LSH method guarantees retrieval of points

within the radius (1 + ε)M from the query point U(x), where M is the distance

of the true nearest neighbor from U(x), the method requires O(D2 +jDN1/(1+ε))

computational cost, O(D2) for updating matrix Gj (via the partitioned inverse

equations (Harville (1997))) and computing the hash function hAj
(y) (via the

implicit update in Jain, Kulis and Grauman (2008)), and O(jDN1/(1+ε)) for

identifying the hashed query (Jain, Kulis and Grauman (2008)), where D is the

number of eigenfunctions in Theorem 2. In Section 4, two examples show the

benefit from the LSH approach in the feature approximation method.

Algorithm 2 Feature approximation modification to Algorithm 1.

In Step 3 of Algorithm 1, replace T (Xj) with T ∗(Xj), where

T ∗(Xj) = {u ∈ XN \Xj : ‖Θ(u− v)‖2 ≤ y and cos2(ϑ) ≥ δj+1

‖CXj (x)‖22
for some v ∈ {x,Xj}},

and ϑ, CXj
(x) are defined in Theorem 2. Then,

xj+1 = arg max
u∈T∗(Xj)

R(u).

As an illustration of how cones in feature space relate to the design space,

consider a full designXN consisting of 2,500 Unif(0, 1) data points, plotted in dots

in the left panel of Figure 4. The correlation function is Φ(x, x′) = exp{−‖(x−
x′)/10‖22} and the predictive location of interest is x = (0.5, 0.5), shown as a

triangle in the left panel. The first 7 design points are chosen greedily and

indicated with numbers. The right panel shows the first two components of the

feature space (the first two eigenfunctions evaluated at the design points), labeled

correspondingly. The vector CX7
(x) is denoted as the middle dotted line in the

right panel, with |ϑ| ≤ π/20 shown as the outer dotted lines. Design points

falling within these cones are shown in shaded region in both panels. The design

points in the left panel which fall in the stripe have the most potential to reduce

predictive variance.

The storage requirements and computational complexity of each update

j → j + 1 at each predictive location of interest for the proposed algorithms

are summarized in Table 1. Notably, if n local data points are needed, then the

updating costs are incurred for j = 1, . . . , n. Costs across predictive locations are



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 591

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

12
3

45

6

7

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

● ●●
● ●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

cb
in

d(
ph

i1
(m

yX
), 

ph
i2

(m
yX

))
[,2

]
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

● ●●
● ●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●●

● ●
●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●
●

●●

● ●

●
●●●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●●
●

●

●

●●●

● ● ●
●

●

●
●

●●●

●
●●

●

● ●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●●

●●12

3

45

6

7

Figure 4. Dots • and • represent design points in the original space (left) and a D = 2
dimensional feature space approximation (right). Location of interest and current design are
annotated with triangle and numbers, respectively. Vector CX7(x) and cones |ϑ| ≤ π/20 are
shown with dotted lines. Design points falling within these cones are shown in shaded region in
both panels.

ideally incurred largely in parallel. Here, the original greedy approach proposed

in Gramacy and Apley (2015) is referred to as exhaustive search. Recall that

T (Xj) and T ∗(Xj) are the candidate sets from maximum distance method and

feature approximation method, respectively. Let | · | denote the cardinality of a

set. Since |T (Xj)| and |T ∗(Xj)| are expected to be much smaller than N , the

computational cost of the two proposed algorithms can be substantially reduced

at each stage j relative to the original greedy search. Overhead cost, for comput-

ing benchmarks and eliminating search locations, is required for both methods.

Also, with a k-d tree or LSH search method, the specially adapted data structure

indeed improves overhead computational costs (O(j2 + jN)→ O(j2 + j log(N))

and O(j2+D2N)→ O(j2+D2+jDN1/(1+ε)), respectively). Considering the two

proposed methods, |T ∗(Xj)| might be expected to be much smaller than |T (Xj)|
if the correlation function is well approximated by the finite set of eigenfunc-

tions and eigenvalues, and the dimension of input is not too large, since distance

becomes a very powerful exclusion criteria in even moderately high-dimensional

space. The maximum distance method has smaller storage and overhead require-

ments. Section 4 presents two examples implementing the two proposed methods

and shows the comparison.

4. Examples

Two examples are discussed in this section: a two-dimensional example that

demonstrates the algorithm and visually illustrates the reduction of candidates;



592 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

Table 1. Complexity comparison between exhaustive search and two proposed methods
for each update j → j + 1. The notation | · | denotes the cardinality of a set, and ε is a
pre-specified value for the LSH method. *The complexity of pre-computation for feature
approximation method is O(D3).

Exhaustive Maximum Distance Feature Approximation
Search Method Method with D Features*

w/o k-d tree w/ k-d tree w/o LSH w/ LSH
Storage N N N ND ND

Overhead O(j2 + jN) O(j2 + j log(N)) O(j2 +D2N)
O(j2 +D2

+jDN1/(1+ε))
Search O(j2N) O(j2|T (Xj)|) O(j2|T (Xj)|) O(j2|T ∗(Xj)|) O(j2|T ∗(Xj)|)

a larger-scale, higher-dimensional example. Both examples show the proposed

methods considerably outperforming the original search method with respect to

computation time. All numerical studies were conducted using R (R Core Team

(2015)) on a laptop with 2.4 GHz CPU and 8GB of RAM. The k-d tree and LSH

were implemented via R package RANN (Arya et al. (2015)) and modifications to

the source code of the Python package scikit-learn (Pedregosa et al. (2011);

Bawa, Condie and Ganesan (2005)), and accessed in R through the rPython

package (Bellosta (2015)). Notably, the Lanczos method offered little consistent

advantage for the scale of local datasets (j ≤ 30) entertained below, and rela-

tively typical of practical situations. As such, reported timings correspond to

computing λmax

(
Φ(Xj , Xj)

−1
)

via the full eigen-decomposition using eigen.

4.1. Two-dimensional problem of size N = 502

Consider a computer experiment with full set of design locations XN consist-

ing of a regular 50×50 grid on [−10, 10]2 (2,500 design points, light small dots in

Figure 5), and take the predictive location of interest x to be (0.216, 0.303) (cir-

cled × in Figure 5). Set σ2 = 1, and consider the Gaussian correlation function

ΦΘ(x, y) = exp

{
−
(

(x1 − y1)2

θ1
+

(x2 − y2)2

θ2

)}
,

with θ1 = θ2 = 3. This correlation function implies the φ in Algorithm 1 is φ(u) =

exp{−u2} and Θ = diag(1/
√
θ1, 1/

√
θ2). Then we have φ−1(v) =

√
− log v.

Figure 5 illustrates the sub-design selection procedure shown in Algorithm 1,

in which k = 8 nearest neighbors (from the candidate set) are used to generate

the threshold in Step 2. In Figure 5, the dots represent the current design Xj(x)

and the optimal augmenting point xj+1, and the points that are excluded from

the search for that location are those which fall outside the shaded region. The



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 593

-10 -5 0 5 10

-1
0

-5
0

5
10

x1

x2 ●
●

●

●

-10 -5 0 5 10
-1

0
-5

0
5

10
x1

x2 ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

-10 -5 0 5 10

-1
0

-5
0

5
10

x1

x2 ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●● ●●

●

●

Figure 5. Left, middle, and right panels respectively illustrate selection at j = 3, 16, and 29.
The circled × is the location of interest, (0.216, 0.303). Dots • are the current design points;
dots • are the optimal xj+1; points which are excluded from the search based on maximum
distance method are those which fall outside the shaded region. Points which are excluded from
the search based on feature approximation method are those which are not annotated with a +.

panels in the figure correspond to greedy search steps j ∈ {3, 16, 29}. Notably, the

optimal additional design points illustrated in Figure 5 are not always the nearest

neighbors to the location of interest. In this example, only 7.40% (185/2500) of

candidates need to be searched in the beginning. Even after choosing thirty data

points, there is no need to search much more than half of the full data (56.92%

= 1,423/2,500).

Continuing the same example, Figure 5 shows substantial improvement from

the feature approximation method. In the example, a D = 500-dimensional

feature space approximation is pre-computed using Nyström’s method (Williams

and Seeger (2001)). The points annotated with +s are the points that are not

excluded from the search. In fact, the number of candidates which need to be

searched is usually reduced at least 10-fold and in many cases 50- or 100-fold, or

more.

While the maximum distance method and original greedy approach proposed

in Gramacy and Apley (2015) produce the same sub-designs and, in turn, the

same predictive variances, the feature approximation method is approximate and

can produce different sub-designs and slightly different predictive variances (not

necessarily inflated due to greedy nature of search). Table 2 shows relative

differences in predictive variance resulting from feature approximation method

withD = 10, 200, and 500 features as compared to take maximum distance method

(or equivalently the original greedy approach). The number of search candidates

is listed in parentheses. The relative difference in predictive variance is defined as

Vj,FA(x)− Vj,MD(x)

Vj,MD(x)
,



594 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

Table 2. The relative difference in variance of the emulator at location (0.216, 0.303)
between maximum distance search as a baseline and feature approximation search with
number of features D: 10, 200 and 500. Baseline variance by maximum distance search is
shown in the last column. The value in parentheses is the number of search candidates.

Relative Difference Variance by
(# of searching D = 10 D = 200 D = 500 Maximum

candidates) Distance Method
Stage 10 0 (842) 0.178 (4) 0 (47) 1.95× 10−6 (844)
Stage 15 0.006 (1057) −0.76 (7) 0 (69) 9.35× 10−7 (1040)
Stage 20 0.018 (1149) −0.722 (30) 0 (12) 6.12× 10−7 (1168)
Stage 25 −0.155 (1332) −0.091 (4) 0 (116) 1.66× 10−7 (1295)
Stage 30 0.009 (1459) 0.024 (20) 0 (2) 1.28× 10−8 (1423)

where Vj,FA(x) and Vj,MD(x) denote the predictive variance of the emulator

at location x at stage j using the feature approximation method and maximum

distance method, respectively. As might be expected, a larger number of features,

D = 500, reduces the search candidates without any loss in variance reduction.

For D = 200, although there are small differences in predictive variance, the

discrepancies may be small enough to be of little practical consequence. At stage

15, 20, and 25, the predictive variance for D = 200 is even smaller than that of the

maximum distance method, due to the greedy nature of the searches. Notably, if

a small number of features, say D = 10, is chosen, feature approximation search

offers little improvement over the maximum distance method in terms of search

reduction, even though the predictive variances are similar to maximum distance

method. In this case, D = 200 features might be a reasonable choice, balancing

ease of computation and small predictive variance.

To further compare the performance of the proposed methods with the origi-

nal greedy approach (exhaustive search), a Sobol’s quasi-random sequence (Brat-

ley and Fox (1988)) of 100 predictive locations was generated. Table 3 shows the

average computation time and proportion of search candidates for the proposed

methods and exhaustive search over the 100 predictive locations. The propor-

tion of search candidates for the maximum distance method ran from 22.78% to

39.15%. The method also marginally speeds up computation time from 21 to

18 seconds with a k-d tree data structure. Although the feature approximation

method needed 6 seconds for computing the features in advance, the propor-

tion of search candidates for feature approximation method with D = 200 was

reduced to 5.88% at stage 30. The computation time, on an ordinary laptop,

was less than 15 seconds for 30 stages of iteration in the N = 502 experiment.



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 595

Table 3. Average time (seconds) comparison between exhaustive search and two proposed
methods in two-dimensional setting with N = 502 over 100 Sobol predictive locations. The
values in parentheses are the average percentage searched of full design. *Pre-computation
time for feature approximation method is 6 seconds.

Seconds Exhaustive Maximum Distance *Feature Approximation
(Candidates %) Search Method Method with D = 200

w/o KD-tree w/ KD-tree w/o LSH w/ LSH
Stage 10 11 3 (22.78%) 2 (22.78%) 3 (2.69%) 2 (1.98%)
Stage 15 19 5 (28.04%) 4 (28.04%) 5 (3.31%) 4 (2.90%)
Stage 20 30 9 (32.68%) 7 (32.68%) 8 (7.57%) 6 (5.56%)
Stage 25 44 14 (36.10%) 12 (36.10%) 10 (6.41%) 8 (5.66%)
Stage 30 61 21 (39.15%) 18 (39.15%) 13 (5.88%) 11 (6.65%)

Table 4. The relative difference in average predictive variance of the emulator between
maximum distance search as a baseline and feature approximation search with number of
features D = 200 over 100 Sobol predictive locations in 2-dimensional setting.

Relative Difference Feature Approximation Average Variance by
Method with D = 200 Maximum Distance Method
w/o LSH w/ LSH

Stage 10 0.192 0.168 4.15× 10−6

Stage 15 0.348 0.140 1.08× 10−6

Stage 20 0.171 0.066 4.34× 10−7

Stage 25 0.011 −0.124 2.26× 10−7

Stage 30 0.046 0.014 1.62× 10−7

Relative average predictive variance increases due to using the feature approx-

imation method, both with and without LSH, are shown in Table 4. At stage

30 the average predictive variance increases due to using the feature approxima-

tion method are, with and without LSH, 4.6% and 1.4%, respectively, potentially

small enough to be disregarded in a practical context. The LSH data structure

also marginally reduces search time from 13 to 11 seconds. Recall that the feature

approximation method with LSH approximates both the covariance function and

the cosine similarity measure, so the candidate set is slightly different from the

one without LSH. While in this moderately-sized problem the k-d tree and LSH

data structures do not greatly improve the computational cost (at stage 30, k-d

tree: 21 → 18, LSH: 13 → 11), in a larger-scale problem the improvements due

to incorporating a k-d tree or LSH data structure can be relatively substantial.

4.2. 6-dimensional problem of size N = 5× 104

Even more substantial reductions in the number of search candidates are seen



596 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

Table 5. Time (seconds) comparison between exhaustive search and two proposed methods
in 6-dimensional setting with N = 5× 104 over 20 Sobol predictive locations. The values
in parentheses shows the percentage searched of full design. *Pre-computation time for
feature approximation method was 26 seconds.

Seconds Exhaustive Maximum Distance *Feature Approximation
(Candidates %) Search Method Method with D = 300

w/o KD-tree w/ KD-tree w/o LSH w/ LSH
Stage 10 488 24 (2.77%) 10 (2.77%) 74 (1.71%) 26 (1.7%)
Stage 15 953 50 (4.27%) 28 (4.27%) 126 (3.34%) 45 (3.68%)
Stage 20 1,601 93 (5.84%) 62 (5.84%) 199 (4.77%) 76 (5.16%)
Stage 25 2,423 154 (7.34%) 115 (7.34%) 296 (5.28%) 121 (5.21%)
Stage 30 3,423 240 (8.62%) 193 (8.62%) 435 (6.70%) 189 (6.38%)

for both methods in a larger-scale, higher-dimensional setting. In this example,

we generated a 6-dimensional Sobol’s quasi-random sequence of size N = 5× 104

in a [−1, 1]6 for the design space and the predictive locations were chosen from a

Sobol’s quasi-random sequence of size 20. We took σ2 = 1 and tuning parameter

k = 30, and used the correlation function ΦΘ(x, y) = exp{−
∑6

i=1(xi − yi)2/θi}
with θi = 1.5, i = 1, . . . , 6.

Table 5 shows the comparison between exhaustive search and the two pro-

posed methods. The two methods outperform exhaustive search in terms of com-

putation time. Further, the number of candidates searched for both methods

are less than 10% (= 5, 000/50, 000) across all 30 stages. While the exhaustive

search took 3,423 seconds (≈ 1 hours) for 30 stage iterations, 240 seconds (4

minutes) were required for maximum distance method. Incorporating a k-d tree

data structure, the computation time decreased to 193 seconds (≈ 3.2 minutes).

Compared to the 2-dimensional example in Section 4.1, incorporating a k-d tree

data structure has moderately more computational benefit in this larger-scale

setting.

The feature approximation method, as expected, has a smaller-sized can-

didate set than the maximum distance method. Using D = 300 features, less

than 2% average predictive variance increases at stage 30 are observed due to

approximation, as shown in Table 6. On the other hand, due to the moderately

expensive computation in Algorithm 2 using D = 300 features, feature approxi-

mation search without LSH is more time-consuming than the maximum distance

method. As shown in Table 1, the computation of more design points incurs

higher computational costs in order of D2 for feature approximation search with-

out LSH (complexity O(j2 +D2N)). With an LSH approximate similarity-search



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 597

Table 6. The relative difference in average predictive variance of the emulator between
maximum distance search as a baseline and feature approximation search with number of
features D = 300 over 20 Sobol predictive locations in 6-dimensional setting.

Relative Difference Feature Approximation Average Variance by
Method with D = 300 Maximum Distance Method
w/o LSH w/ LSH

Stage 10 0.049 0.047 0.2328
Stage 15 0.030 0.032 0.2120
Stage 20 0.023 0.022 0.1997
Stage 25 0.017 0.017 0.1913
Stage 30 0.016 0.016 0.1850

method, computation time is reduced by 189 seconds (≈ 3 minutes) across all

30 stages. While the feature approximation approach outperforms exhaustive

search, it appears to be most useful when the maximum distance approach is

very conservative, such as in the two-dimensional case in Section 4.1.

5. Conclusion and Discussion

The two methods considered here can be extended for selecting more than

one point in each stage j in a straight-forward manner. For example, suppose

two points are to be selected in each stage. Let j′ = 2j, Xj′ be the current

sub-design at stage j, and xj′+1 and xj′+2 be two points selected at the stage

j + 1. Proposition 1 can be extended to Vj+1(x) = Vj(x) − σ2R∗(xj′+1, xj′+2)

for a function R∗, Theorem 1 can narrow the window of potential pairs of candi-

date locations, to say T ′(Xj), and Algorithm 1 can be updated accordingly. On

the other hand, retaining good computational properties in a batch-sequential

framework is not straight-forward. For example, searching for the optimal candi-

dates, (xj′+1, xj′+2) = arg max(u1,u2)∈T ′(Xj)R
∗(u1, u2), can be very expensive, say

O(|T ′(Xj)|2), compared to searching for one point in each stage. Efficiently aug-

menting multiple points at each stage, for example by alternating maximizations

on xj′+1 and xj′+2, might be worth exploring in future work.

The essential ideas of the proposed approaches have potential for application

in search space reduction in global optimization. Consider the following example.

Lam and Notz (2008) modified the maximum entropy design (Shewry and Wynn

(1987)) for use as a sequential algorithm to efficiently construct a space-filling

design in computer experiments. They showed that the algorithm can be simpli-

fied to selecting a new point that maximizes the so-called sequential maximum

entropy criterion



598 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

xj+1 = arg min
u∈D\Xj

ΦΘ(u,Xj)ΦΘ(Xj , Xj)
−1ΦΘ(Xj , u),

where D is a discrete design space. For this global optimization problem, let

dmax(xj+1) = max{‖Θ(x1 − xj+1)‖2, ‖Θ(x2 − xj+1)‖2, . . . , ‖Θ(xj − xj+1)‖2}

and δ > 0. It can be shown that if dmax(xj+1) ≤ φ−1
(√
λmaxδ

)
, where λmax is the

maximum eigenvalue of ΦΘ(Xj , Xj), then the objective function ΦΘ(xj+1, Xj)ΦΘ

(Xj , Xj)
−1ΦΘ(Xj , xj+1) > δ. Thus, similar to Algorithm 1, a maximum distance

approach could be used to eliminate search candidates. For other specific global

optimization problems, detailed examination is needed.

An implicit disadvantage of these methods is the impact of the correlation

parameters. Take the example in Figure 2, where dmin(x9) < 3.07. From the

definition (3.1) of dmin(xj+1), if Θ = (1/
√
θ, 1/
√
θ), then the larger θ is, the bigger

the search area, the shaded region in Figure 2. When θ is large, the correlation is

close to one and the data points tend to be highly correlated, implying that every

data point in the full design carries important information for each predictive

location. Thus, the algorithm requires more computation for “easier” problems—

i.e., with a “flatter” surfaces. On the other hand “flatter” surfaces do not require

large sub-designs to achieve small predictive variance.

An improvement worth exploring is how to determine of the number of fea-

tures D in the feature approximation method. Cross-validation to minimize

predictive variance of an emulator may present an attractive option. An exami-

nation of the choice between the maximum distance and feature approximation

methods might be desirable. Although using them both in concert guarantees a

smaller candidate set in the feature approximation method, pre-computation of

the features constitutes a moderately expensive sunk cost in terms of computa-

tion and storage. In the example in Section 4.2, a 500×50, 000 matrix needed to

be computed and stored in advance. In either case, the two methods outperform

exhaustive search, as shown in Table 5.

Supplementary Materials

The proofs of Proposition 1 and Theorems 1 and 2 are given in the online

supplement.

Acknowledgment

The authors gratefully acknowledge funding from the National Science Foun-

dation, awards DMS-1564438, DMS-1621722, and DMS-1621746.



EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL 599

References

Arya, S., Mount, D., Kemp, S. E. and Jefferis, G. (2015). RANN: Fast Nearest Neighbour Search

(Wraps Arya and Mount’s ANN Library). R package version 2.5.

Bawa, M., Condie, T. and Ganesan, P. (2005). Lsh forest: self-tuning indexes for similarity

search. In Proceedings of the 14th International Conference on World Wide Web, 651–660.

ACM.

Bellosta, C. J. G. (2015). rPython: Package Allowing R to Call Python. R package version 0.0-6.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.

Communications of the ACM 18, 509–517.

Bratley, P. and Fox, B. L. (1988). Algorithm 659: Implementing sobol’s quasirandom sequence

generator. ACM Transactions on Mathematical Software (TOMS) 14, 88–100.

Cangelosi, A. and Parisi, D. (2012). Simulating the Evolution of Language. Springer Science &

Business Media.

Datta, A., Banerjee, S., Finley, A. O. and Gelfand, A. E. (2016). Hierarchical nearest-neighbor

Gaussian process models for large geostatistical datasets. Journal of the American Statistical

Association 111, 800–812.

Eckstein, W. (2013). Computer Simulation of Ion-Solid Interactions, volume 10. Springer Science

& Business Media.

Fang, K.-T., Li, R. and Sudjianto, A. (2005). Design and Modeling for Computer Experiments.

CRC Press.

Furrer, R., Genton, M. G. and Nychka, D. (2006). Covariance tapering for interpolation of large

spatial datasets. Journal of Computational and Graphical Statistics 15, 502–523.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. JHU Press.

Gramacy, R. B. (2016). laGP: Large-scale spatial modeling via local approximate Gaussian

processes in R. Journal of Statistical Software 72, 1–46.

Gramacy, R. B. and Apley, D. W. (2015). Local Gaussian process approximation for large

computer experiments. Journal of Computational and Graphical Statistics 24, 561–578.

Gramacy, R. B. and Haaland, B. (2016). Speeding up neighborhood search in local Gaussian

process prediction. Technometrics 58, 294–303.

Gramacy, R. B., Niemi, J. and Weiss, R. M. (2014). Massively parallel approximate Gaussian

process regression. SIAM/ASA Journal on Uncertainty Quantification 2, 564–584.

Haaland, B., Qian, P. Z., et al. (2011). Accurate emulators for large-scale computer experiments.

The Annals of Statistics 39, 2974–3002.

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective, volume 157. Springer.

Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse

of Dimensionality. In Proceedings of the Thirtieth annual ACM Symposium on Theory of

computing, 604–613. ACM.

Jain, P., Kulis, B. and Grauman, K. (2008). Fast image search for learned metrics. In Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1–8. IEEE.

Kuczynski, J. and Wozniakowski, H. (1992). Estimating the largest eigenvalue by the power and

lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and Applications

13, 1094–1122.

Lam, C. Q. and Notz, W. I. (2008). Sequential Adaptive Designs in Computer Experiments for

Response Surface Model Fit. PhD thesis, The Ohio State University.



600 CHIH-LI SUNG, ROBERT B. GRAMACY AND BENJAMIN HAALAND

Leskovec, J., Rajaraman, A. and Ullman, J. D. (2014). Mining of Massive Datasets. Cambridge

University Press.

Liu, Y. and Hung, Y. (2015). Latin hypercube design-based block bootstrap for computer

experiment modeling. Technical report, Rutgers.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F. and Sain, S. (2015). A multi-

resolution Gaussian process model for the analysis of large spatial data sets. Journal of

Computational and Graphical Statistics 24, 579–599.

Paciorek, C. J., Lipshitz, B., Zhuo, W., Kaufman, C. G., Thomas, R. C., et al. (2015). Parallelizing

Gaussian process calculations in r. Journal of Statistical Software 63, 1–23.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research 12, 2825–2830.

Plumlee, M. (2014). Fast prediction of deterministic functions using sparse grid experimental

designs. Journal of the American Statistical Association 109, 1581–1591.

R Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer

experiments. Statistical Science 4, 409–423.

Santner, T. J., Williams, B. J. and Notz, W. I. (2013). The Design and Analysis of Computer

Experiments. Springer Science & Business Media.

Shewry, M. C. and Wynn, H. P. (1987). Maximum entropy sampling. Journal of Applied Statistics,

14, 165–170.

Van Durme, B. and Lall, A. (2010). Online generation of locality sensitive hash signatures. In Pro-

ceedings of the ACL 2010 Conference Short Papers, 231–235. Association for Computational

Linguistics.

Wendland, H. (2004). Scattered Data Approximation, volume 17. Cambridge University Press.

Williams, C. and Seeger, M. (2001). Using the nyström method to speed up kernel machines.

In Proceedings of the 14th Annual Conference on Neural Information Processing Systems,

number EPFL-CONF-161322, 682–688.

Zhu, H., Williams, C. K., Rohwer, R. and Morciniec, M. (1997). Gaussian regression and optimal

finite dimensional linear models. Aston University.

H. Milton Stewart School of Industrial & Systems Engineering 755 Ferst Drive, NW, Atlanta,

GA 30332, USA.

E-mail: chihli sung@gatech.edu

Department of Statistics (MC0439) Hutcheson Hall, 250 Drillfield Drive Blacksburg, VA 24061,

USA.

E-mail: rbg@vt.edu

Department of Population Health Sciences 295 Chipeta Way Salt Lake City, UT 84108, USA.

E-mail: ben.haaland@hsc.utah.edu

(Received March 2016; accepted February 2017)

mailto:chihli_sung@gatech.edu
mailto:rbg@vt.edu
mailto:ben.haaland@hsc.utah.edu

