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Abstract: Estimating quantiles of black-box deterministic functions with random

inputs is a challenging task when the number of function evaluations is severely

restricted, which is typical for computer experiments. This article proposes two new

sequential Bayesian methods for quantile estimation based on the Gaussian process

metamodel. Both rely on the Stepwise Uncertainty Reduction paradigm, hence

aim at providing a sequence of function evaluations that reduces an uncertainty

measure associated with the quantile estimator. The proposed strategies are tested

on several numerical examples, showing that accurate estimators can be obtained

using only a small number of function evaluations.
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1. Introduction

In the last decades, the question of designing experiments for the efficient

exploration and analysis of numerical black-box models has received wide interest,

and metamodel-based strategies have been shown to offer efficient alternatives in

many contexts, such as optimization or uncertainty quantification. We consider

here the question of estimating quantiles of the output of a black-box model.

More precisely, let g : X ⊂ Rd → R denote the output of interest of the model,

the inputs of which can vary within X. We assume here that the multivariate

input X is modelled as a random vector; then, our objective is to estimate a

quantile of g(X):

qα(g(X)) = qα(Y ) = F−1Y (α), (1.1)

for a fixed level α ∈ (0, 1), where F−1U := inf{x : FU (x) ≥ u} denotes the

generalized inverse of the cumulative distribution function of a random variable

U . We consider here only random vectors X and functions g regular enough to

have FY
(
F−1Y (α)

)
= α (that is, FY is continuous). Since the level α is fixed, we

omit the index in the sequel.
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A natural idea to estimate a quantile consists in using its empirical estimator:

having at hand a sample (Xi)i=1,...,n of the input law X, we run it through the

computer model to obtain a sample (Yi)i=1,...,n of the output Y . Then, denoting

Y(k) the k-th order statistic of the previous sample, the estimator

qn := Y(bnαc+1) (1.2)

is consistent and asymptotically Gaussian under weak assumptions on the model

(see David and Nagaraja (2003) for more details). However, for computation-

ally expensive models, the sample size is drastically limited, which makes the

estimator (1.2) impractical. In that case, one may replace the sample (Xi)i
by a sequence of well-chosen points that provide a useful information for the

quantile estimation. This is the basis of the large field of importance sampling,

for which many solutions have been proposed, using either parametric (see e.g.

Egloff et al. (2010); Cornuet et al. (2012)) or non-parametric approaches (see e.g.

Zhang (1996); Morio (2012)).

When the available data are scarce, an interesting alternative is to rely on

metamodels (a.k.a. surrogate models). The observation set is used to build a

fast-to-evaluate approximation of g, and use this approximation (metamodel)

to estimate qn. Such an approach is often combined with importance sampling

strategies; see e.g. Bucher and Bourgund (1990); Bourinet, Deheeger and Lemaire

(2011); Cannamela, Garnier and Iooss (2008); Morio (2012) for works based on

support vector machines, neural networks, linear regression, or kriging.

In this article, we focus on the Gaussian process (GP) metamodel, which has

the advantage of being particularly well-suited for sequential sampling, adding

observations one at a time, using the metamodel to guide the process. Many al-

gorithms, following Močkus (1975); Jones, Schonlau and Welch (1998), have been

proposed for optimization, or for the estimation of a probability of exceedance

(see for instance Bect et al. (2012) for a review), which is the dual problem of

quantile estimation.

GP-based algorithms specifically dedicated to quantile estimation are scarcer

in the literature. Oakley (2004) proposed a two-step strategy: first, generate an

initial set of observations to obtain a first estimator of the quantile, then increase

the set of observations by a second set likely to improve the estimator. Jala et al.

(2016) proposed two sequential methods (called GPQE and GPQE+), based on

the GP-UCB optimization algorithm of de Freitas, Zoghi and Smola (2012), that

is, making use of the confidence bounds provided by the Gaussian Process model.

In this paper we propose two new algorithms based on Stepwise Uncertainty
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Reduction (SUR), a framework that has been successfully applied to closely re-

lated problems such as optimization (Picheny (2013)), or the estimation of a

probability of exceedance (Bect et al. (2012); Chevalier et al. (2014)). A first

SUR strategy has been proposed for the quantile case in Arnaud et al. (2010)

and Jala et al. (2012) that relies on expensive simulation procedures. However,

finding a statistically sound algorithm with a reasonable cost of computation, in

particular when the problem dimension increases, is still an open problem.

The rest of the paper is organized as follow. In Section 2, we introduce the

basics of GP modelling, our quantile estimator and the SUR framework. Section

3 describes our two algorithms. Some numerical simulations to test the two

methods are presented in Section 4, followed by concluding comments in Section

5. Most of the proofs are deferred to the Appendix.

2. Gaussian Process Modelling and Sequential Experiments

2.1. Model definition

We consider here the classical GP framework in computer experiments (Sacks

et al. (1989); Rasmussen and Williams (2006)): we suppose that g is the real-

ization of a GP denoted by G(·) with known mean µ and covariance function

c.

Given an observed sample contained in the event An = {(x1, g1), (x2, g2),

. . . (xn, gn)} with all xi ∈ X and gi = g(xi), the distribution of G|An is entirely

known:

L (G|An) = GP (mn(·), kn(·, ·)) ,

where L refers to the law and with, ∀x ∈ X,

mn(x) = E(G(x)|An) = cn(x)TC−1n gn, (2.1)

kn(x,x′) = Cov
(
G(x), G(x′)|An

)
= c(x,x′)− cn(x)TC−1n cn(x′), (2.2)

where cn(x) = [c(x1,x), . . . , c(xn,x)]T , Cn = [c(xi,xj)]1≤i,j≤n and gn = [g1, . . . ,

gn]. In the sequel, we also write s2n(x) = kn(x,x).

We use here the standard Kriging framework (Stein (2012)), where the co-

variance function depends on unknown parameters that are inferred from An,

using maximum likelihood estimates for instance. Usually, the estimates are

used as face value, but updated when new observations are added to the model.

2.2 Quantile estimation

Since each call to the code g is expensive, the sequence of inputs to evaluate,
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{x1, . . . ,xn}, must be chosen carefully to make our estimator as accurate as

possible. The general scheme based on GP modelling proceeds as follows:

• For an initial budget N0, build an initialisation sample (xi0, g(xi0))i=1...N0
,

typically using a space-filling strategy, and compute the estimator of the

quantile qN0
.

• At each step n+ 1 > N0 and until the budget N of evaluations is reached:

knowing the current set of observations An and estimator qn, choose the

next point to evaluate xn+1, based on a so-called infill criterion. Evaluate

g(xn+1) and update the observations An+1 and the estimator qn+1.

• qN is the estimator of the quantile to return.

Quantile estimator. Considering that, conditionally on An, the best approx-

imation of G(x) is mn(x), an intuitive estimator of the quantile (as chosen in

Oakley (2004) for instance) is simply the quantile of the GP mean:

qn := qX(mn(X)) = qX (EG [G(X)|An]) , (2.3)

where qX is the quantile with regard to the measure on X and EG the expectation

with regard to G. In the following, the subscripts are dropped when there is no

ambiguity.

Another natural idea is to consider the estimator that minimizes the mean

square error E
(
(q − qn)2

)
among all An-measurable estimators:

qn = EG (qX(G(X))|An) . (2.4)

This estimator is used for instance in Jala et al. (2016). Despite its theoretical

qualities, it cannot be expressed in a computationally tractable form. Hence, in

the sequel, we focus on the estimator (2.3).

Sequential Sampling and Stepwise Uncertainty Reduction. Consider

methods based on the sequential maximization of an infill criterion of the form

x∗n+1 = argmax
xn+1∈X

Jn(xn+1), (2.5)

where Jn is a function that depends on An (through the GP conditional distri-

bution) and on xn+1, a candidate observation location.

Intuitively, an efficient strategy explores X enough to obtain a GP model

reasonably accurate everywhere, and exploits previous results to identify the

area with response values close to the quantile and sample more densely there.

To this end, the concept of Stepwise Uncertainty Reduction (SUR) has been

proposed originally in Geman and Jedynak (1996) as a trade-off between ex-
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ploitation and exploration, and has been successfully adapted to optimization

(Villemonteix, Vazquez and Walter (2009); Picheny (2013)) or probability of fail-

ure estimation frameworks (Bect et al. (2012); Chevalier et al. (2014)). The

general principle of SUR strategies is to define an uncertainty measure related to

the objective pursued, and add sequentially the observation that reduces the most

uncertainty. The main difficulty of such an approach is to evaluate the potential

impact of a candidate point xn+1 without having access to g(xn+1) = gn+1, that

would require running the computer code.

In the quantile estimation context, Jala et al. (2012) and Arnaud et al. (2010)

proposed to choose the next point to evaluate as the minimizer of the conditional

variance of the quantile estimator (2.4). This strategy showed promising results,

as it substantially outperformed more classical strategies, and, with a small num-

ber of input variables, managed to identify the quantile area (that is, where g is

close to its quantile) and choose the majority of the points in it. However, com-

puting their criterion is very costly, as it requires drawing many GP realizations,

which hinders its use in practice for dimensions larger than two.

3. Two Sequential Strategies for Quantile Estimation

In this section, we propose two new infill criteria dedicated to quantile esti-

mation. Both are based on a closed-form expression of the updated value of the

quantile estimator when an observation is added to An. This update formula is

first given in Section 3.1, then the two criteria are derived in Sections 3.2 and

3.3.

3.1. Update formula for the quantile estimator

We focus on the estimator (2.3), which is, at step n, the quantile of the

random vector mn(X). Since no closed-form expression is available, we approach

it by using the empirical quantile. Let XMC = (x1
MC, . . . ,x

l
MC) be an independent

sample of size l, distributed as X. We compute mn(XMC) and order this vector

by denoting mn(XMC)(i) the i-th coordinate. Then we choose

qn = mn(XMC)(blαc+1). (3.1)

Remark 1. Since the observation points (x1, . . . ,xn) do not follow the distribu-

tion of X, they cannot be used to estimate the quantile. Hence, a different set

(XMC) must be used.

Consider that a new observation gn+1 = g(xn+1) is added to An. The key

to building a SUR strategy is to measure the impact of this observation on our
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estimator. To do so, we introduce the notion of quantile point, denoted by xqn,

as the point of XMC such that

qn = mn(xqn).

This formulation allows us to provide a closed-form expression of the value of

the estimator qn+1 = mn+1(x
q
n+1) as a function of the past observations An,

the past quantile estimator qn, a candidate point xn+1 and its corresponding

(deterministic) evaluation gn+1.

A classical property of the GP model, linking its means at steps n and n+1,

is

mn+1(x) = mn(x) +
kn(xn+1,x)

s2n(xn+1)
(gn+1 −mn(xn+1)) , (3.2)

where (xn+1, gn+1) is a new observational event. For detailed calculations, dis-

cussion and complexity analysis, see Chevalier, Ginsbourger and Emery (2014).

This allows us to compute mn+1 very efficiently, as it does not require inverting

the updated covariance matrix Cn+1, and shows explicitely its linear dependency

with respect to gn+1. Computing kn(xn+1,x) and s2n(xn+1) has a O(n2) complex-

ity (see (2.2)), provided that the inverse of Cn has been computed beforehand.

By (3.2), we have

mn+1(XMC) = mn(XMC) +
kn(XMC,xn+1)

sn(xn+1)2
(gn+1 −mn(xn+1)) . (3.3)

We see directly that once xn+1 is fixed, the vector mn+1(XMC) is determined by

the value of gn+1. Our objective is to derive, for all gn+1 ∈ R, which point of

XMC is the quantile point, the point satisfying

mn+1(XMC)blαc+1 = mn+1

(
xqn+1

)
. (3.4)

Write b = mn(XMC) and a = kn(XMC,xn+1), vectors of Rl, and z = gn+1−
mn(xn+1)/s

2
n(xn+1), so that the updated mean is simply displayed as a linear

function of z, b + az. Our problem can then be interpreted graphically: each

coordinate of mn+1(XMC) is represented by a straight line

bi + aiz, i ∈ {1, . . . , l}, (3.5)

and the task of finding xqn+1 for any value of gn+1 amounts to finding the blαc+1

lowest line for any value of z. A similar graphical interpretation can be found in

Scott, Frazier and Powell (2011) in an optimization context.

We have that the lines’ order changes only when two lines intersect each

other. There are (l(l − 1))/2 intersection points, with values given by (br −
bs)/(as − ar) (1 ≤ s, r ≤ l, s 6= r).
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Denote by I1, . . . , IL, in increasing order, the intersection points at which

the index of the blαc+ 1 lowest line changes (L ≤ l(l − 1)/2). We set I0 = −∞
and IL+1 = +∞, and introduce (Bi)0≤i≤L, the sequence of intervals between

intersection points:

Bi = [Ii, Ii+1] for i ∈ [0, L] (3.6)

For any z ∈ Bi, the order of (bi + aiz) is fixed.

Denoting by ji the index of the blαc+ 1 lowest line, we have

xqn+1 = xjiMC, z ∈ Bi, (3.7)

the quantile point when z ∈ Bi, which we henceforth write xqn+1(Bi).

Proposition 1. In the previous notation, at step n for the candidate point xn+1,

we have

qn+1(xn+1, gn+1) =

L∑
i=0

mn+1(x
q
n+1(Bi))1z∈Bi

.

Intuitively, the updated quantile is the updated GP mean at the XMC point

that depends on which interval gn+1 (or equivalently, z) falls.

Figure 1 provides an example for l = 5, and α = 40%. The values of a

and b are given by a GP model, which allows us to draw the straight lines as a

function of z. Each line corresponds to a point xiMC. The intersections for which

the quantile point changes are shown by the vertical lines. For each interval,

the segment corresponding to the quantile point (second lowest line) is shown in

bold. We see that depending on the value of z (that is, the value of gn+1), the

quantile point changes. In the example, ji takes successively as values 2, 3, 1, 4,

3, and 5.

Remark 2. Although the number of intersections grows quadratically with the

MC sample size, finding the set of quantile points can be done very efficiently,

based on two important elements: the number of distinct quantile points is much

smaller than the number of intersections; there are at most two changes in the

order of the straight lines moving from an interval to another adjacent one (noth-

ing changes except the positions of the intersected lines which are inverted). This

latter feature allows us to avoid numerous calls to sorting functions. An efficient

algorithm to extract the quantile points indices and effective intervals is given in

Appendix 6.4.

3.2. Infill criterion based on probability of exceedance

Proposition 1 allows us to express the quantile estimator at step n + 1 as
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Figure 1. Evolution of the quantile point as a function of the value of z. Each plain
line represents a point of XMC, and the vertical lines the relevant intersections Ii. The
second lowest line is shown in bold.

a function of the candidate point xn+1 and corresponding value gn+1. In this

section, we use this formulation to define a SUR criterion, an uncertainty measure

related to our estimator that can be minimized by a proper choice of xn+1.

This criterion is inspired by related work in probability of failure estimation

(Bect et al. (2012)) and multi-objective optimization (Picheny (2013)), that take

advantage of the closed-form expressions of probabilities of exceeding thresholds

in the GP framework. Our idea is to express the quantile estimation problem in

terms of probability of exceedance in order to obtain a criterion in closed form.

By definition, the quantile is related to the probability by

P(G(X) ≥ q(G(X))) = 1− α. (3.8)

The probability P(G(x) ≥ qn|An), available for any x ∈ X, is in the ideal

case (G is exactly known) either zero or one and, if qn = q(G(X)), the proportion

of ones is exactly 1− α. At step n, a measure of error is then

Hprob
n =

∣∣∣∣∫
X
P(G(x) ≥ qn|An)dx− (1− α)

∣∣∣∣ = |Γn − (1− α)| , (3.9)

with Γn =
∫
X P (G(x) ≥ qn|An) dx.

Following the SUR paradigm, we want to add at step n + 1 an observation

(xn+1, gn+1) such that Hprob
n+1 is minimal. However, computing Hprob

n+1 requires

evaluating gn+1 (to obtain the updated distribution of G(x) and updated value

of qn+1), which prevents us from searching for the optimal xn+1.

To circumvent this problem, we replace gn+1 by its distribution conditional

on An and then take the expectation of Hprob
n+1 on this law. Writing Gn+1 =
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G(xn+1) as a random variable following this conditional distribution, we define

An+1 = An ∪ (xn+1, Gn+1), that is random through Gn+1. We can then choose

the criterion to minimize (indexed by xn+1 to make the dependency explicit):

Jprob
n (xn+1) = |E (Γn+1(xn+1))− (1− α)| , (3.10)

where now,

Γn+1(xn+1) =

∫
X
P (G(x) ≥ Qn+1|An+1) dx. (3.11)

Proposition 2. Under our first strategy,

Jprob
n (xn+1) =

∣∣∣∣∣
∫
X

L−1∑
i=1

[
Φrni

(
ein(xn+1; x), f in(xn+1, Ii+1)

)
− Φrni (xn+1,x)

(
ein(xn+1; x), fn(xn+1, Ii)

)
+ Φrni

(
(ein(xn+1; x), f in(xn+1, I1)

)
+ Φ−rni

(
ein(xn+1; x),−f in ((xn+1, IL)

) ]
dx− (1− α)

∣∣∣∣∣,
where

ein(xn+1; x; xqn+1(Bi)) =
mn(x)−mn(xqn+1(Bi))

σW
, f in(xn+1; Ii) = Iisn(xn+1),

σW = sn(x)2 +
kn(xqn+1(Bi),xn+1)

2

sn(xn+1)2
− 2

kn(xqn+1(Bi),xn+1)kn(x,xn+1)

sn(xn+1)2

and Φrin is the cumulative distribution function (CDF) of the centered Gaus-

sian law of covariance matrix

(
1 rin
rin 1

)
, with

rin =
kn(xqn+1(Bi),xn+1)− kn(x,xn+1)√

sn(x)2 + (kn(xqn+1(Bi),xn+1)
2)/(sn(xn+1)

2)

−2(kn(xqn+1(Bi),xn+1)kn(x,xn+1))/(sn(xn+1)
2)
sn(xn+1)

.

The proof is deferred to the Appendix.

This criterion has a favourable form since it writes as a function of GP quan-

tities at step n, mn, sn and kn, that can be computed quickly once the model

is established. It does not require conditional simulations, as does the crite-

rion in Jala et al. (2016), with advantages in computational cost and evaluation

precision.

Evaluating this criterion does require a substantial computational effort, as

it takes the form of an integral over X, which must be done numerically. An

obvious choice here is to use the set XMC as integration points. It also relies

on the bivariate Gaussian CDF, which must be computed numerically. Efficient
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programs can be found, such as the R package pbivnorm (Kenkel (2012)), which

make this task relatively inexpensive.

3.3. Infill criterion based on the quantile variance

Accounting for the fact that Jprob is still expensive to compute, we propose

an alternative that does not require numerical integration over X.

It is based on choosing the point that has a maximal effect on the posterior

value of the estimator. The variance of the updated estimator, Var (qn+1|An+1)

with Gn+1 random, is a good indicator of this potential effect, as it measures the

sensitivity of qn+1 to the possible values of g(xn+1).

Our second strategy is then

JVar
n (xn+1) = VarGn+1

(qn+1|An+1), (3.12)

where once again An+1 denotes the conditioning on An∪(xn+1, Gn+1), with Gn+1

random.

It is straightforward to see that choosing xn+1 ∈ {x1, . . . ,xn} results in

Var(qn+1|An+1) = Var(qn|An) = 0.

Proposition 3. Conditionally on An and on the choice of xn+1,

JVar
n (xn+1) =

L∑
i=1

[
kn(xqn+1(Bi),xn+1)

]2
V (sn(xn+1), Ii+1, Ii)Pi

+

L∑
i=1

[
mn(xqn+1(Bi)− kn(xqn+1(Bi),xn+1)E(sn(xn+1), Ii+1, Ii)

]2
(1− Pi)Pi

− 2

L∑
i=2

i−1∑
j=1

[
mn(xqn+1(Bi)− kn(xqn+1(Bi),xn+1)E(sn(xn+1), Ii+1, Ii)

]
Pi[

mn(xqn+1(Bi)− kn(xqn+1(Bi),xn+1)E(sn(xn+1), Ij+1, Ij)
]
Pj

if sn(xn+1) 6= 0 and 0 otherwise,

where

Pi = Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii),

E(sn(xn+1), Ii+1, Ii) =
1

sn(xn+1)

(
φ(sn(xn+1)Ii+1)− φ(sn(xn+1)Ii)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

)
,

V (sn(xn+1), Ii+1, Ii) =

1

sn(xn+1)2

[
1 +

sn(xn+1)φ(Ii+1)− sn(xn+1)φ(Ii)

Φ(Ii+1)− Φ(Ii)
−
(
φ(Ii+1)− φ(Ii)

Φ(Ii+1)− Φ(Ii)

)2
]
,
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for Φ and φ respectively the CDF and density function of the standard Gaussian

law.

The proof is deferred to the Appendix.

This criterion writes only as a function of GP quantities at step n, mn, sn,

kn, and xn+1. It does not require numerical integration nor the bivariate CDF.

Intuitively, a point xn+1 has a large JVar
n if it changes significantly the GP

mean in regions that are critical to defining the quantile. In contrast, an ob-

servation xn+1 in either well-known regions (low GP variance) or non-critical

ones (GP mean very different from the quantile estimator) would not change the

estimator, regardless of the value of gn+1. In that sense, it realizes a trade-off

between exploitation and exploration.

Figure 2 is an illustration that shows how different values of xn+1 and gn+1

affect the estimator. Here, an initial model with five observations is updated

with either xn+1 = 0.97 (left) or xn+1 = 0.5 (right), and the 15% quantile is

considered. Different updated values of the GP mean (mn+1) and quantile (qn+1)

are shown, depending on the value taken by gn+1. Here, we show the values

corresponding to the middle of each interval Bi. We see that for xn+1 = 0.97,

even if gn+1 takes extreme values, the quantile does not change significantly (low

JVar
n ). In constrast, for xn+1 = 0.5, different values of gn+1 lead to different

shapes of the GP mean and consequently different values of the quantile (high

JVar
n ). Hence, the point xn+1 = 0.5 can be considered as highly informative for

our estimator, while xn+1 = 0.97 is not.

3.4. Practical recommendations

Finding the new observation Finding xn+1 (Equation (2.5)) requires solving

an optimization problem, that may not be straightforward. To ease this step,

we propose that a (large) set of candidates be generated from the distribution of

X, from which a shorter set of “promising” points is extracted. Those points are

drawn randomly from the large set with weights equal to φ (qn −mn(x)/sn(x)),

so that higher weights are given to points either close to the current quantile

estimate and/or with high uncertainty. The criterion is evaluated on this subset

of points and the best is chosen as the next infill point. In addition, a local

optimization can be performed (for instance the BFGS algorithm, see Liu and

Nocedal (1989)), starting from the best point of the subset.

Choosing XMC The size of XMC, which affects the precision of the criteria,

is limited in practice by computational costs, in particular with Jprob (in our
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Figure 2. Illustration of JVar. The GP model is shown in bold line and grey area.
Updated GP means (plain lines) are shown depending on the value of gnew (circles) for
either xn+1 = 0.97 (left) or xn+1 = 0.5 (right). The corresponding 15% quantiles qn+1

are shown with dotted horizontal lines, along with the quantile points xq
n+1 (triangles).

implementation, the maximum size is of the order of 104). However, we found

that renewing XMC at each iteration sufficiently mitigates this issue.

Budget and stopping criteria Choosing the size of the initial observation set

and the number of iterations is a classical issue with GP-based algorithms. A

common rule-of-thumb is to use n0 = 5 × d for the initial set. For JVar, the

iterative procedure can stop when the maximum of the criterion is below a small

threshold. For Jprob, one can consider the difference Jprob
n − Jprob

n+1 . In the fol-

lowing section, predetermined numbers of observations are used, and we use one

third of the observations for the initial set. In an optimization context, the

choice of this proportion was found as not significant compared to other factors

(Picheny, Wagner and Ginsbourger (2013)).

4. Experiments

4.1. Two-dimensional example

As an illustrating example, we use here the classical Branin test function

(Dixon and Szegö (1978), see Equation (C.1) in Appendix). On [0, 1]2, the range

of this function is approximately [0, 305].

We took X1, X2 ∼ U [0, 1], and searched for the 85% quantile. The initial set
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Figure 3. Contour lines of the GP mean and experimental set at n = 7 (left) and n = 15
(right) with JVar. The initial observations are shown with white circles, the observations
added by the sequential strategy with plain circles, and the next point to evaluate with
squares. The line shows the contour corresponding to the quantile estimate.

of experiments consisted of seven observations generated using Latin Hypercube

Sampling (LHS), and 15 observations were added sequentially using both SUR

strategies. The GP models learning, prediction, and update was performed using

the R package DiceKriging (Roustant, Ginsbourger, and Deville (2012)). The

covariance was chosen as Matérn 3/2 and the mean as a linear trend.

For XMC, we used a 1000-point uniform sample on [0, 1]2. For simplicity

purpose, the search of xn+1 was performed on XMC, although a continuous op-

timizer algorithm could have been used here. The actual quantile was computed

using a 105-point sample.

Figure 3 shows the set of experiments, along with contour lines of the GP

model mean, for two intermediate stages of the JVar run, to reveal the dynamics

of our strategy. From the initial design of experiments, the top right corner

of the domain was identified as the region containing the highest 15% values

(Figure 3 left). Several observations were added in that region until the kriging

approximation became accurate (blue circles, Figure 3 right), then a new region

(bottom left corner) was explored (square point, Figure 3 right).

Figure 4 reports the final set of experiments and GP models obtained by both

criteria, and Figure 5 the evolution of the estimators. The two strategies lead

to relatively similar observation sets, that mostly consist of values close to the

contour line corresponding to the 85th quantile (exploitation points), and a few
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Figure 4. Comparison of observation sets obtained using Jprob (left) and JVar (right).
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Figure 5. Evolution of the quantile estimates using Jprob (left) and JVar (right) for the
2D problem. The horizontal line shows the actual 85th quantile.

space-filling points (exploration points). With 18 observations, both estimators

are close to the actual value (in particular with respect to the range of the

function), yet additional observations might be required to achieve convergence

(Figure 5).

4.2. Four- and six-dimensional examples

We consider now two more difficult test functions, with four and six di-
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mensions, respectively (hartman and ackley functions, see (C.2) and (C.3) in

Appendix). Both are widely used to test optimization strategies (Dixon and

Szegö (1978)), and are bowl-shaped, multi-modal functions.

We took X ∼ N (1/2,Σ), with Σ a symmetric matrix with diagonal elements

equal to 0.1 and other elements equal to 0.05. The initial set of observations was

taken as a 30-point LHS generated from the density of X (Helton and Davis

(2003)), and 60 observations were added sequentially. A 3,000-point sample

from the distribution of X was used for XMC (renewed at each iteration), and

the actual quantile was computed using a 105-point sample. The GP covariance

was chosen as Matérn 3/2 and the mean as a linear trend.

The criteria were optimized as follow: a set of 105 candidates was generated

from the distribution of X, out of which a subset of 300 promising points was

extracted to evaluate the criterion, as described in Section 3.4. For JVar a local

optimization was performed, starting from the best point of the subset (using the

BFGS algorithm, see Liu and Nocedal (1989)). Due to computational constraints,

this step was not applied to Jprob. Preliminary experiments have shown that only

a limited gain is achieved by this step.

As an baseline strategy for comparison purpose, we included a “random

search”: xn+1’s were sampled randomly from the distribution of X. We also

included the two-step approach, 30 initial observations and 60 additions, as pro-

posed in Oakley (2004).

Quantile levels were considered to cover a variety of situations: 5% and 97%

for the 4D problem and 15% and 97% for the 6D problem. Due to the bowl-shape

of the functions, low levels are defined by small regions close to the center of the

support of X, while high levels correspond to the edges of the support of X.

Besides, it is reasonable to assume that levels farther away from 50% are more

difficult to estimate.

As an error metric ε, we took the absolute difference between the quantile

estimator and its actual value. We show this error as a percentage of the variation

range of the test function. Since X is not bounded, the range is defined as the

difference between the 0.05 and 0.95 quantiles of g(X).

To assess the robustness of our approach, the experiments were run ten times

for each case, starting with a different initial set of observations. The evolution of

the estimators (average, lowest and highest error metric values over the ten runs)

is given in Figure 6. Table 1 shows the final precision metric of all alternatives.

We see that, except for 4D, α = 0.97, and Jprob, on average both strategies

provide estimates with less than 2% error after approximately 30 iterations (for
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Figure 6. Evolution of the quantile estimates using Jprob, JVar, random search (RS)
or Oakley’s two-step approach, for the 4D and 6D problems and several quantile levels.
The lines show the average error. Note that since Oakley’s approach is not sequential,
the corresponding lines represent the estimates based on 90 observations.

a total of 60 function evaluations), which plainly justifies the use of GP models

and sequential strategies in a constrained budget context.

For d = 4, α = 0.05, both methods seem to converge to the actual quantile.

For d = 4, α = 0.97, Jprob performs surprisingly poorly; we conjecture that

a more exploratory behavior (compared to JVar) hinders its performance here.

JVar reaches a good estimate quickly with less that 1% error, yet seems to then

converge slowly to the exact solution. This might be explained by the relative
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Table 1. Average error metrics based on 90 observations.

Pb Random search Oakley Jprob JVar

d = 4, α = 0.05 2.23 1.99 0.69 0.35
d = 4, α = 0.97 0.85 0.78 1.72 0.23
d = 6, α = 0.15 0.83 0.64 0.36 0.56
d = 6, α = 0.97 1.86 3.47 1.08 1.08

mismatch between the GP model and the test function.

For d = 6, α = 0.15, both approaches reach consistently less than 1% er-

ror. However, they only moderately outperform the random search strategy here.

This might indicate that for central quantile values, less gain can be achieved by

sequential strategies, as a large region of the design space needs to be learned to

characterize the quantile, making space-filling strategies, for instance, competi-

tive.

For d = 6, α = 0.97, both approaches largely outperform random search, yet

after a first few very efficient steps seem to converge only slowly to the actual

quantile.

From Table 1, we see that both SUR approaches substantially outperform

random search and Oakley’s two-step approach, except Jprob for d = 4, α = 0.97.

Jprob is the best approach for d = 6, α = 0.15, both SUR strategies perform

silimiary for d = 6, α = 0.97, and JVar is best for the two other problems.

Interestingly, Oakley’s approach is outperformed by random search for d = 6, α =

0.97. This can be explained by the difficulty of the approach, acknowledged by

the authors, when the quantile is defined by several distinct regions.

In general, those experiments show the ability of our approach to handle

multi-modal black-box functions, with input space dimensions typical of GP-

based approaches.

5. Concluding Comments

We have proposed two sequential Bayesian strategies for quantile estimation.

They rely on the analytical update formula for the GP-based estimator, obtained

thanks to the particular form of the GP equations and the introduction of the

quantile point concept. Two criteria have then been proposed for which closed-

form expression have been derived, hence avoiding the use of computationally

intensive conditional simulations. Numerical experiments in dimensions two to

six have demonstrated the potential of both approaches.

Some limitations of the proposed method call for future improvements. The



870 LABOPIN-RICHARD AND PICHENY

strategies rely on the set XMC, whose size is in practice limited by the compu-

tational resources to a couple of thousands at most. This may hinder the use of

our method for extreme quantile estimation, or for highly multi-modal functions.

Combining adaptive sampling strategies or subset selection methods with our

approaches may prove useful in this context.

Accounting for the GP model error (due to an inaccurate estimation of its

hyper-parameters or a poor choice of kernel) is also an important task which

could greatly improve the efficiency and robustness of the approach. A fully

Bayesian approach as in Kennedy and O’Hagan (2001); Gramacy and Lee (2008)

could address this issue, yet at the price of additional computational expense.

Supplementary Materials

The R code implementing the methods described in this article is provided

as supplementary material.
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Appendix

A. Proof of proposition 2

We denote by En and Pn the expectation and the probability conditionally

on the event An. Starting from (3.11), we have

E (Γn+1(xn+1)) = E
[∫

X
P(G(x) ≥ qn+1)|An+1)dx

]
=

∫
X
E
[
En
[
1G(x)≥qn+1(xn+1)|Gn+1

]]
dx

=

∫
X
En
[
1G(x)≥qn+1(xn+1)

]
dx

=

∫
X
Pn(G(x) ≥ qn+1(xn+1))dx.

We get then that

Jprob
n (xn+1) =

∣∣∣∣∫
X
Pn(G(x) ≥ qn+1(xn+1))dx− (1− α)

∣∣∣∣ .
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To get a closed form of our criterion, we have to develop Pn(G(x) ≥
qn+1(xn+1)). Writing Z = Gn+1 −mn(xn+1)/sn(xn+1)

2, we have

En
(
1G(x)≥qn+1(xn+1)

)
=

L∑
i=0

En
[
1G(x)≥mn+1(x

q
n+1(Bi)1Z∈Bi

]
=

L−1∑
i=1

(
Pn
[
G(x) ≥ mn+1(x

q
n+1(Bi)) ∩ Z ≤ Ii+1

]
− Pn

[
G(x) ≥ mn+1(x

q
n+1(Bi)) ∩ Z ≤ Ii

)]
)

+ Pn(G(x) ≥ mn+1(x
q
n+1(B1)) ∩ Z ≤ I1)

+ Pn(G(x) ≥ mn+1(x
q
n+1(BL)) ∩ Z ≥ IL) .

Now,

Tn : = Pn
(
G(x) ≥ mn+1(x

q
n+1(Bi)) ∩ Z ≤ Ii

)
= Pn

(
mn+1(x

q
n+1(Bi))−G(x) ≤ 0 ∩ Z ≤ Ii

)
,

is the CDF of the couple (mn+1(x
q
n+1(Bi)−G(x)), Z) := (W,Z) , at point (0, Ii).

This random vector, conditionally on An is Gaussian. We denote by M and R

its mean vector and covariance matrix, respectively.

Thanks to (3.2), we have

mn+1(x
q
n+1(Bi)) = mn(xqn+1(Bi))− kn(xqn+1(Bi),xn+1)Z , (A.1)

which gives

M =

(
mn(xqn+1(Bi))−mn(x)

0

)
, R =

(
Var(W ) Cov(W,Z)

Cov(W,Z) Var(Z)

)
,

Var(W ) := σW = sn(x)2 +
kn(xqn+1(Bi),xn+1)

2

sn(xn+1)2

− 2
kn(xqn+1(Bi),xn+1)kn(x,xn+1)

sn(xn+1)2
,

Cov(W,Z) =
kn(xqn+1(Bi),xn+1)− kn(x,xn+1)

sn(xn+1)2
and Var(Z) =

1

sn(xn+1)2
.

We can conclude by centering and normalizing that

Tn = Pn (W ≤ 0 ∩ Z ≤ Ii)

= P

(
W − (mn(xqn+1(Bi))−mn(x))√

V ar(W )
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≤
mn(x)−mn(xqn+1(Bi))√

V ar(W )
∩ sn(xn+1)Z ≤ Iisn(xn+1)

)
:= P

(
S ≤ ein(xn+1;x; xqn+1(Bi)) ∩ T ≤ f

i
n(xn+1; Ii)

)
,

where (S, T ) is a Gaussian random vector of law N

(
0,

(
1 rin
rin 1

) )
with

rin := rn(xn+1;x; xqn+1(Bi)) =
kn(xqn+1(Bi),xn+1)− kn(x,xn+1)√

Var(W )sn(xn+1)
.

ein(xn+1;x; xqn+1(Bi)) =
mn(x)−mn(xqn+1(Bi))√

Var(W )
,

and

f in(xn+1; Ii) = Iisn(xn+1).

Finally, we get for 1 ≤ i ≤ L,

Pn(G(x) ≥ mn+1(x
q
n+1(Bi)) ∩ Z ≤ Ii)

= Φrin

(
ein(xn+1;x; xqn+1(Bi)), f

i
n(xn+1; Ii)

)
,

where we denote by Φr the cumulative distribution function of the centered

Gaussian random vector of covariance matrix

(
1 r

r 1

)
.

Similarly, for 0 ≤ i ≤ L,

Pn(G(x) ≥ mn+1(x
q
n+1(Bi)) ∩ Z ≤ Ii+1)

= Φrin

(
ein(xn+1;x; xqn+1(Bi)), f

i
n(xn+1; Ii+1)

)
,

Pn(G(x) ≥ mn+1(x
q
n+1(Bi)) ∩ Z ≥ IL)

= Φ−rin
(
ein(xn+1;x; xqn+1(Bi)),−f

i
n(xn+1; IL)

)
.

B. Proof of proposition 3

Lemma 1. Let E1, . . . En be mutually exclusive and exhaustive events. Then,

for a random variable U ,

V ar(U) =

n∑
i=1

Var(U | Ei)P(Ei) +

n∑
i=1

E(U | Ei)2(1− P(Ei))P(Ei)

− 2

n∑
i=2

i−1∑
j=1

E(U | Ei)P(Ei)E(U | Ej)P(Ej) .

In our case, we want to compute Var(qn+1(xn+1)|An) := Varn(qn+1(xn+1)).

Since the events {Z ∈ Bi}1≤i≤L are mutually exclusive and exhaustive, we can
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apply Lemma 1,

Varn(qn+1(xn+1)) =

L∑
i=1

Varn(mn+1(x
q
n+1(Bi))|Z ∈ Bi)Pn(Z ∈ Bi)

+

L∑
i=1

En
(
mn+1(x

q
n+1(Bi))|Z ∈ Bi

)2
(1− Pn(Z ∈ Bi))Pn(Z ∈ Bi)

− 2

L∑
i=2

i−1∑
j=1

En
(
mn+1(x

q
n+1(Bi))|Z ∈ Bi

)
Pn (Z ∈ Bi)

× En
(
mn+1(x

q
n+1(Bj))|Z ∈ Bj

)
Pn (Z ∈ Bj) .

Thanks to (A.1), we get

mn+1(x
q
n+1(Bi)) = mn(xqn+1(Bi))− kn(xqn+1(Bi),xn+1)Z .

Then,

Varn(qn+1(xn+1)) =

n∑
i=1

kn(xqn+1(Bi),xn+1)
2 Varn(Z|Z ∈ Bi)Pn(Z ∈ Bi)

+

L∑
i=1

(
mn(xqn+1(Bi))− kn(xqn+1(Bi),xn+1)En (Z|Z ∈ Bi)

)2
× (1− Pn(Z ∈ Bi))Pn(Z ∈ Bi)

− 2

L∑
i=2

i−1∑
j=1

(
mn(xqn+1(Bi))− kn(xqn+1(Bj),xn+1)

En (Z|Z ∈ Bj))Pn (Z ∈ Bi)
×
(
mn(xqn+1(Bj))− kn(xqn+1(Bj),xn+1)En (Z|Z ∈ Bj)

)
Pn (Z ∈ Bj) .

Since Z is a centered Gaussian random variable of variance sn(xn+1)
−2 we

have

Pi := Pn(Z ∈ Bi) = Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii) .

To conclude, we have to find analytical forms for the quantities Var

(Z | Ii < Z < Ii+1) and E (Z | Ii < Z < Ii+1). To do so, we use a result on trun-

cated Gaussian random variable, see Tallis (1961).

Lemma 2. If U is a real random variable such that U ∼ N (µ, σ), and u and v
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are two real numbers, then

E(U |u < U < v) = µ+
φ ((v − µ)/σ)− φ ((u− µ)/σ)

Φ ((v − µ)/σ)− Φ ((w − µ)/σ)
σ ,

Var(U |u < U < v) = σ2
[
1 +

(u− µ)/σφ ((u− µ)/σ)− (v − µ)/σφ ((v − µ)/σ)

Φ ((v − µ)/σ)− Φ ((u− µ)/σ)

−
(
φ ((u− µ)/σ)− φ ((v − µ)/σ)

Φ ((v − µ)/σ)− Φ ((u− µ)/σ)

)2
]
.

We apply Lemma 2 with U = Z, u = Ii and v = Ii+1, and conclude that

E(sn(xn+1), Ii+1, Ii)

:= En(Z|Z ∈ Bi) =
φ(sn(xn+1)Ii)− φ(sn(xn+1)Ii+1)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

1

sn(xn+1)
,

V (sn(xn+1), Ii+1, Ii) := Varn(Z|Z ∈ Bi)

=
1

sn(xn+1)2

[
1 +

Iisn(xn+1)φ(sn(xn+1)Ii)− sn(xn+1)Ii+1φ(sn(xn+1)Ii)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

−
(
φ(sn(xn+1)Ii)− φ(sn(xn+1)Ii+1)

Φ(sn(xn+1)Ii+1)− Φ(sn(xn+1)Ii)

)2
]
.

C. Test functions

The two-dimensional Branin function is

g(x) =

(
x̄2 −

5.1x̄21
4π2

+
5x̄1
π
− 6

)2

+

(
10− 10

8π

)
cos(x̄1) + 10 (C.1)

with: x̄1 = 15× x1 − 5, x̄2 = 15× x2.
The four-dimensional Hartman function is

g(x) =
−1

1.94

2.58 +

4∑
i=1

Ci exp

− 4∑
j=1

aji (xj − pji)2
 , (C.2)

with

C =


1.0

1.2

3.0

3.2

 , a =


10.00 0.05 3.00 17.00

3.00 10.00 3.50 8.00

17.00 17.00 1.70 0.05

3.50 0.10 10.00 10.00

 ,

p =


0.1312 0.2329 0.2348 0.4047

0.1696 0.4135 0.1451 0.8828

0.5569 0.8307 0.3522 0.8732

0.0124 0.3736 0.2883 0.5743

 .
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The six-dimensional Ackley function is

g(x) = 20 + exp(1)− 20 exp

−0.2

√√√√1

4

4∑
i=1

x2i

− exp

[
1

4

4∑
i=1

cos (2πxi)

]
(C.3)

D. Enumerating quantile points

We provide an efficient algorithm for finding the quantile points, as described

in Section 3.1. This amounts to finding all the indices of the empirical quantiles

of b + az, when b and a are fixed vectors of size l and z is a scalar that takes all

values in R.

An intuitive algorithm computes all the intersection points defined by all the

combinations of bu − bv/av − au, then evaluates b + az with z taking the value

at the middle of the interval defined by two consecutive intersection points, then

extracts the index of the quantile. However, this requires ordering (l(l−1))/2+1

times vectors of size l, which is computationally intensive when l is large.

We propose the following algorithm, that avoids considering all the inter-

section points and does not require extracting vector quantiles, but only their

minimal values. Its principle is, given the line index corresponding to the quantile

for a value of z, to search which line intersects it first as z increases. The algo-

rithm starts at z = −∞ and the initial quantile line corresponds to the quantile

of a (the values of b being then negligible). The algorithm main loop stops when

there are no more intersections (z = +∞). The algorithm is given in pseudo-code

in Algorithm 1.

Algorithm 1 Pseudo-code for finding quantile points.

1: Set: z = −∞, j = index of the α−quantile of a, J = j, Z = z
2: while There exists k such that bk − bj/aj − ak > z do
3: Find k = arg min1≤r≤l,r 6=j br − bj/aj − ar such that bk − bj/aj − ak > z
4: Update: z = bk − bj/aj − ak, j = k
5: Save: Z = [Z, z], J = [J, j]
6: end while
7: Return: Z (critical intersection points), J (indices of all quantile points).
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