Controlling Correlations in Sliced Latin Hypercube Designs

Wells Fargo and The University of Wisconsin – Madison

Supplementary Material

S1 Proof of Proposition 1

Proof. By definition, $\mathbf{b}^1, \ldots, \mathbf{b}^{t+1}$ are mutually uncorrelated. Thus,

$$\mathbf{x}^{\ell} \leftarrow \mathtt{takeout}(\mathbf{b}^1, \dots, \mathbf{b}^{t+1}, \mathbf{x}^{\ell})$$
 (S1.1)

in Algorithm 2 is equivalent to taking all the following steps consecutively

$$\mathbf{x}^\ell \leftarrow \mathtt{takeout}(\mathbf{b}^1, \mathbf{x}^\ell)$$
 \dots $\mathbf{x}^\ell \leftarrow \mathtt{takeout}(\mathbf{b}^{t+1}, \mathbf{x}^\ell).$

The above t + 1 updates are equivalent to

$$\mathbf{x}^{\ell} \leftarrow \mathbf{x}^{\ell} - .5 - \sum_{s=1}^{t+1} (\mathbf{b}^s - \bar{\mathbf{b}}^s) \rho(\mathbf{b}^s, \mathbf{x}^{\ell}) \sigma(\mathbf{x}^{\ell}) / \sigma(\mathbf{b}^s), \qquad (S1.2)$$

where $\rho(\mathbf{b}^s, \mathbf{x}^{\ell})$ is the sample correlation between \mathbf{b}^s and \mathbf{x}^{ℓ} , and $\sigma(\mathbf{x}^{\ell})$ and $\sigma(\mathbf{b}^s)$ are the sample standard deviation in \mathbf{x}^{ℓ} and \mathbf{b}^s , respectively.

As $\mathbf{b}_{(r)}^s = \bar{\mathbf{x}}_{(r)}^k$ if $s \neq r$ and $\mathbf{b}_{(r)}^s = \mathbf{x}_{(r)}^k$ otherwise for $s = 1, \ldots, t$, note

that

$$\rho(\mathbf{b}^s, \mathbf{x}^\ell) \sigma(\mathbf{x}^\ell) / \sigma(\mathbf{b}^s) = \rho(\mathbf{x}^k_{(s)}, \mathbf{x}^\ell_{(s)}) \sigma(\mathbf{x}^\ell_{(s)}) / \sigma(\mathbf{x}^k_{(s)}), \qquad (S1.3)$$

and

$$\mathbf{b}_{(r)}^{s} - \bar{\mathbf{b}}_{(r)}^{s} = \begin{cases} \mathbf{x}_{(r)}^{k} - \bar{\mathbf{x}}_{(r)}^{k}, & \text{if } s = r; \\ 0, & \text{otherwise.} \end{cases}$$
(S1.4)

It is straightforward to show

$$\rho(\mathbf{b}^{t+1}, \mathbf{x}^{\ell})\sigma(\mathbf{x}^{\ell})/\sigma(\mathbf{b}^{t+1}) = 1$$
(S1.5)

and

$$\mathbf{b}_{(r)}^{t+1} - \bar{\mathbf{b}}_{(r)}^{t+1} = \bar{\mathbf{x}}_{(r)}^{\ell} - .5$$
(S1.6)

for r = 1, ..., t.

By substituting (S1.3)-(S1.6) into (S1.2), we have for each r, (S1.1) is equivalent to

$$\mathbf{x}_{(r)}^\ell \leftarrow \mathbf{x}_{(r)}^\ell - \bar{\mathbf{x}}_{(r)}^\ell - (\mathbf{x}_{(r)}^k - \bar{\mathbf{x}}_{(r)}^k) \rho(\mathbf{x}_{(r)}^k, \mathbf{x}_{(r)}^\ell) \sigma(\mathbf{x}_{(r)}^\ell) / \sigma(\mathbf{x}_{(r)}^k),$$

which is the outcome of $\mathbf{x}_{(r)}^{\ell} \leftarrow \mathtt{takeout}(\mathbf{x}_{(r)}^{k}, \mathbf{x}_{(r)}^{\ell}).$

S2 Example of using Algorithm 2

Let n = 5, p = 2 and t = 2. In the first step, generate a random sliced Latin hypercube design as

with $\mathbf{X}_{(1)}$ and $\mathbf{X}_{(2)}$ separated by the vertical line. The corresponding \mathbf{A} and

 $\boldsymbol{\Theta}$ are

and

In the first forward step, \mathbf{b}^1 , \mathbf{b}^2 and \mathbf{b}^3 are given as

$$\mathbf{b}^{1} = (.45 \quad .75 \quad .95 \quad .15 \quad .25 \mid .51 \quad .51 \quad .51 \quad .51 \quad .51)^{T}$$
$$\mathbf{b}^{2} = (.49 \quad .49 \quad .49 \quad .49 \quad .49 \mid .85 \quad .65 \quad .35 \quad .55 \quad .05)^{T}$$

 $\mathbf{b}^3 = (.01 \ .01 \ .01 \ .01 \ .01 | -.01 \ -.01 \ -.01 \ -.01 \ -.01 \ -.01 \)^T$ where $.51 = \bar{\mathbf{x}}^2_{(1)}, .49 = \bar{\mathbf{x}}^2_{(2)}, -0.1 = .5 - \bar{\mathbf{x}}^2_{(1)}$ and $0.1 = .5 - \bar{\mathbf{x}}^2_{(2)}$, respectively.

The residual vector \mathbf{x}^1 after taking out \mathbf{b}^1 , \mathbf{b}^2 and \mathbf{b}^3 is set to be

 $(.3217 \quad .113 \quad -.226 \quad -.370 \quad .161 \mid -.152 \quad .3215 \quad .081 \quad -.192 \quad -.059)^T,$

before the rank function.

Notice that if we directly rank \mathbf{x}^1 , we have

$$\operatorname{rank}(\mathbf{x}^1) = (10 \ 7 \ 2 \ 1 \ 8 \mid 4 \ 9 \ 6 \ 3 \ 5)^T$$

which cannot produce a sliced Latin hypercube design. Instead, we should first rank $\mathbf{x}_{(1)}^1$ and $\mathbf{x}_{(2)}^1$ within each slice to obtain new \mathbf{a}^1 as

$$\mathbf{a}^1 = (5 \ 3 \ 2 \ 1 \ 4 \mid 2 \ 5 \ 4 \ 1 \ 3)^T.$$

For j = 1, we find the 4th and 9th values in \mathbf{a}^1 are 1. As a result, $\mathbf{x}^1(j) = (-.370 \ -.192)^T$ and $\boldsymbol{\theta}^1(j) = \operatorname{rank}(\mathbf{x}^1(j)) = (1 \ 2)^T$. Repeating the same procedure for j = 2, ..., 5 to update $\boldsymbol{\theta}^1$ as

$$\boldsymbol{\theta}^1 = (2 \ 2 \ 1 \ 1 \ 2 \ 2 \ 1 \ 1 \ 2 \ 1)^T.$$

The backward procedure can be carried out in the same way to update \mathbf{x}^2 . The updated \mathbf{X} after a complete alteration is given by

In this example, \mathbf{x}^2 cannot be updated as the algorithm converges after the first forward procedure.