Controlling Correlations in Sliced Latin Hypercube Designs

Wells Fargo and The University of Wisconsin - Madison

Supplementary Material

S1 Proof of Proposition 1

Proof. By definition, $\mathbf{b}^{1}, \ldots, \mathbf{b}^{t+1}$ are mutually uncorrelated. Thus,

$$
\begin{equation*}
\mathbf{x}^{\ell} \leftarrow \operatorname{takeout}\left(\mathbf{b}^{1}, \ldots, \mathbf{b}^{t+1}, \mathbf{x}^{\ell}\right) \tag{S1.1}
\end{equation*}
$$

in Algorithm 2 is equivalent to taking all the following steps consecutively

$$
\begin{gathered}
\mathrm{x}^{\ell} \leftarrow \operatorname{takeout}\left(\mathrm{b}^{1}, \mathrm{x}^{\ell}\right) \\
\ldots \\
\mathrm{x}^{\ell} \leftarrow \operatorname{takeout}\left(\mathrm{b}^{t+1}, \mathrm{x}^{\ell}\right)
\end{gathered}
$$

The above $t+1$ updates are equivalent to

$$
\begin{equation*}
\mathbf{x}^{\ell} \leftarrow \mathbf{x}^{\ell}-.5-\sum_{s=1}^{t+1}\left(\mathbf{b}^{s}-\overline{\mathbf{b}}^{s}\right) \rho\left(\mathbf{b}^{s}, \mathbf{x}^{\ell}\right) \sigma\left(\mathbf{x}^{\ell}\right) / \sigma\left(\mathbf{b}^{s}\right) \tag{S1.2}
\end{equation*}
$$

where $\rho\left(\mathbf{b}^{s}, \mathbf{x}^{\ell}\right)$ is the sample correlation between \mathbf{b}^{s} and \mathbf{x}^{ℓ}, and $\sigma\left(\mathbf{x}^{\ell}\right)$ and $\sigma\left(\mathbf{b}^{s}\right)$ are the sample standard deviation in \mathbf{x}^{ℓ} and \mathbf{b}^{s}, respectively.

As $\mathbf{b}_{(r)}^{s}=\overline{\mathbf{x}}_{(r)}^{k}$ if $s \neq r$ and $\mathbf{b}_{(r)}^{s}=\mathbf{x}_{(r)}^{k}$ otherwise for $s=1, \ldots, t$, note
that

$$
\begin{equation*}
\rho\left(\mathbf{b}^{s}, \mathbf{x}^{\ell}\right) \sigma\left(\mathbf{x}^{\ell}\right) / \sigma\left(\mathbf{b}^{s}\right)=\rho\left(\mathbf{x}_{(s)}^{k}, \mathbf{x}_{(s)}^{\ell}\right) \sigma\left(\mathbf{x}_{(s)}^{\ell}\right) / \sigma\left(\mathbf{x}_{(s)}^{k}\right), \tag{S1.3}
\end{equation*}
$$

and

$$
\mathbf{b}_{(r)}^{s}-\overline{\mathbf{b}}_{(r)}^{s}= \begin{cases}\mathbf{x}_{(r)}^{k}-\overline{\mathbf{x}}_{(r)}^{k}, & \text { if } s=r \tag{S1.4}\\ 0, & \text { otherwise }\end{cases}
$$

It is straightforward to show

$$
\begin{equation*}
\rho\left(\mathbf{b}^{t+1}, \mathbf{x}^{\ell}\right) \sigma\left(\mathbf{x}^{\ell}\right) / \sigma\left(\mathbf{b}^{t+1}\right)=1 \tag{S1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{b}_{(r)}^{t+1}-\overline{\mathbf{b}}_{(r)}^{t+1}=\overline{\mathbf{x}}_{(r)}^{\ell}-.5 \tag{S1.6}
\end{equation*}
$$

for $r=1, \ldots, t$.
By substituting (ST.3)-(SL.6) into (SL.2), we have for each r, (ST..]) is equivalent to

$$
\mathbf{x}_{(r)}^{\ell} \leftarrow \mathbf{x}_{(r)}^{\ell}-\overline{\mathbf{x}}_{(r)}^{\ell}-\left(\mathbf{x}_{(r)}^{k}-\overline{\mathbf{x}}_{(r)}^{k}\right) \rho\left(\mathbf{x}_{(r)}^{k}, \mathbf{x}_{(r)}^{\ell}\right) \sigma\left(\mathbf{x}_{(r)}^{\ell}\right) / \sigma\left(\mathbf{x}_{(r)}^{k}\right)
$$

which is the outcome of $\mathbf{x}_{(r)}^{\ell} \leftarrow \operatorname{takeout}\left(\mathbf{x}_{(r)}^{k}, \mathbf{x}_{(r)}^{\ell}\right)$.

S2 Example of using Algorithm 2

Let $n=5, p=2$ and $t=2$. In the first step, generate a random sliced Latin hypercube design as

$$
\mathbf{X}=\left(\begin{array}{lllll|lllll}
.85 & .55 & .15 & .25 & .75 & .65 & .95 & .45 & .35 & .05 \\
.45 & .75 & .95 & .15 & .25 & .85 & .65 & .35 & .55 & .05
\end{array}\right)^{T}
$$

with $\mathbf{X}_{(1)}$ and $\mathbf{X}_{(2)}$ separated by the vertical line. The corresponding \mathbf{A} and Θ are

$$
\mathbf{A}=\left(\begin{array}{lllll|lllll}
5 & 3 & 1 & 2 & 4 & 4 & 5 & 3 & 2 & 1 \\
3 & 4 & 5 & 1 & 2 & 5 & 4 & 2 & 3 & 1
\end{array}\right)^{T}
$$

and

$$
\boldsymbol{\theta}=\left(\begin{array}{lllll|lllll}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
1 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 1
\end{array}\right)^{T}
$$

In the first forward step, $\mathbf{b}^{1}, \mathbf{b}^{2}$ and \mathbf{b}^{3} are given as

$$
\left.\begin{array}{rl}
\mathbf{b}^{1}=\left(\begin{array}{llllllllll}
.45 & .75 & .95 & .15 & .25 \mid .51 & .51 & .51 & .51 & .51
\end{array}\right)^{T} \\
\mathbf{b}^{2}=\left(\begin{array}{lllll|llll}
.49 & .49 & .49 & .49 & .49 \mid .85 & .65 & .35 & .55 & .05
\end{array}\right)^{T} \\
\mathbf{b}^{3}=\left(\begin{array}{llllllll}
.01 & .01 & .01 & .01 & .01 \mid-.01 & -.01 & -.01 & -.01
\end{array}-.01\right.
\end{array}\right)^{T} .
$$

where $.51=\overline{\mathbf{x}}_{(1)}^{2}, .49=\overline{\mathbf{x}}_{(2)}^{2},-0.1=.5-\overline{\mathbf{x}}_{(1)}^{2}$ and $0.1=.5-\overline{\mathbf{x}}_{(2)}^{2}$, respectively.
The residual vector \mathbf{x}^{1} after taking out $\mathbf{b}^{1}, \mathbf{b}^{2}$ and \mathbf{b}^{3} is set to be $\left(\begin{array}{lllllllll}.3217 & .113 & -.226 & -.370 & .161 \mid-.152 & .3215 & .081 & -.192 & -.059\end{array}\right)^{T}$,
before the rank function.

Notice that if we directly rank \mathbf{x}^{1}, we have

$$
\operatorname{rank}\left(\mathbf{x}^{1}\right)=\left(\begin{array}{lllll|lllll}
10 & 7 & 2 & 1 & 8 \mid 4 & 9 & 6 & 3 & 5
\end{array}\right)^{T}
$$

which cannot produce a sliced Latin hypercube design. Instead, we should first rank $\mathbf{x}_{(1)}^{1}$ and $\mathbf{x}_{(2)}^{1}$ within each slice to obtain new \mathbf{a}^{1} as

$$
\mathbf{a}^{1}=\left(\begin{array}{lllllllll}
5 & 3 & 2 & 1 & 4 \mid 2 & 5 & 4 & 1 & 3
\end{array}\right)^{T} .
$$

For $j=1$, we find the 4 th and 9 th values in \mathbf{a}^{1} are 1 . As a result, $\mathbf{x}^{1}(j)=$ $\left(\begin{array}{ll}-.370 & -.192\end{array}\right)^{T}$ and $\boldsymbol{\theta}^{1}(j)=\operatorname{rank}\left(\mathbf{x}^{1}(j)\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$. Repeating the same procedure for $j=2, \ldots, 5$ to update $\boldsymbol{\theta}^{1}$ as

$$
\boldsymbol{\theta}^{1}=\left(\begin{array}{lllllllll}
2 & 2 & 1 & 1 & 2 \mid 2 & 1 & 1 & 2 & 1
\end{array}\right)^{T} .
$$

The backward procedure can be carried out in the same way to update \mathbf{x}^{2}. The updated \mathbf{X} after a complete alteration is given by

$$
\mathbf{X}=\left(\begin{array}{lllll|lllll}
.95 & .55 & .25 & .05 & .75 & .35 & .85 & .65 & .15 & .45 \\
.45 & .75 & .95 & .15 & .25 & .85 & .65 & .35 & .55 & .05
\end{array}\right)^{T}
$$

In this example, \mathbf{x}^{2} cannot be updated as the algorithm converges after the first forward procedure.

