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Abstract: Sensitivity analysis quantifies the uncertainty in an input-output system

by measuring the influence of the inputs on the output. This article presents a new

sensitivity index by permuting the observations of an input. The proposed index

is related to a statistical problem of testing the significance of the input, and thus

possesses some frequentist properties that the current sensitivity analysis methods

do not have. Numerical simulations and an application are presented to illustrate

the proposed method.
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1. Introduction

Sensitivity analysis studies how the uncertainty in the output of an input-

output system can be apportioned to different inputs (Saltelli et al. (2008)). It

can be useful for a range of purposes, including understanding of the influence

of each input parameter on the output (or response), selecting important inputs,

and simplifying the input-output model (Pannell (1997)). In this sense, sensi-

tivity analysis techniques have important applications in such fields as science,

engineering, and econometrics. A wealth of sensitivity analysis methods have

been proposed in the literature with different focuses. They can be grouped into

two classes (Sullivan (2015)): local sensitivity analysis, which studies the sensi-

tivity of the response to variations in its inputs at or near a particular base point,

as exemplified by the derivative-based methods (Griewank and Walther (2008));

global sensitivity analysis, which studies the “average” sensitivity of the response

to variations of its inputs across the domain. Here we focus on global sensitiv-

ity analysis. Global sensitivity indices include regression coefficients (Chatterjee

and Hadi (2009)), McDiarmid diameters (McDiarmid (1989)), and Sobol’ indices

(Sobol’ (1993)), etc. Based on the functional ANOVA decomposition, the Sobol’

index measures the total effects of an input on the response. It is applicable

to general nonlinear systems, and can be computed by Monte Carlo methods
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(Saltelli et al. (2010)). The Sobol’ index has been well received in applications

(Saltelli et al. (2008)).

A statistical model with some factors (or covariates) and a response can

be viewed as a special input-output system. Statisticians often use the term

“significance” to define important factors instead of any sensitivity index. A p-

value can be interpreted as the type-I error of a test, and it is closely related to

certain sensitivity indices in some cases. For example, under linear models, the F -

test p-value is commonly used to select important factors (Miller (2002)) like such

sensitivity indices as the least squares estimator of the corresponding coefficient.

Unlike the coefficient estimator, the p-value takes estimation uncertainty into

account.

A permutation test (Pitman (1937)) calculates all possible values of the test

statistic under rearrangements of the labels on the observed data points, and

exactly controls the type-I error under certain exchangeability conditions (Pe-

sarin and Salmaso (2010)). Here we propose a permutation-based sensitivity

index, called the q-value, to complement current methods. A q-value can be con-

structed by permuting the observations corresponding to the investigated input

in a goodness-of-fit statistic. Compared to existing sensitivity indices, its main

advantage is that, for many cases, it is a p-value for testing whether the effect

of a factor on the response exists, and thus has a clear statistical interpretation.

Specifically, it is a p-value of a permutation test when the observations corre-

sponding to the investigated input are random and their distributions possess a

certain exchangeability, but it can be used more broadly. For deterministic-input

linear models, we prove that the q-value based on the residuals can asymptoti-

cally control the type-I error under some regularity conditions. Theoretical and

numerical analysis is also presented to show the effectiveness of the q-value for

completely deterministic systems that do not contain any random term. Some

simulation results show that the q-value has similar performance as the Sobol’

index.

Other advantages of the proposed method include simplicity in implemen-

tation, and flexibility. The q-value is obtained by repeatedly computing the

goodness-of-fit statistic with permutated data; when it is not feasible to compute

it based on all permutations, Monte Carlo approximation performs well even

with a moderate number of permutations. For the specification of the goodness-

of-fit statistic, we focus on computer experiments (Santner, Williams and Notz

(2003)), and provide two classes of goodness-of-fit statistics to construct q-values.

To show its flexibility, we give extensions to partial sensitivity analysis and to



SENSITIVITY ANALYSIS USING PERMUTATIONS 819

sensitivity analysis for grouped inputs.

This article is organized as follows. Section 2 introduces the proposed q-

value and Section 3 discusses its theoretical properties. Section 4 presents two

extensions of the q-value. Section 5 discusses the construction of the q-value

for computer experiments. Section 6 reports on simulation results and Section

7 presents an application. We end the article with some discussion in Section

8. MATLAB codes and technical details, including all proofs, are given as online

supplementary materials.

2. The Sensitivity Index from Permutations

Consider an input-output system with inputs x1, . . . , xd ∈ R and output

y ∈ R,

y = fθ(x1, . . . , xd; ε), (2.1)

where θ is an unknown unknown parameter and ε is an unobservable random

error. If we have n input values x1, . . . ,xn, xi = (xi1, . . . , xid)′ for i = 1, . . . , n,

and the corresponding output values y = (y1, . . . , yn)′, we write the input matrix

(or design matrix) as

X = (xij)i=1,...,n, j=1,...,d = (z1, . . . , zd), (2.2)

where zj = (x1j , . . . , xnj)
′ for j = 1, . . . , d. Our purpose is to quantify the

influence of the jth input xj on the output y in (2.1) based on these data.

Without loss of generality, we only consider the first input x1 in the following.

Let Sn denote the set of all permutations of (1, . . . , n). Suppose that

T (X,y) = T (z1,Z2,y) (2.3)

is a goodness-of-fit statistic whose small values correspond to good fit of the

model, where Z2 = (z2, . . . , zd). If x1 has little influence on y, then the value of

T (z1,Z2,y) may be close to others in {T (zperm1,k ,Z2,y)}k=1,...,n!, where {zperm1,1 , . . . ,

zperm1,n! } = {(xi11, . . . , xin1)′ : (i1, . . . , in) ∈ Sn}. Otherwise, T (X,y) tends to take

small values among {T (zperm1,k ,Z2,y)}k=1,...,n!. Accordingly, define the q-value

q =
1

n!

n!∑
k=1

I
(
T (z1,Z2,y) > T (zperm1,k ,Z2,y)

)
(2.4)

as the sensitivity index of x1, where I is the indicator function.

The q-value is related to testing whether or not x1 has effect on the response

y. The null hypothesis is formulated as

H0 : x1 has no effect on y. (2.5)



820 XIONG ET AL.

In Section 3 we show some cases in which the q-value can serve as a p-value for

testing (2.5); this is the main advantage of the q-value over existing sensitivity

indices. In these cases, we say that x1 is significant if the q-value is less than a

given significance level α ∈ (0, 1).

Usually it is not feasible to compute (2.4) based on all the n! permutations.

We can then use the Monte Carlo method to approximate it by generating M

random permutations, which gives

qMC =
1

M

M∑
k=1

I
(
T (z1,Z2,y) > T (zr,perm1,k ,Z2,y)

)
, (2.6)

where {zr,perm1,1 , . . . , zr,perm1,M } are randomly drawn from {zperm1,1 , . . . , zperm1,n! }. Simple

derivations give E(qMC) = q and Var(qMC) = q(1 − q)/M . As is shown in our

simulations in Section 7, such an approximation performs satisfactorily even with

a moderate M .

3. Theoretical Properties of the q-value

3.1. Frequentist properties with a random input

Consider the case that the first column z1 of the input matrix X in (2.2) is

random. For making the notation clear, we use capital letters (Z1, . . . , Zn)′ to

denote this column. Here we show that the q-value is the p-value of a permutation

test (Pitman (1937)) for testing (2.5), and thus controls the type-I error exactly.

Two assumptions are needed.

Assumption 1. Under H0 at (2.5), the goodness-of-fit statistic T at (2.3) has

the form T = T (Z1, . . . , Zn; E′), where E = (E1, . . . , EL)′ denotes other random

terms in T .

Assumption 2. Under H0 at (2.5), for any permutation (i1, . . . , in) ∈ Sn, the

joint distribution of (Zi1 , . . . , Zin , E′) is identical to that of (Z1, . . . , Zn, E′).

Theorem 1. Suppose that H0 holds. Under Assumptions 1 and 2, for any α ∈
(0, 1), Pr(q < α) 6 α.

Remark 1. Suppose that (Z1, . . . , Zn)′ is independent of E. If the joint distri-

bution of (Z1, . . . , Zn)′ is exchangeable, then Assumption 2 holds. In addition,

if Z1, . . . , Zn are independently and identically distributed (i.i.d.) according to a

nondegenerate distribution, then their joint distribution is exchangeable.

Remark 2. Suppose that the randomness of T comes from the random design

X and random errors ε, where X and ε are independent. By Remark 1, simple
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random sampling and Latin hypercube sampling (McKay, Beckman and Conover

(1979)) satisfy Assumption 2.

3.2. Asymptotic frequentist properties with deterministic inputs under

linear models

In permutation tests, the data to be permuted are regarded as random, and

an exchangeability assumption like Assumption 2 is needed to guarantee the ex-

act control of the type-I error (Romano (1989); Welch (1990); Good (2005)). For

the q-value, the input values to be permuted may be deterministic and for such

cases, it does not possess exact frequentist properties. However, this subsection

provides an interesting result that for linear models with deterministic inputs,

the q-value possesses asymptotic frequentist properties under some regularity

conditions. Hence, it can be viewed as a p-value from a generalized permutation

test.

Consider the linear model

y = β0 + β1x1 + · · ·+ βdxd + ε, (3.1)

where β0, β1, . . . , βd ∈ R are unknown parameters and ε is zero-mean random

error. Using the data at n points, we have the matrix form

y = Xβ + ε, (3.2)

where β = (β1, . . . , βd)′, ε = (ε1, . . . , εn)′, and the input matrix X =

(xij)i=1,...,n,j=1,...,d = (z1, . . . , zd) is standardized so that for j = 1, . . . , d,
n∑

i=1

xij = 0,

n∑
i=1

x2ij = n. (3.3)

Here we discuss the asymptotics for fixed d and X of full column rank.

In this case the null hypothesis (2.5) reduces to

H0 : β1 = 0. (3.4)

The goodness-of-fit statistic for constructing the q-value in (2.4) is

T = ‖y −Xβ̂H0
‖2 − ‖y −Xβ̂‖2, (3.5)

where β̂H0
and β̂ are least squares estimators under H0 and in Rd, respec-

tively, and ‖ · ‖ denotes the Euclidean norm. Let Z2 = (z2, . . . , zd) and P2 =

Z2(Z
′
2Z2)

−1Z′2.

Lemma 1. Under H0, T in (3.5) can be written as T =
[
z′1(In −P2)y)

]2
/(n−

z′1P2z1) =
[
z′1(In −P2)ε)

]2
/(n− z′1P2z1).
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Remark 3. In some cases, X′X may become singular when permutating z1.

By Lemma 1, we permute z1 in
[
z′1(In −P2)y)

]2
/(n − z′1P2z1) to compute the

q-value in (2.4), and this avoids matrix inversion.

To discuss the asymptotic properties of the q-value when the input matrix

X is deterministic, we need some conditions.

Assumption 3. The random errors ε1, . . . , εn are i.i.d. nondegenerate random

variables with E ε1 = 0 and E|ε1|2 <∞.

Assumption 4. The random errors ε1, . . . , εn are i.i.d. ∼ N(0, σ2) with σ2 > 0.

Assumption 5. As n→∞, max16i6n x
2
i1/n = o(1).

Assumption 6. For any fixed r = 3, 4, . . .,
∑n

i=1 x
r
i1/n = O(1).

Let the random vector ηn, independent of ε, be uniformly distributed on

{(xi11, . . . , xin1)′ : (i1, . . . , in) ∈ Sn}. The q-value based on T in (3.5) for testing

H0 in (3.4) can then be written as

q = Pr
(
T (z1,Z2,y) > T (ηn,Z2,y) | y

)
= Pr

([
z′1(In −P2)ε

]2
(n− z′1P2z1)

>
(e′nηn)2

(n− η′nP2ηn)
| ε

)
, (3.6)

where

en = (en1, . . . , enn)′ = (In −P2)ε. (3.7)

Assumption 7. As n → ∞, n/λmin(Z′2Z2) = O(1), where λmin(·) denotes the

smallest eigenvalue of a matrix.

Theorem 2. Suppose Assumption 7 holds. If either (I) Assumptions 3 and 6

hold, or (II) Assumptions 4 and 5 hold, then the distribution of (e′nηn)2/
(
σ2(n−

η′nP2ηn)
)
, conditional on ε, converges to χ2

1 in distribution as n→∞ a.s.

Assumption 8. As n → ∞, max16i6n v
2
ni/(n − z′1P2z1) = o(1), where vn =

(vn1, . . . , vnn)′ = (In −P2)z1.

Remark 4. If X′X/n→ a positive definite matrix and max16i6n x′ixi/n = o(1),

then Assumptions 5-8 hold.

Theorem 3. Under Assumptions 3 and 8, T/σ2 → χ2
1 in distribution as n→∞.

Theorem 4. If the conditions of Theorems 2 and 3 hold, then for any α ∈ (0, 1),

Pr(q < α)→ α as n→∞.

Permutation tests that exactly control the type-I error by permuting random



SENSITIVITY ANALYSIS USING PERMUTATIONS 823

data are used as exact frequentist methods. This feature is quite useful for

small-sample problems, but limits their application. By Theorem 4, the q-value

corresponding to (3.4) can be viewed as the p-value from a permutation test

that permutes non-random data. For linear regression models, this permutation

method is asymptotically valid, like the bootstrap test (Mammen (1993)).

3.3. Completely deterministic systems

Consider the case where the system (2.1) is completely deterministic

y = f(x1, . . . , xd) (3.8)

with f an unknown deterministic function and all inputs x1, . . . , xn deterministic.

We present two examples to show that the q-value can quantify the influence of

an input on the output.

Example 1. Let d = 1 and y = f(t) for t ∈ [0, 1], where f is a non-decreasing

function. The input values are t = (t1, . . . , tn)′ with 0 6 t1 < · · · < tn 6 1 and

the corresponding outputs are y = (y1, . . . , yn)′, with the goodness-of-fit statistic

T (t,y) = −t′y. Under H0 in (2.5), f is a constant c, and T = −c
∑n

i=1 ti, which

implies q = 1. If H0 is not true, then the values in y can be written as y1 = · · · =
yn1

= y(1) < yn1+1 = · · · = yn1+n2
= y(2) < · · · < yn1+···+ns−1+1 = · · · = yn = y(s)

with 2 6 s 6 n. For (i1, . . . , in) ∈ Sn, if there exists j = 1, . . . , n such that

ij /∈ {nj−1+1, . . . , nj−1+nj}, where n0 = 0, then T (t,y) = −(t1y1+· · ·+tnyn) <

−(ti1y1 + · · ·+ tinyn) = T ((ti1 , . . . , tin)′,y). Therefore,

q =
n1! · · ·ns!

n!
.

The q-value relies on the number of unequal responses, with minimum when

s = n (n1 = · · · = ns = 1), a reasonable sensitivity for a non-decreasing function.

Example 2. Let d = 1 and y = f(t) for t ∈ [0, 1], where f is a continuous

piecewise-linear function with knots 0 = a0 < a1 < · · · < as < as+1 = 1. Let

βj denote the slope of f on [aj , aj+1] for j = 0, . . . , s. We take the input values

t = (t1, . . . , tn)′, where 0 = t1 < · · · < tn = 1, and the corresponding outputs

y = (y1, . . . , yn)′. Assume that {t1, . . . , tn} ⊃ {a1, . . . , as} for sufficiently large

n. An estimator of f , denoted by f̂ , is piecewise-linear connecting the points

(ti, yi)
′ and (ti+1, yi+1)

′ for i = 1, . . . , n − 1. A goodness-of-fit statistic is the

mean squares error

T (t,y) =
1

N

N∑
i=1

(
f̂(t∗i )− f(t∗i )

)2
,

where 0 6 t∗1 < · · · < t∗N 6 1 constitute the test set. We assume that
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|{t∗1, . . . , t∗N} ∩ (ti, ti+1)| > 2 for all i = 1, . . . , n− 1, (3.9)

where | · | denotes the cardinality of a set. For i = 1, . . . , n, let Si = {tj : f(tj) =

f(ti), j = 1, . . . , n} and m = maxi=1,...,n |Si|.
If H0 is true, then T (tpermk ,y) = 0 for k = 1, . . . , n!, where tpermk is the

kth permutation of t1, . . . , tn. For this case, q = 1. Otherwise, there exists a

βs0 6= 0 and T (t,y) = 0 as well. By (3.9), let t∗j0 , t
∗
j0+1 ∈ (ti0 , ti0+1) ⊂ [as0 , as0+1].

For a permutation tpermk which replaces ti0 with an element in {t1, . . . , tn} \ Si0 ,
and/or replaces ti0+1 with an element in {t1, . . . , tn}\Si0+1, either f̂(t∗j0)−f(t∗j0)

or f̂(t∗j0+1) − f(t∗j0+1) is not zero. Therefore, T (tpermk ,y) > 0 = T (t,y), which

implies q 6 1−
[
(n−m)(n−m−1)(n−2)!

]
/n! = 1−[(n−m)(n−m−1)]/[n(n−1)].

If m = o(n), q → 0 as n→∞.

Remark 5. For completely deterministic systems, if we view z1 as a random

vector following the distribution of ηn in (3.6), then the q-value in (2.4) can be

written as

q = Pr
(
T (z1,Z2,y) > T (ηn,Z2,y)

)
, (3.10)

where ηn is independent of z1 and y may depend on (z1,Z2). Under H0 in

(2.5), y does not depend on z1, and thus q in (3.10) is U [0, 1]. Such randomiza-

tion provides a way to assign frequentist properties of the q-value in completely

deterministic systems.

4. Extensions of the q-value

4.1. The q-value for partial sensitivity analysis

Sometimes we are interested in quantifying the variation of the output when

an input changes in a subset of its domain. We call such analysis partial sensitivity

analysis. The definition of q-value can be straightforwardly extended to this

case. For example, suppose x1 ∈ [0, 1] in (2.1). Our purpose is to quantify the

influence of x1 at its low level [0, 1/2] on y. Let X be the input matrix in (2.2),

y be the vector of responses, and T be the goodness-of-fit statistic in (2.3). Take

x11, . . . , xn11 ∈ [0, 1/2] and xn1+1 1, . . . , xn1 ∈ (1/2, 1]. The q-value of x1 at the

low level is defined as

q =
1

n1!

n1!∑
k=1

I
(
T (z1,Z2,y) > T (zl,perm1,k ,Z2,y)

)
, (4.1)

where {zl,perm1,1 , . . . , zl,perm1,n1!
} = {(xi11, . . . , xin1

1, xn1+1 1, . . . , xn1)
′ : (i1, . . . , in1

) ∈
Zn1
}. Similarly we can define the q-value of x1 at the high level [1/2, 1].
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4.2. The q-value of grouped inputs

It can be useful to quantify the influence of grouped inputs (x1, . . . , xg)

on the output (Saltelli et al. (2008)). Write T (X,y) = T (z(1),Z(2),y), where

z(1) = (z′1, . . . , z
′
g)′ = (z1, . . . , zgn)′ and Z(2) = (zg+1, . . . , zd). The q-value of

(x1, . . . , xg) can be defined as

q =
1

(gn)!

(gn)!∑
k=1

I
(
T (z(1),Z(2),y) > T (zperm(1),k ,Z(2),y)

)
,

where {zperm(1),1 , . . . , z
perm
(1),(gn)!} = {(zi1 , . . . , zign)′ : (i1, . . . , ign) ∈ Zgn}. Theorem 1

in Section 4.1 can be easily extended to this q-value under proper conditions.

5. Construction of the q-value for Computer Experiments

Computer experiments are used to study a computer simulation, which is

constructed to approximate a complex system. A canonical form of computer

models is

y = f(x1, . . . , xd), (5.1)

which is similar to (3.8), but the inputs can be selected randomly or deterministi-

cally (Santner, Williams and Notz (2003)). It can be seen that f in (5.1) does not

contain any random error. This is the essential difference from physical experi-

ments. There are a number of sensitivity analysis methods for computer exper-

iments in the literature, including the design-based one-factor-at-a-time method

(Morris (1991)), Bayesian methods (Oakley and O’Hagan (2004); Linkletter et al.

(2012)), the two-stage procedure (Moon, Dean and Santner (2012)), and the dy-

namic tree model-based method (Gramacy, Taddy and Wild (2013)), among

others. It is worth noting that the Sobol’ index still plays an important role

in sensitivity analysis for computer experiments (Saltelli (2002)), sometimes as a

basic index in sophisticated methods (Moon, Dean and Santner (2012); Gramacy,

Taddy and Wild (2013)).

Under (5.1), (2.5) is equivalent to

H0 : y = f̃(x2, . . . , xd) for some (d− 1)− dimensional function f̃ . (5.2)

It is known that statistical testing can detect significant main effects and/or

interactions of the factors on the response in physical experiments. In parallel, the

q-value provides a way to define significant input factors in computer experiments

under appropriate conditions or randomization.
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5.1. The q-value via cross-validation

Suppose that we have an emulator f̂ of f in (5.1) based on the input values

{x1, . . . ,xn} and the corresponding outputs y = (y1, . . . .yn)′. A goodness-of-fit

statistic is the cross-validation error

T =
1

n

n∑
i=1

(
f̂−i(xi)− yi

)2
, (5.3)

where f̂−i is constructed based on {x1, . . . ,xn} \ {xi} and {y1, . . . .yn} \ {yi}. If

the response y depends on x1, then when randomly permutating the first column

of the input matrix X = (x1, . . . ,xn)′, T in (5.3) tends to be larger, and thus we

find a small q-value. There are many choices of the emulator f̂ for constructing

T ; see Chen et al. (2006).

5.2. The q-value based on Kriging models

The Kriging model (Matheron (1963)) is widely used to analyze computer

experiments (Sacks et al. (1989)). It models the output of a computer experiment

as a realization of

y(x) = g(x)′β + Z(x), (5.4)

where g(x) = (g1(x), . . . , gq(x))′ is a pre-specified set of functions, β is a vector

of unknown regression coefficients, and Z(x) is a stationary Gaussian process

GP(0, σ2,θ) with mean zero, variance σ2, and correlation parameters θ. The

covariance between Z(x1) and Z(x2) is represented by

Cov[Z(x1), Z(x2)] = σ2R(x1 − x2 |θ), (5.5)

where R(· |θ) is the correlation function depending on a parameter vector θ. A

popular choice is the squared exponential correlation function

R(x1 − x2 | θ) = exp(−θ‖x1 − x2‖2), (5.6)

where θ > 0 is the correlation parameter.

The parameters in (5.4) can be estimated by maximum likelihood. Take the

input values {x1, . . . ,xn}, where xi = (xi1, . . . , xid)′ for i = 1, . . . , n, and the

corresponding response values y = (y1, . . . , yn)′. Let X = (xij)i=1,...,n, j=1,...,d

denote the input matrix as in (2.2). The negative log likelihood, up to an additive

constant, is

n log(σ2) + log(det(R)) + (y −Gβ)′R−1
(y −Gβ)

σ2
, (5.7)

where R is the n×n correlation matrix whose (i, j)th entry is R(xi−xj |θ) defined



SENSITIVITY ANALYSIS USING PERMUTATIONS 827

in (5.5), “det” denotes matrix determinant, and G = (g(x1), . . . ,g(xn))′.

Given θ, the maximum likelihood estimators (MLEs) of β and σ2 are
β̂ = (G′R−1G)−1G′R−1y,

σ̂2 = (y −Gβ̂)′R−1
(y −Gβ̂)

n
.

(5.8)

Plugging these estimators into (5.7), we obtain the main part of the minimum of

the negative log likelihood

S(X,y |θ) = n log(σ̂2) + log (det(R)) . (5.9)

Based on (X,y), the MLE θ̂ of θ is obtained as

θ̂(X,y) = argminθ S(X,y |θ). (5.10)

The estimators of β and σ2 can be obtained by plugging θ̂ into (5.8). The

goodness-of-fit statistic is

T = S(X,y | θ̂). (5.11)

Based on T , we can compute the q-value as the sensitivity index for x1 by (2.4).

The q-value from T in (5.11) is related to the likelihood ratio test of (5.2),

in which the test statistic is L(X,y) = T (X,y)−T (Z2,y). Note that the second

term in L does not depend on z1. The above q-value can also be computed by

permuting z1 in L. In addition, the goodness-of-fit statistic T in (5.11) corre-

sponds to the maximum entropy of the responses under the Kriging model (5.4)

(Shewry and Wynn (1987)).

The Kriging model also yields an emulator f̂ of f (Santner, Williams and

Notz (2003)): for an untried point x0,

f̂(x0) = g(x0)
′β̂ + r̂′R̂−1

(
y −Gβ̂

)
, (5.12)

where r̂ =
(
R(x0 − x1 | θ̂), . . . , R(x0 − xn | θ̂)

)′
and R̂ is the n × n correlation

matrix whose (i, j)th entry is R(xi − xj | θ̂). This emulator can be used to

construct the cross-validation error T in (5.3). Some simulation results show

that the q-value based on such cross-validation error has lower power than the

likelihood-based method (see Section 6.2), where the power is the probability

of the correct rejection when the null hypothesis does not hold. In general, we

recommend the likelihood-based q-value for computer experiments. The cross-

validation method based on other emulators, however, has potential applications

to the cases where the Kriging emulator is hard to build, such as the large-scale

data case (Joseph and Kang (2011)).
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Figure 1. QQ-plots of the q-values in Section 6.1.

6. Numerical Illustrations

6.1. Simulations for linear models

Consider the linear model in (3.1), where d = 3, β0 = 1, β1 = 0, β2 = 1,

β3 = −2, and the random error follows the t distribution with one degree of

freedom. In the simulations, the input values are all deterministic. We considered

two cases for n: n = 7 and n = 14. The corresponding input matrices with a

correlation parameter ρ can be found in the online supplementary materials.

We computed the q-value in (3.6) after standardizing the data. For n = 14,

since 14! is too large, we used the Monte Carlo method to approximate it with

M = 7! = 5,040 in (2.6). The QQ-plots of the q-values over 1,000 repetitions for

different combinations of n and ρ are shown in Figure 1. For (n, ρ) = (7, 0), the

distribution of the q-value looks discrete, but it is not far away from U [0, 1]. For

the other cases, the distributions of the q-values are close to U [0, 1]. As suggested

by a referee, we also conducted the simulation for larger n and d, and similar

phenomena occur. The simulation results are consistent with our theoretical

findings.

6.2. A two-dimensional function

We used

f(x1, x2) =

[
1− β exp

(
− 1

2x1

)]
2300x32 + 1900x22 + 2092x2 + 60

100x32 + 500x22 + 4x2 + 20

as a computer model, where (x1, x2)
′ ∈ [0, 1]2 and the parameter β controls the
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Figure 2. QQ-plots of the q-values in Section 6.2.
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Figure 3. Powers for different β’s in Section 6.2 (α = 0.05).

influence of x1 on y. This function is a variant of a function in Currin et al.

(1991). The run size was fixed as 15. We generated the design matrix X by

simple random sampling. Such designs satisfy Assumption 2.

We computed the q-values of x1 by two methods. The first was based on

the cross-validation error T in (5.3), where f̂ was the Kriging emulator (5.12).

The goodness-of-fit statistic of the second method was the Kriging likelihood T

in (5.11). We employed the Kriging model (5.4) with g(x) = (1, x1, . . . , xd)′ and

the squared exponential correlation function (5.6). The Monte Carlo method was

used to compute the q-values with M = 1,000 in (2.6). Denote the two q-values

by qcv and qlh. It is clear that H0 in (2.5) is true when β = 0, and that Theorem

1 holds by Remark 1. For such a case, the QQ-plots of qcv and qlh over 1,000

repetitions are shown in Figure 2. Their distributions are very close to U [0, 1],

consistent with Theorem 1. We also compared their power performance at the

significance level α = 0.05. Let β vary from 0 to 1. The powers corresponding to

qcv and qlh are shown in Figure 3, with the test based on qlh being more powerful.

6.3. A five-dimensional function

This example used the five-dimensional function (Cox, Park and Singer

(2001)),
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Figure 4. QQ-plots of the q-values of x5 in Section 6.3 (n = 10).

f(x1, . . . , x5) =
2

3
exp(x1 + x2) + x3 − x4 sin(x3), (6.1)

where (x1, . . . , x5)
′ ∈ [0, 1]5. We use the same g(x) and correlation function

as in Section 7.2 to compute the Kriging model-based qlh with simple random

sampling (IID), the Latin hypercube sampling (LHS) (McKay, Beckman and

Conover (1979)), optimal Latin hypercube design with respect to the maximin

criterion (OLHD) (Jin, Chen and Sudjianto (2005)), and randomized OLHD by

randomizing the first column of OLHD (ROLHD) (see Remark 5). By Remark

2, the first two satisfy Assumption 2. Among the four strategies, only OLHD

gave deterministic inputs.

Since f in (6.1) does not rely on x5, we first computed qlh with the three

random designs, IID, LHS, and ROLHD, for n = 10, and we show corresponding

QQ-plot over 1,000 repetitions in Figure 4. As expected (see Theorem 1 and

Remark 5), these q-values follow U [0, 1] closely. Next, for n = 10 and 20, we

show the box-plots of the qlh’s of x1, . . . , x5 over 100 repetitions in Figure 5.

For n = 10, the three random designs produce small q-values of x1 and x2, and

moderate q-values of x3 and x4. For n = 20, they produce small q-values of x3 and

x4 except for a few cases. Among them, ROLHD produces larger q-values, and

the reason may be that the randomization in it gives unusual designs for computer

experiments. It can also be seen that the deterministic design OLHD performs

reasonably: it yields a clear gap of the q-values between x1 to x4 and x5. We

conducted the partial sensitivity analysis in Section 4.1 to quantify the influence

of x1 and x3 at their low and high levels. The box-plots of the corresponding

q-values (see (4.1)) from IID and LHS for n = 20 over 100 repetitions are shown

in Figure 6. For x1, the influence at the high level is greater than that at the low

level, while for x3, the two levels do not have a clear difference. These findings

are consistent with the form of f in (6.1).
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Figure 5. Box-plots of the q-values of x1, . . . , x5 in Section 6.3.
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Figure 6. Box-plots of the q-values at low and high levels in Section 6.3 (n = 20).

6.4. The Zakharov function

This example used the d-dimensional function f(x1, . . . , xd) = f0(x1, . . . , xd0
),

where (x1, . . . , xd)′ ∈ [0, 1]d, d0 < d, and f0 is the Zakharov function (Yang

(2010))

f0(x1, . . . , xd0
) =

d0∑
i=1

x2i +

(
d0∑
i=1

ixi
2

)2

+

(
d0∑
i=1

ixi
2

)4

.

The simulations in Sections 6.2 and 6.3 were used to study the frequentist per-

formance of the q-value, while this subsection compares it with the Sobol’ index,

often viewed as a bench-mark sensitivity index. In the simulation the design

matrix X was generated by LHS. The eight combinations of (n, d, d0) in Table

1 were considered. The q-value was computed based on the Kriging likelihood
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Table 1. Combinations of (n, d, d0) in Section 6.4.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
(n, d, d0) (15, 3, 2) (15, 5, 2) (30, 6, 3) (30, 10, 4) (50, 10, 5) (50, 15, 5) (100, 10, 5) (100, 20, 5)

Table 2. Rates of correct selection in Section 6.4.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Sobol’ index 1.00 0.99 0.98 0.65 0.68 0.53 1.00 0.81
q-value 1.00 0.99 0.99 0.65 0.70 0.53 1.00 0.81

as in Section 6.3. The Sobol’ index was computed by the Monte Carlo method

(Janon et al. (2014)).

First, active inputs corresponding to the largest (smallest) d0 values of the

Sobol’ index (q-value) are selected. The rates of correct selection of the two

indices over 100 repetitions are reported in Table 2. They have almost the same

performance. To evaluate their similarity, we computed the Pearson correlation

between the rank of the q-values and the inverse rank of the Sobol’ indices of

the d inputs for each repetition. The means and standard deviations of the

correlations over the 100 repetitions are in Table 3. Here the rank of a vector

v = (v1, . . . , vd)′ is the vector (r1, . . . , rd)′ satisfying vrj = v(j) for j = 1, . . . , d,

where v(1) 6 · · · 6 v(d) is the nondecreasing permutation of v, and the inverse

rank of v is the rank of −v. The correlations for all the cases are positive and

higher than 0.65. This indicates that the sensitivity levels of an input judged by

the two indices are close to each other. But the q-value possesses clear statistical

interpretation while the Sobol’ index does not.

7. Applications to a Casting Simulator

This section presents an example of the proposed sensitivity index. Cast-

ing is an important manufacturing process for making complex metal products.

Generally, the material used in casting is expensive and the casting process is

very time-consuming. Computer experiments for simulating a casting process

are commonly used to analyze the impact of process parameters on the quality

of the casting product. Here we consider a low-pressure die-casting process that

produces a certain component of satellites. Since shrinkage defects often occur

in these products, engineers hope that the statisticians can help them specify the

factors that have significant effects on the degree of shrinkage defect via com-

puter simulations. Following engineers’ suggestions, we focused on four input
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Table 3. Similarity between the q-value and Sobol’ index in Section 6.4.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
mean correlation 0.695 0.930 0.855 0.816 0.657 0.766 0.705 0.742
std correlation 0.245 0.112 0.124 0.263 0.230 0.125 0.105 0.123

Table 4. Input factors of the casting simulation.

Factor
filling velocity initial pressure increase rate of pressure initial temperature

(x1) (x2) (x3) (x4)
Range [30, 60] [20, 40] [0.5, 9.5] [725, 745]
Unit mm/s Kpa Kpa/s ◦C

Table 5. The design and responses of the casting experiment.

Run x1 x2 x3 x4 y (%)
01 55.782 22.812 8.7971 740.938 6.76
02 48.282 20.312 1.2029 733.438 6.42
03 37.968 21.562 7.6721 734.688 7.03
04 46.407 38.438 4.0154 727.812 7.25
05 51.093 29.062 4.8596 735.938 7.13
06 57.657 37.188 8.2346 738.438 6.90
07 49.218 28.438 0.6404 743.438 6.20
08 59.532 30.312 7.1096 726.562 7.29
09 44.532 32.188 9.3596 731.562 7.11
10 37.032 35.938 2.3279 737.188 7.22
11 53.907 39.688 2.8904 739.688 6.99
12 32.343 25.312 1.7654 730.938 6.79
13 30.468 34.688 5.9846 729.062 7.29
14 35.157 24.062 3.4529 742.188 7.07
15 42.657 26.562 5.4221 725.312 7.32
16 40.782 33.438 6.5471 744.688 6.75

factors, shown in Table 4. The response is the ratio of the defect volume to the

total volume of the product. The computer simulations were conducted with a

commercial software “Huazhu” on a 16-run Latin hypercube design. The design

and its corresponding responses are presented in Table 5.

We compared our method to several popular sensitivity analysis methods.

We first set out the scatterplots of y versus x1, . . . , x4 in Figure 7, and the cor-

responding correlations are in the first row of Table 6. A second method fits the

data by linear regression, and uses the least squares estimators of the coefficients

as the sensitivity indices of all the inputs. The third method is based on the Sobol’
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Figure 7. Scatterplots of y versus x1, . . . , x4 in Section 7.

Table 6. Sensitivity values of the inputs.

x1 x2 x3 x4
correlation −0.1763 0.3706 0.3998 −0.5868
regression coefficient −0.2935 0.3922 0.3960 −0.5228
Sobol’ index 0.1308 0.2318 0.2342 0.4082
q-value 0.2136 0.0776 0.0696 0.0228

index, and our method is applied. Here we used g(x) = (1, x1, . . . , x4)
′ and the

squared exponential correlation function (5.6) in the Kriging model (5.4). The

q-values of the four inputs based on T in (5.11) were computed with the Monte

Carlo sample size 100,000. The calculations are presented in Table 6. The results

from the four methods indicate similar conclusions: x4 has an important effect

on y and x1 is less important. This is consistent with the simulation results in

Section 6.4. Compared with the other methods, the q-value can provide a sta-

tistically significant result: only x4 is significant at significance level α = 0.05.

We also conducted a partial sensitivity analysis of x4, and the q-values at its low

and high levels are 0.0084 and 0.0392, respectively. The response seemed more

sensitive to the low level of x4.

It is known that shrinkage defects form in the solidification process, and

the four inputs are all possible factors to shrinkage defects (Campbell (2011)).

Our sensitivity results show that temperature is the most sensitive input for this

product. For a follow-up study, temperature should be studied more carefully to

find its reasonable value for avoiding shrinkage defect.

8. Discussion

The proposed method is flexible under various settings. For computer exper-

iments, it can be modified to accommodate multiple levels of accuracy (Kennedy

and O’Hagan (2000); Qian and Wu (2008)), multiple outputs (Conti and O’Hagan
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(2010)), both qualitative and quantitative factors (Qian, Wu and Wu (2008); Han

et al. (2009)), branching and nested factors (Hung, Joseph and Melkote (2009)),

and sequential analysis (Xiong, Qian and Wu (2013)). For noisy models, other

goodness-of-fit statistics under various model assumptions (Hädle et al. (2004)),

instead of the likelihood under the Kriging model, can be used to construct the

sensitivity indices. It would be valuable to investigate applications of the pro-

posed method to these problems.

Supplementary Materials

The online supplement to this article contains MATLAB codes for implementing

our methods and proofs of the theoretical results.
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