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Abstract: In a clinical trial, statistical reports have been typically concerned about

the mean difference between two groups. Now there is increasing interest in the

heterogeneity of the treatment effects, which means that the same treatment can

have different effects on different people. In this article, we focus on the treatment

benefit rate (TBR) and the treatment harm rate (THR), defined as the propor-

tion of people who have a better outcome on the treatment than the control and

the proportion of people who have a worse outcome on the treatment than the

control, respectively. We propose a relatively weak assumption to obtain bounds

for the TBR and the THR, which are shown to be always better than the covari-

ates adjusted simple bounds. We prove that the TBR and THR are identifiable

under a different conditional independence assumption. We also derive the corre-

sponding estimators, the asymptotic distributions, and the over-identified test. We

perform simulation studies to assess the performance of the proposed estimators

and compare them with the proposed bounds. The simulation results show that the

proposed estimators work quite well when the conditional independence assumption

hold, they are not sensitive to small violation of the assumption, and the bounds

we proposed can perform better than the estimators when the sample size is small.

We illustrate application of the proposed methods in a double-blinded, randomized

clinical trial.

Key words and phrases: Causal effect, heterogeneity, potential outcome, treatment

benefit rate, treatment harm rate.

1. Introduction

In a typical phase III clinical trial, individuals are randomly assigned to

either treatment or control, and then the relevant health endpoints are recorded;

the difference between the means of the two study groups is used to estimate

the average treatment effect (ATE). However, in general there are patients who

do not benefit from an intervention even if the ATE is positive, and there are
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patients who can benefit from an intervention even if the ATE is significantly

negative. Thus the ATE fails to capture variation in response to a treatment

due to heterogeneity at many levels among patients in the target population

(Davidoff (2009)).

It is important to understand the heterogeneity of treatment effects (HTE)

in treatment evaluation and selection. From a clinical perspective, many patients

and healthcare providers may like to know not only the average effect, but also

the proportion of people who have a worse outcome under the treatment than the

control. In some situations, a treatment having a superior average effect may also

have a greater risk of producing a deleterious effect for some patients. Under-

standing the HTE may also be important in forensic research (Gadbury, Iyer and

Allison (2001)). Subgroup analysis has been a common tool for understanding

the HTE in the design of a clinical trial (Gail and Simon (1985); Russek-Cohen

and Simon (1997); Pocock et al. (2002); Wang et al. (2007)), but it is perhaps

more natural to study the HTE in terms of individual potential outcomes (Gad-

bury and Iyer (2000); Gadbury, Iyer and Allison (2001); Gadbury, Iyer and Albert

(2004); Poulson, Gadbury and Allison (2012)).

Some researchers have made extra assumptions regarding these proportions

to resolve this heterogeneity. One of the main assumptions is “Monotonicity”

(Goetghebeur and Molenberghs (1996) and Angrist, Imbens and Rubin (1996)),

which assumes that the treatment effect cannot be worse than the control for

every individual. There are many scientific and empirical reasons to doubt this

assumption. Berger, Rezvani and Makarewicz (2003) suggested several expla-

nations for the existence of individuals who would respond even to an inactive

control but not to the experimental treatment, and pointed out that a placebo

had been shown to be superior to an active treatment for some people.

Our main objective is to develop methods for studying the TBR and the

THR based on the framework of potential outcomes (Rubin (1974); Rosenbaum

and Rubin (1983); Holland (1986)). In this framework each patient is considered

to have a potential outcome under each possible treatment, and the effect of an

experimental treatment relative to a control can be assessed on each individual

patient by comparing the corresponding potential outcomes. We focus on the case

where the outcomes are binary variables. Because the TBR and the THR involve

the joint distribution of the two potential outcomes from specific individuals that

cannot be observed at the same time, they are not identifiable without additional

assumptions, even in randomized clinical trials. Since simple bounds for them

can be derived without further assumptions, various methods have been made
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to improve them, see Gadbury, Iyer and Albert (2004); Albert, Gadbury and

Mascha (2005); Zhang et al. (2013).

Shen et al. (2013) and Zhang et al. (2013) tried to identify THR by making

the additional assumption that the two potential outcomes were independent

conditional on observed covariates. In practice, this assumption is rarely true

because it requires the two potential outcomes, which can not be observed at the

same time and are always highly correlated, to be independent. Furthermore,

it cannot be tested with the observed data. In addition, their method requires

a specification of models between the covariates and the potential outcomes in

estimation, which may lead to large bias when the models are misspecified.

We propose new methods to study the problem. First, we use the covari-

ates to obtain bounds for the TBR and the THR. The covariates can be either

discrete, continuous, or multidimensional, and the bounds we derive are always

better than the adjusted simple bounds derived by Zhang et al. (2013). Then

we identify the TBR and the THR under an assumption that requires at least

three observed covariates to be conditionally independent. Under this assump-

tion, we propose nonparametric estimators for the TBR and THR and derive

the asymptotic distributions of the estimators. Compared to the estimators of

Shen et al. (2013) and Zhang et al. (2013), our estimators have two merits: the

assumption for validation of our method can be tested with the observed data,

and our estimators are nonparametric while their method requires parametric

models.

We organize the paper as follows. The notation and assumptions are in

Section 2. In Section 3 we give our bounds for the TBR and the THR. We derive

the nonparametric estimators in Section 4. Simulation results are reported in

Section 5. We also apply our methods to data analysis in Section 6. The paper

ends with a discussion in Section 7.

2. Notation and Assumptions

Let T denote the binary assignment treatment variable (1 for treatment and

0 for control), and let Y stand for the binary outcome; Y = 1 if the subject

survives or is cured, and Y = 0 if the subject dies or is not cured. We assume

that a large value of Y indicates a better response. Let X be a set of covariates,

which can be univariate or multivariate. We need two assumptions that are

fundamental and widely used in causal inference.

Assumption 1 (Stable unit treatment value assumption, (SUTVA)). There is

no interference between units: potential outcomes of one individual do not depend
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on the treatment status of other individuals and there is only one version of

treatment (Rubin (1980)).

Under this assumption, we can denote Yt as the potential outcome of a

subject if the subject is assigned to treatment t, and Y = T · Y1 + (1 − T ) · Y0.
Under the principal stratification framework (Frangakis and Rubin (2002)), we

let G denote the principal stratum of an individual, defined as

G =


a, Y0 = 1, Y1 = 1,

b, Y0 = 0, Y1 = 1,

h, Y0 = 1, Y1 = 0,

n, Y0 = 0, Y1 = 0,

where “a”, “b”, “h” and “n” represent “always recover”, “benefit”, “harm” and

“never recover”, respectively. The “benefit” stratum represents people who ben-

efit from the treatment, and the “harm” stratum stands for people who suffer

from it.

Shen et al. (2013) defined the treatment benefit ratio (TBR) and the treat-

ment harm ratio (THR) as

TBR : P (G = b) = P (Y0 = 0, Y1 = 1); THR : P (G = h) = P (Y0 = 1, Y1 = 0).

Assumption 2 (Randomization). (X,G)⊥T , or, (X,Y0, Y1)⊥T .

Under this assumption, we can identify the marginal distributions of Y0 and

Y1, and then ATE = E[Y1 − Y0] can be identified. With a little calculation,{
P (G = b) + P (G = n) = P (Y0 = 0), P (G = h) + P (G = n) = P (Y1 = 0),

P (G = a) + P (G = b) + P (G = h) + P (G = n) = 1.

(2.1)

There are three equations and four parameters, so if one of the proportions of

the four strata is identified or estimated, the others can also be identified or

estimated.

3. Bounds Based on Closely Related Covariates

The TBR and the THR cannot be identified even in randomized trials with-

out further assumptions. We derive bounds for these two rates. Let p1 = P (Y1 =

1) and p0 = P (Y0 = 1), which can be easily identified in a randomized trial. It

is easy to get the bounds for the TBR and the THR:

max(0, p1−p0) ≤ TBR ≤ min(1−p0, p1),max(0, p0−p1) ≤ THR ≤ min(1−p1, p0).
(3.1)
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These bounds, referred to as simple bounds, do not need any further assumptions

and can be easily estimated from the observed data. The bounds indicate that

the TBR cannot be smaller than the ATE, which is equivalent to p1 − p0, and

cannot be larger than the marginal probabilities P (Y0 = 0) and P (Y1 = 1).

Similarly, the THR cannot be smaller than the negative ATE, and cannot be

larger than the marginal probabilities P (Y0 = 1) and P (Y1 = 0).

Zhang et al. (2013) used the covariates X to sharpen the bounds. With

p1X = P (Y1 = 1|X), p0X = P (Y0 = 1|X). their bounds after being adjusted by

X are
E
[

max(0, p1X − p0X)
]
≤ TBR ≤ E

[
min(1− p0X , p1X)

]
,

E
[

max(0, p0X − p1X)
]
≤ THR ≤ E

[
min(1− p1X , p0X)

]
.

(3.2)

They pointed out that the adjusted bounds cannot be worse than the simple

bounds.

We propose an assumption that can be used to further tighten the bounds.

Assumption 3 (Local Exclusion). Let S0 and S1 be two known subsets of the

domain of X so that subjects with X ∈ S0 do not fall in the “always recover”

stratum, and subjects with X ∈ S1 do not fall in the “never recover” stratum.

We call this “Local Exclusion” because we exclude one of the four strata

defined by G in the subpopulation X ∈ S0 and X ∈ S1, while the “Monotonicity”

assumption (Goetghebeur and Molenberghs (1996); Angrist, Imbens and Rubin

(1996)) excludes the “harm” stratum in the whole population.

To interpret the assumption, think of X as a variable that represents the

severity of a disease. Here X ∈ S0 if the subject has a serious disease, X ∈ S1 if

the subject has a mild disease, and X is outside S0 and S1 if the severity of the

subject’s disease is between serious and mild. Assumption 3 means that at least

one of the two treatments cannot save the patient with serious disease, and at

least one of the two treatment can save the patient with mild disease. Take drug

therapy aiming at helping patients recover from bacterial infection inflammation

as an example. Take T = 1 if the individual receives the drug treatment, and

T = 0 if the individual is assigned to placebo-treated. Let Y = 1 if the individual

is cured, Y = 0 if not. LetX be the indicator variable, representing the severity of

inflammation with large values meaning severe inflammation. People with very

serious inflammation cannot recover from the placebo treatment, while people

with mild inflammation can be cured by the drug treatment. Thus, the individual

with large value of X cannot be in the “always recover” group (G = a) and the

individual with small value of X can not be in the “never recover” group (G = n).
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Here X ∈ S0 means X has a large value while X ∈ S1 means the value of X is

small.

With Assumption 3, one can have P (G = a|X ∈ S0) = P (G = n|X ∈ S1) =

0. From (2.1) we can conclude that the joint distribution of (Y0, Y1) conditional

on X ∈ Sk, k = 0, 1 can be identified. Thus, the TBR and the THR conditional

on X ∈ Sk, k = 0, 1 can also be identified, as

P (G = b|X ∈ S0) = P (G ∈ {a, b}|X ∈ S0) = P (Y1 = 1|X ∈ S0)
= P (Y = 1|X ∈ S0, T = 1),

P (G = b|X ∈ S1) = P (G ∈ {b, n}|X ∈ S1) = P (Y0 = 0|X ∈ S1)
= P (Y = 1|X ∈ S1, T = 0),

P (G = h|X ∈ S0) = P (G ∈ {a, h}|X ∈ S0) = P (Y0 = 1|X ∈ S0)
= P (Y = 1|X ∈ S0, T = 0),

P (G = h|X ∈ S1) = P (G ∈ {h, n}|X ∈ S1) = P (Y1 = 0|X ∈ S1)
= P (Y = 1|X ∈ S1, T = 1).

Let S2 = S0
⋃
S1, where · stands for the complement operation. For the TBR

and the THR in the subpopulation with X ∈ S2, bounds can be obtained by

adjusting simple bounds with X as in (3.2).

Theorem 1. Under Assumptions 1, 2, and 3, we have

TBR ≥ Lb = P (Y1 = 1, X ∈ S0) + P (Y0 = 0, X ∈ S1)
+ E[max(0, p1X − p0X)I(X ∈ S2)],

TBR ≤ Ub = P (Y1 = 1, X ∈ S0) + P (Y0 = 0, X ∈ S1)
+ E[min(p1X , 1− p0X)I(X ∈ S2)],

THR ≥ Lh = P (Y0 = 1, X ∈ S0) + P (Y1 = 0, X ∈ S1)
+ E[max(0, p0X − p1X)I(X ∈ S2)],

THR ≤ Uh = P (Y0 = 1, X ∈ S0) + P (Y1 = 0, X ∈ S1)
+ E[min(p0X , 1− p1X)I(X ∈ S2)].

We denote these as “LE” bounds (Local Exclusion). Here (Lb, Ub, Lh, Uh) can

be identified due to Assumption 2. The widths of the two bounds depend largely

on P (X ∈ S2). The smaller the probability is, the narrower the widths are.

Moreover, the TBR and the THR become identifiable when P (X ∈ S2) = 0.

The “LE” bounds are better than the covariates adjusted bounds in (3.2),

since we make full use of the information about the relationship between X and

G in the “LE” bounds. The proof is in the supplementary materials.

Proposition 1. The “LE” bounds for the TBR and the THR are no worse than

the bounds in (3.2); they are equivalent if and only if P (X ∈ S0)+P (X ∈ S1) = 0.
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If X is a discrete variable, the bounds can be easily estimated by the moment

estimator. Let L̂h, Ûh, L̂b, Ûb be the resulting non-parametric estimators for the

lower and upper bounds of the TBR and the THR, respectively. They have the

form

L̂h =
Pn[f(1, 0, 0)]

Pn[I(T=0)]
+
Pn[f(0, 1, 1)]

Pn[I(T=1)]
+
∑
x∈S2

max
{

0,
Pn[g(1, x, 0)]

Pn[I(T=0)]
−Pn[g(1, x, 1)]

Pn[I(T=1)]

}
,

Ûh =
Pn[f(1, 0, 0)]

Pn[I(T = 0)]
+
Pn[f(0, 1, 1)]

Pn[I(T = 1)]
+
∑
x∈S2

min
{Pn[g(1, x, 0)]

Pn[I(T = 0)]
,
Pn[g(0, x, 1)]

Pn[I(T = 1)]

}
,

L̂b =
Pn[f(1, 0, 1)]

Pn[I(T=1)]
− Pn[f(0, 1, 0)]

Pn[I(T=0)]
+
∑
x∈S2

max
{

0,
Pn[g(1, x, 1)]

Pn[I(T=1)]
−Pn[g(1, x, 0)]

Pn[I(T=0)]

}
,

Ûb =
Pn[f(1, 0, 1)]

Pn[I(T = 1)]
+
Pn[f(0, 1, 0)]

Pn[I(T = 0)]
+
∑
x∈S2

min
{Pn[g(0, x, 0)]

Pn[I(T = 0)]
,
Pn[g(1, x, 1)]

Pn[I(T = 1)]

}
,

where Pn[·] is the empirical mean, I(·) is the indicator function, f(j1, j2, j3) =

I(Y = j1, X ∈ Sj2 , T = j3), and g(`1, x, `2) = I(Y = `1, X = x, T = `2).

We use the percentile bootstrap method to construct confidence intervals

for the lower bounds and upper bounds: we randomly draw datasets from the

original sample with replacement, and with the new dataset, we compute esti-

mates of (Lb, Ub, Lh, Uh), denoted as (L̂∗b , Û
∗
b , L̂

∗
h, Û

∗
h). The process is repeated

B times to get
(
(L̂∗b,1, Û

∗
b,1, L̂

∗
h,1, Û

∗
h,1), · · · , (L̂∗b,B, Û∗b,B, L̂∗h,B, Û∗h,B)

)
. We form ap-

proximate 95% confidence intervals by finding the 2.5% and 97.5% percentiles

of (L̂∗b , Û
∗
b , L̂

∗
h, Û

∗
h), denoted as (L̂∗b,(2.5), Û

∗
b,(2.5), L̂

∗
h,(2.5), Û

∗
h,(2.5)) and (L̂∗b,(97.5),

Û∗b,(97.5), L̂
∗
h,(97.5), Û

∗
h,(97.5)), respectively. Then the approximate 95% confidence

intervals for the bounds of the TBR and the THR can be constructed as [L̂∗b,(2.5),

Û∗b,(97.5)] and [L̂∗h,(2.5), Û
∗
h,(97.5)].

4. Nonparametric Identifiability and Estimation

In this Section, we first consider the nonparametric identification of the TBR

and the THR under an assumption, then derive the nonparametric estimators,

the asymptotic distributions, and the over-identified test.

4.1. Nonparametric identifiability

Let X be a vector of observed covariates, where X = (X1, . . . , Xk). We as-

sume that Xj , j = 1, .., k, are binary variables. The assumption is for convenience

and is not necessary.

Assumption 4. X1, . . . , Xk are mutually independent in the “always recover”
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group and “never recover” group.

Assumption 4 can be true with properly chosen X1, · · · , Xk in some settings.

Consider treatment as a medicine or a therapy aimed at curing a certain kind

of disease with a binary outcome: whether a patient is cured (1 if cured and

0 if not), and then we can choose the covariates X as some of the symptoms.

The patients’ symptoms are not mutually independent but can reflect a latent

common cause (Elrington et al. (1991)). The disease, of course, is the cause.

The symptoms are likely to be mutually independent given the common cause

(disease). Thus we can assume that some symptoms are mutually independent

in the serious disease class and the slight disease class. Here G = a (G = n)

means that, regardless of what treatment the patient receives, he/she would be

cured (still suffer from the disease) at the end of the study. If someone gets

a serious disease, neither of the treatments can save him/her from the disease;

alternatively, if someone gets a slight disease, he/she would be cured under either

of the two treatments. So G = a can represent slight disease and G = n can

represent serious disease. It is reasonable to assume that some symptoms are

mutually independent in the strata G = a and G = n.

In another example, we consider a hypothetical randomized clinical trial of

a new drug against a placebo for treating a disease. Let X1, · · · , Xk be the diag-

nosis on the severity of the disease by k different doctors with different medical

backgrounds. Given the true but latent severity level of the disease, X1, · · · , Xk

could be conditionally independent because the k doctors make their diagnoses

on the severity of disease based on their own experiences rather than any other

common variables. Furthermore, since the group with G = a (i.e. Y0 = Y1 = 1)

consists of patients with lightly severe disease, and the group with G = n (i.e.

Y0 = Y1 = 0) consists of patients with severe disease. It is reasonable to believe

that X1, · · · , Xk are independent conditional on G = a, n. Therefore, Assump-

tion 4 holds for the chosen variables, X1, · · · , Xk.

This kind of assumption has been used in other settings. The naive Bayes

classifier uses the assumption that the covariates are mutually independent given

the true class, and it can classify individuals quite well in many applications

(Bickel and Levina (2004)). Similarly, it is generally assumed that the observed

variables are mutually independent within clusters for dealing with unobserved

heterogeneity in latent class analysis (Vermunt and Magidson (2002)). In estima-

tion of the accuracy of diagnostic tests, it is usually assumed that the test results

are independent conditional on the unobserved disease status ((Zhou, McClish

and Obuchowski, 2012, Chap.11)). In general, if we choose covariates that are
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manifestation of a latent variable that is highly related to the G = n and G = a

groups, then Assumption 4 most likely holds.

Under Assumption 4, we have

P (X1, . . . , Xk, Y = 1|T = 1) = P (X1, . . . , Xk|G = a)πa

+P (X1, . . . , Xk|G = b, T = 1, Y = 1)πb

= P (X1|G = a) . . . P (Xk|G = a)πa

+P (X1, . . . , Xk|G = b)πb,

where πg = p(G = g), g = a, b, h, n. Similarly, we have

P (X1, · · · , Xk, Y = 0|T = 0)

= P (X1|G = n) · · ·P (Xk|G = n)πn + P (X1, · · · , Xk|G = b)πb.

We want to identify π = (πa, πb, πh, πn). By rearranging these equations to

eliminate some nuisance parameters, we have

P (X1, · · · , Xk, Y = 1|T = 1)− P (X1, · · · , Xk, Y = 0|T = 0)

= P (X1|G = a) · · ·P (Xk|G = a)πa − P (X1|G = n) · · ·P (Xk|G = n)πn.
(4.1)

There are 2k equations, and 2(k + 1) parameters here, hence to identify the

parameters we need 2k ≥ 2(k + 1), i.e., k ≥ 3. Having more equations than

parameters is not enough to guarantee an unique solution, we need the following

assumption:

Assumption 5. There exists at least one covariate in {X1, . . . , Xk}, say Xj,

such that P (Xj |G = a) 6= P (Xj |G = n).

A proof of the following is given in the supplementary materials.

Theorem 2. When k ≥ 3, if Assumptions 1, 2, 4 and 5 hold, the TBR and the

THR are identifiable.

Thus if there are at least three covariates {X1, · · · , Xk} that are independent

conditional on G = a and G = n, the TBR and the THR are identifiable when

Assumption 5 holds true.

4.2. Nonparametric estimation

Our nonparametric estimators are based on the generalized method of mo-

ments (GMM) estimator as formalized by Hansen (1982). For simplicity, we

assume all X1, · · · , Xk are binary variables. The non-binary case is discussed

later.

Let ρaj = P (Xj = 1|G = a), ρnj = P (Xj = 1|G = n), πg = P (G = g), g =
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a, b, h, n, p1 = P (T = 1), p2 = P (Y = 1|T = 1), and θ = {πb, πh, ρa1, · · · ,
ρak, ρn1, · · · , ρnk, p1, p2}. By substituting πa = p2 − πb, πn = 1 − p2 − πh into

(4.1), we have

P (X1 = x1, . . . , Xk = xk, Y = 1|T = 1)− P (X1 = x1, . . . , Xk = xk, Y = 0|T = 0)

= (p2 − πb)ϕa1(x1) · · ·ϕak(xk)− (1− p2 − πh)ϕn1(x1) · · ·ϕnk(xk),

where ϕgj(xj) = ρ
xj

gj(1− ρgj)1−xj , g = a, n, j = 1, · · · , k. Let

g1(θ) = Pn[g̃1(θ)] = Pn
[
I(T = 1)− p1

]
,

g2(θ) = Pn[g̃2(θ)] = Pn
[
I(Y = 1, T = 0)− (1− p1)p2

]
,

g(x1, · · · , xk; θ) = Pn[g̃(x1, · · · , xk; θ)]

= Pn[(
I(X1 = x1, . . . , Xk = xk, Y = 1, T = 1)

p1

− I(X1 = x1, . . . , Xk = xk, Y = 0, T = 0)

(1− p1)
)

− ((p2 − πh)ϕa1(x1) · · ·ϕak(xk)− (1− p2 − πb)ϕn1(x1) · · ·ϕnk(xk))],
g(θ) = (g1(θ), g2(θ), g(x1, · · · , xk; θ), xj ∈ {0, 1}, j = 1, · · · , k)T ,

where I(·) is the indicator function. Then the GMM estimator θ̂n is

θ̂n = arg min
θ
Q(θ) = arg min

θ
g(θ)TW (θ)−1g(θ), (4.2)

where W (θ) is a positive semi-definite matrix. To reduce the computational

burden, we use a two-step procedure to estimate θ. Estimates are constructed

by using a preliminary weighting matrix Ŵ (the identify matrix is used here) to

replace W (θ) in (4.2), and we take θ̂n1 to be a solution to the initial optimization

problem,

G(θ̂n1)
T Ŵ−1g(θ̂n1) = 0,

where G(θ) = ∂g(θ)/∂θ. If S(θ) is the sample covariance matrix of g(θ), the

estimator θ̂n is defined as in (4.2) by replacing W (θ) with S(θ̂n1), specifically,

G(θ̂n)TS(θ̂n1)
−1g(θ̂n) = 0.

By the theory of GMM, the estimator has the following asymptotic property.

Theorem 3. Under Assumptions 1, 2, 4, 5 with k ≥ 3,
√
n
(
θ̂n − θ

) d−→ N
(
0, (GTS−1G)−1

)
,

where
d−→ means convergence in distribution, and G = limnG(θ), S = limn S(θ).

In particular, the estimator (π̂b, π̂h) of (πb, πh) satisfies
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√
n
((π̂b

π̂h

)
−

(
πb
πh

)) d−→ N
(
0,Σ

)
,

where Σ is the corresponding 2× 2 block matrix of (GTS−1G)−1.

For simplicity, we call (π̂b, π̂h) the “CI” estimators (conditionally indepen-

dent) and Assumption 4 with k ≥ 3 the “CI” assumption.

The variance (GTS−1G)−1 can be estimated by (GT (θ̂n)S(θ̂n)−1G(θ̂n))−1.

So we have an estimator for Σ, denoted by Σ̂. The 95% confidence intervals for

πb and πh can then be constructed as[
π̂b − 1.96

√
Σ̂11, π̂b + 1.96

√
Σ̂11

]
,
[
π̂h − 1.96

√
Σ̂22, π̂h + 1.96

√
Σ̂22

]
,

where Σ̂ij is the corresponding element in the matrix Σ̂.

4.3. Over-identified test and backward variables selection

In practice, one can question the validity of Assumption 4. The GMM

method provides a test, the over-identified or J-test, when we have more than

three covariates. The J-statistics is

J = ng(θ̂n)TW (θ̂n)−1g(θ̂n) χ2(2k − 2k − 2).

When the p-value of the proposed J-statistics is smaller than a pre-specified

significant level, usually 0.05, we can reject Assumption 4.

In general, many symptoms may be collected in a clinical trial. We can use

the backward selecting method with the J-test to select appropriate ones. The

covariate selection procedure is as follows:

1. Initialize Xnew = X.

2. Calculate the J-test statistics and its p-value with the covariates Xnew; if

the p-value is bigger than 0.05 or dim(Xnew) ≤ 4, then stop; if not, go to

step 3.

3. Remove the r-th component Xnew,r from Xnew, saying Xnew,−r, where r =

1, · · · , dim(xnew), and calculate the corresponding J-statistics Jr and p-

value pr; update

Xnew = Xnew,−r̃, where r̃ = arg max
r
pr.

Then go back to step 2.

If the finial p-value is smaller than 0.05, then Assumption 4 may not hold.



148 YUNJIAN YIN, XIAO-HUA ZHOU, ZHI GENG AND FANG LU

5. Simulation Studies

In this section, we report the results of two simulation studies. We evaluated

the performances of the “CI” estimators when the “CI” assumption holds and

does not hold. The performance was measured by bias, and bias percentage,

which was defined by 100 ×
∣∣bias/true value

∣∣%. We also estimated the average

asymptotic standard error (ASE), the empirical standard error (ESE), and the

coverage of 95% confidence intervals. We also compare the average length of the

confidence intervals (ALCIs) of the “LE” bounds and the “CI” estimators under

different sample sizes.

In the first simulation study, we generated 1000 samples for several indepen-

dent variables: (T,G, ξ, ξk, k = 1, 2, 3, 4). Here T was the binary treatment as-

signment with P (T = 1) = 0.5, and G was the principal stratum, which followed

a multinomial distribution with the cell probability
{
P (G = g), g = a, b, h, n

}
=

(0.4, 0.3, 0.2, 0.1). According to the definition of G, both potential outcomes, Y0
and Y1, are determined once G is determined; and ξ, ξ1, ξ2, ξ3, and ξ4 were gener-

ated independently from the standard normal distribution. We then constructed

the covariates as follows:{
In the subgroup G = g, X̃k = µg + αg,kξ + ξk, k = 1, 2, 3, 4, g = a, b, h, n,

Xk = I(X̃k > 0).

We set µ = (µa, µb, µh, µn) = (1, 0.3,−0.4,−1), αb = (αb,1, αb,2, αb,3, αb,4) =

(1.5,−1, 1,−1.2), αh = (αh,1, αh,2, αh,3, αh,4) = (−1.2, 1, 0.5,−2), and αa =

(αa,1, αa,2, αa,3, αa,4) = αn = (αn,1, αn,2, αn,3, αn,4) = γ · (1, 1, 1, 1). The “CI”

assumption holds when γ = 0. As γ increases from 0, the correlation between

(X1, · · · , X4) conditional onG = a, n increases. Larger values of γ can cause large

violations of Assumption 4, which can induce large bias in the “CI” estimators.

With each data set, we calculated the J-test statistics and the corresponding

p-value. If the p-value was smaller than 0.05, the “CI” assumption was rejected.

We only used the data sets for which the p-values were greater than 0.05 to assess

the performance of the “CI” estimators. These results are reported in Table 1.

Based on the results in Table 1, we can draw the following conclusions. When

the “CI” assumption holds, γ = 0, the estimators perform very well with small

bias and bias-percentage. The rejection rate is almost 5%, which means the J-test

also performs very well. The ASE is approximated to the ESE and the coverage

is nearly 95%, which means the estimators of the variances also work quite well.

When the “CI” assumption is violated, the power of the J-test increases as

γ increases. When γ < 0.5, the bias and the bias percentage are still small and



ASSESSING THE HETEROGENEITY OF TREATMENT EFFECTS 149

Table 1. The performance of our estimators, J-test and the coverage of 95% confidence
intervals.

γ rejection rate bias percentage bias ASE ESE coverage

0.0 0.053
0.020 −0.006 0.020 0.020 0.944
0.011 −0.002 0.026 0.026 0.953

0.1 0.056
0.020 −0.006 0.020 0.019 0.950
0.008 −0.002 0.026 0.026 0.948

0.2 0.061
0.016 −0.005 0.020 0.020 0.954
0.006 −0.001 0.026 0.026 0.951

0.3 0.068
0.010 −0.003 0.020 0.020 0.953
0.002 0.000 0.026 0.026 0.956

0.4 0.072
0.000 0.000 0.021 0.020 0.959
0.014 0.003 0.026 0.026 0.950

0.5 0.074
0.012 0.004 0.021 0.020 0.956
0.034 0.007 0.026 0.025 0.945

0.6 0.088
0.028 0.009 0.021 0.020 0.940
0.056 0.011 0.026 0.025 0.934

0.7 0.097
0.048 0.014 0.021 0.020 0.914
0.085 0.017 0.026 0.025 0.909

0.8 0.127
0.069 0.021 0.021 0.020 0.863
0.115 0.023 0.026 0.025 0.874

0.9 0.155
0.090 0.027 0.021 0.020 0.781
0.144 0.029 0.026 0.024 0.823

1.0 0.215
0.113 0.034 0.022 0.019 0.676
0.174 0.035 0.026 0.024 0.755

The two elements in some table cells correspond to the TBR (first row in
each cell) and the THR (second row in each cell), respectively.

the coverage of the 95% confidence intervals is almost 95%. Thus, our estimators

are not sensitive to small violation of the assumption here. When γ continues to

increase (γ > 0.5), the bias and the bias percentage do not increase a lot. The

ASE is always approximately equal to the ESE, which means the estimators of

the variances perform very well even when the assumption is violated. However,

when γ > 0.7, the coverage of the 95% confidence intervals decreases rapidly.

In the second simulation study, we compared the performances of the “LE”

bounds and the “CI” estimators under different sample sizes. The simulation

study was conducted in following steps:

Step 1: A set of values for the sample size n was created. Variables T and G

were generated independently: T was generated from a Bernoulli dis-

tribution with P (T = 1) = 0.5, G was generated by randomly drawing

from {a, b, h, n} with probabilities (0.4, 0, 3, 0.2, 0.1). With T and G gen-
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erated, the outcome Y was decided by the definition of G. The covariate

XLE that was used in obtaining the “LE” bounds and the covariates

XCI = (XCI,1, · · · , XCI,4) that was used in “CI” estimators were gener-

ated independently given G. The distribution of XLE was as follows:

P (XLE = 2|G = a) = 1/2, P (XLE = 3|G = a) = 1/2,

P (XLE = 1|G = n) = 1/2, P (XLE = 2|G = n) = 1/2,

P (XLE = 1|G = g) = 1/3, P (XLE = 2|G = g) = 1/3,

P (XLE = 3|G = g) = 1/3, g = b, h.

Assumption 3 is valid by setting S0 = {1}, S1 = {3}. The four compo-

nents of XCI were all binary and were generated independently in the

subgroups G = a, n with the probabilities:

P (XCI,k = 1|G = a) = 0.8, P (XCI,k = 1|G = n) = 0.2, k = 1, 2, 3, 4.

In the subgroups G = b, h, we first generated (ε, ε1, · · · , ε4), mutually

independent and standard normal. The covariates XCI were constructed

as,

In subgroup G = g,XCI,k = I(µg,k + ε+ εk > 0), g = b, h, k = 1, 2, 3, 4,

where µb = (µb,1, · · · , µb,4) = (−1,−0.4, 0.3, 1), µh = (µh,1, · · · , µh,4) =

(1, 0.3,−0.4,−1).

Step 2: With the data {T, Y,XLE}, we estimated the “LE” bounds for the TBR

and the THR. The 95% confidence intervals were estimated by the boot-

strap method described in Section 3. With the data {T, Y,XCI}, we

obtained the “CI” estimates and the confidence intervals for the TBR

and the THR.

Step 3: Step 1 and Step 2 were repeated 1,000 times to estimate the ALCIs of

“LE” bounds and “CI” estimators.

Figure 1 shows the ALCIs for the TBR and the THR under different sample

sizes. We can see that, when the sample size is small, the ALCIs of the “CI”

estimators can be wider than the “LE” bounds. As the sample size increases, the

ALCIs of both methods decrease, but the “CI” estimators method is faster. When

the sample size passes a certain threshold, the ALCIs of the “CI” estimators are

smaller than the “LE” bounds.
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Figure 1. The comparison of the length of the confidence intervals for CI estimators and
LE bounds.

6. Analysis of a Randomized Clinical Trial

We applied the proposed methods to estimate the TBR and the THR of a

drug that treats acute bronchitis. The data was from a randomized, double-blind,

placebo-controlled clinical trial. In the original study, subjects were assigned to

one of three groups: the high dose group, the low dose group and the placebo

group. To illustrate the proposed method, we focused on the effect of the high

dose (“treatment”) versus placebo. The study sample consisted of 155 patients

with acute bronchitis. The outcome of interest was the sum of the scores for

three ordinal-scale symptoms: the cough (0 for no cough, 1 for a small cough, 2

for frequent cough which mildly affects the daily activities, 3 for frequent cough

which seriously affects the daily activities), the amount of expectoration (0 for

less than 10ml a day, 1 for between 10ml and 50ml a day, 2 for between 50ml and

100ml a day, 3 for more than 100ml a day), and the quality of expectoration (0 for
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none, 1 for white expectoration and easily coughed up, 1 for yellowish and hard

to cough up, 2 for yellow and hard to cough up). Let Z1 and Z2 denote the sum

of three symptom scores at baseline and the end of the trial, respectively, and

Z = (Z1 − Z2)/Z1, representing the percentage decline relative to the baseline;

since Z1 is always strictly bigger than 0 in the trial, Z is well defined. If Z > 70%,

the drug is considered effective. We focused on Y = I(Z > 70%), where I(·) is

the indicator function. We considered the individual to be cured if Y = 1, and

not cured if Y = 0. The randomization in this trial can be used to estimate

the ATE, which is estimated at 0.472. The treatment has a better average effect

than the placebo. But there may still exist individuals who are harmed by the

treatment. We applied the methods proposed in this paper to obtain the bounds

and estimations for the TBR and the THR under different assumptions.

We estimated the “LE” bounds described in Section 3.1. Acute bronchitis is a

kind of bronchial mucosal inflammation which is closely related to symptoms like

fever, buccal thirst, throat itching, runny nose, dry stool, urine yellow, lung rale,

tongue picture, and pulse condition. For each of these nine symptoms, we had

a corresponding indicator covariate {Xi, i = 1, 2, . . . , 9} with Xi ∈ {0, 1}, where

1 stands for the presence of the corresponding symptom and 0 for not present.

Let XLE be the sum of these nine covariates, so XLE ∈ {0, 1, 2, . . . , 9}. The

larger XLE, the more serious acute bronchial the individual has. It is reasonable

to assume that a individual with a relatively large XLE would not be in the

“always recover” group and that a individual with a relatively small XLE would

not be in the “never recover” group. We chose different sets for S0 and S1: for

0 ≤ m0 < m1 ≤ 9, S1 = {0, 1, . . . ,m0} and S0 = {m1, . . . , 8, 9}.
The estimated “LE” bounds of the TBR and the THR under different values

of m0 and m1 are shown in Table 1 in the supplementary materials. From the

table, as m0 increases or m1 decreases, the bounds become narrower. This agrees

with what we have seen previously, since larger values of m0 and smaller values

of m1 lead to smaller values of P (X ∈ S2).
The individual is considered to have slight bronchitis if XLE ≤ 1 and very

serious bronchitis if XLE = 9. Thus, it seems reasonable to set m0 = 1 and

m1 = 9. Under this setting, we have the estimated “LE” bounds for the TBR

and the THR, as [0.498, 0.706] and [0.013, 0.221], respectively. The confidence

intervals obtained by the bootstrap method are [0.358 0.797] and [0.000 0.306],

respectively. It is also notable that the lower bound of the confidence interval

for the TBR is larger than 0, which is a strong evidence that there exist at least

35.8% of individuals who can benefit from the treatment.
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We used the “CI” method to estimate the TBR and the THR by assuming

there exist at least three covariates that are independent conditional on G = a, n.

The p-values of the J-test with the following combinations of symptoms are larger

than 0.05:

1. (runny nose, dry stool, urine yellow, tongue picture),

2. (runny nose, dry stool, urine yellow, pulse condition),

3. (runny nose, dry stool, tongue picture, pulse condition),

4. (runny nose, urine yellow, tongue picture, pulse condition),

5. (dry stool, urine yellow, tongue picture, pulse condition).

Only the fourth combination leads to a significant result for the TBR and the

THR with the estimates 0.626 and 0.186, respectively, and the corresponding

95% confidence intervals (CI) [0.221, 1.000] and [0.000, 0.576], respectively. For

the other combinations, the 95% CI for the TBR and the THR are all [0.00,

1.00], which may be due to the small sample size. The significant result shows

a strong confidence that at least 22.1 percent of the population can benefit from

the treatment.

The confidence intervals of the “LE” bounds are narrower than the “CI”

estimators. This is consistent with the conclusion in the simulation study.

7. Discussion

Randomization is an effective tool to obtain the average causal effect of

treatment versus control, but it is still important to assess the heterogeneity

of treatment effects in the population. One way to characterize the treatment

heterogeneity is to study the TBR and the THR. In this paper, we have proposed

two methods for this. The “LE” bounds need covariates that can exclude the

“always recover” stratum or the “never recover” stratum when the covariates

belong to certain set; the “CI” assumption calls for at least three covariates

that are independent in the “always recover” subgroup and the “never recover”

subgroup.

For the “CI” estimators, we use more than three binary covariates {X1, · · · ,
Xk; k ≥ 3}. When the observed covariate Xj is continuous or discrete with

many values, we can dichotomize it by defining new covariate X̃j = I(Xj >

cj) with a well-chosen constant cj . Denote the optional set for cj as Cj , c =

(c1, · · · , ck), C = C1 × · · · × Ck. Denote Σc as the covariance matrix of (π̂b, π̂h)
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when Xj is dichotomized by truncating at cj , j = 1, · · · , k. We choose the optimal

c by minimizing the sum of the variances of π̂b and π̂h, copt = arg minc∈C tr(Σc),

where tr(A) is the trace of A. In practice, to reduce the computation burden, we

can choose Cj to be some sample quantiles of Xj .

In practice, we may collect various symptoms of the patients to satisfy As-

sumption 4. The suggestion is to use the covariate selection procedure described

in Section 4.3 to choose appropriate covariates, and then estimate the TBR and

the THR by the method proposed in Section 4.2. We can also estimate the “LE”

bounds of the TBR and the THR and their confidence intervals by choosing S0
and S1. With the estimated confidence intervals of these two methods, we can

choose the narrower intervals to get sharper inferences of the TBR and the THR.

The validation of Assumption 4 limits the use of the “CI” estimators. In

many subgroup analyses, the covariates that define subgroups of patient popula-

tions are some biomarkers that often are not caused by the disease. It may not

be reasonable to assume such covariates are independent given the latent prin-

ciple strata unless the biomarkers of subgroups are some disease-caused factors.

Nevertheless, usually there are many symptoms collected in a clinical trial which

can be used as the possible covariates in Assumption 4.

Supplementary Materials

Refer to Web version on PubMed Central for supplementary materials.
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