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Abstract: Although asymptotic nonparametric confidence bands have been con-

structed in the last decade in some inverse problems, like density deconvolution,

inverse regression with a convolution operator, and regression with errors in vari-

ables, there seems to be no such construction for practically important inverse

problems of stereology. Working with a kernel-type nonparametric estimator of the

density of squared radii in the stereological Wicksell’s problem, we partially fill this

gap by constructing some corresponding asymptotic uniform confidence bands and

an automatic bandwidth selection method, tuned to perform well in finite samples

in terms of both area and coverage probability of the confidence bands. The per-

formance of the new procedures is investigated in simulations and demonstrated

with some astronomical data related to the M62 globular cluster.

Key words and phrases: Abel integral equation, ill-posed inverse problem, kernel

methods, nonparametric curve estimation, stereology.

1. Introduction

Consider a population of spheres of random radii, randomly distributed in

some three-dimensional opaque medium. The goal is to estimate the density

of those spheres radii, when data are available only from a random plane slice

through the medium. This problem, first posed by Wicksell (1925), became a

classical problem in stereology. A rigorous treatment using marked point pro-

cesses formalism, along with many applications in diverse areas, e.g., in biology,

astronomy, geology and metallurgy, can be found, e.g., in Chiu et al. (2013), and

in the references given there.

Throughout this paper, as in, e.g., Hall and Smith (1988), Golubev and Levit

(1998), Antoniadis, Fan and Gijbels (2001) and others, we consider squared radii

of both the unobserved spheres of interest and the observed circular sections,

which is more convenient mathematically and sometimes also more natural to

interpret. As noted by Hall and Smith (1988, p. 411), “the practical motivation

is that the squared radius is proportional to the observed cross-sectional area,
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which may be easier to measure than the radius.” It is clear, however, that the

results obtained for squared radii can easily be transformed back to the original

problem.

More specifically, let f and g denote, respectively, the density of the squared

spheres radii and the density of the observable squared circles radii. Then (see,

e.g., Hall and Smith (1988) or Groeneboom and Jongbloed (2014, Sec. 4.1))

g(y) =
1

2m

∫ ∞
y

(x− y)−1/2f(x) dx, y ≥ 0, (1.1)

where m = 2
∫∞

0 x2f(x2) dx is the mean sphere radius. Equation (1.1), with

temporarily fixed m, is a special case of the Abel integral equation and is related

to fractional integration of order 1/2 (see, e.g., Andersen and de Hoog (1990)).

The solution, when it exists, is given by

f(x) =
−2m

π

d

dx

∫ ∞
x

(y − x)−1/2g(y) dy, x ≥ 0, (1.2)

and corresponds to half-differentiation of g.

In standard L2-settings, the problem of unfolding f from g is ill-posed and

requires some regularization. This is because the integral operator in (1.1) is

compact, with its singular values approaching zero at the rate i−1/2, and, conse-

quently, the inverse operator in (1.2) is unbounded. Another way of looking at

the difficulty of unfolding the balls radii distribution is to formulate the problem

as that of estimating the cumulative distribution function, say F , rather than the

density f . Then, see, e.g., Exercise 4.2 in Groeneboom and Jongbloed (2014),

F (x) = 1−
∫∞
x (z − x)−1/2g(z) dz∫∞

0 z−1/2g(z) dz
.

A natural estimator of F , obtained via replacement of g(z) dz with dGn(z), where

Gn is the empirical distribution of the observed squared radii, is, however, neither

monotone nor even bounded. This can naturally be handled with isotonization,

which leads to attractive estimators of F as well as to asymptotic and bootstrap

pointwise confidence intervals (see Groeneboom and Jongbloed (1995) and Sen

and Woodroofe (2012)). In this paper, however, we concentrate on the classical

Wicksell’s problem of estimating the density function.

There are many different approaches to solving the Wicksell’s problem. For

a comprehensive overview of existing methods, see, e.g., Ripley (1981, Sec. 9.4)

and Chiu et al. (2013, Sec. 10.4.2). With our main goal of constructing confidence

bands for f and given available analytical techniques, we concentrate on kernel-

type estimators. Taylor (1983) was the first to introduce a kernel-based approach
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to this problem. He suggested estimating the density of interest by unfolding a

kernel estimator of g, derived from the observed profiles. Hall and Smith (1988)

investigated theoretical properties of Taylor’s estimator and showed that it is

pointwise optimal in the minimax sense. An alternative method was proposed

by van Es and Hoogendoorn (1990). They postponed the kernel smoothing until

after the inverse transformation step, but concluded that there is no reason to

generally prefer one of the two possible orders of estimation and smoothing steps

over the other. Golubev and Levit (1998) derived a kernel-based approach to

estimating the distribution function of the squared spheres radii.

Confidence bands provide the most informative way of quantifying the accu-

racy of estimators in various problems of function estimation. Much effort has

been put to the construction of confidence bands in direct problems, starting

with the pioneering work of Bickel and Rosenblatt (1973), who constructed con-

fidence bands for the density function of independent and identically distributed

observations. Since then, their method has been further developed and applied

to various setups. For reviews of papers on this topic, see Bissantz et al. (2007),

Birke, Bissantz and Holzmann (2010) and Proksch, Bissantz and Dette (2015).

Adaptivity issues in constructing confidence bands for a density were addressed

by Giné and Nickl (2010).

Work on construction of nonparametric confidence bands in the inverse prob-

lem setup has started only recently. The first step in this direction seems to be

the work by Bissantz et al. (2007), who constructed asymptotic and bootstrap

confidence bands in ordinary smooth deconvolution problems. Since then, sev-

eral related works have been published. For example, Bissantz and Holzmann

(2008) and Lounici and Nickl (2011) restudied the construction of confidence

bands in deconvolution density estimation problems. Birke, Bissantz and Holz-

mann (2010) provided confidence bands in a one-dimensional indirect regression

model with a convolution operator. Methods for constructing confidence bands

in a nonparametric errors-in-variables regression were developed by Delaigle, Hall

and Jamshidi (2015). Recently, Proksch, Bissantz and Dette (2015) constructed

confidence bands for the regression function in an inverse regression model with

a convolution-type operator and with, for the first time, a multivariate predictor.

Stereological problems constitute an important subclass of inverse problems.

However, despite their practical importance, confidence bands for densities in

stereological problems have apparently not been considered so far. The purpose

of this paper is to partially fill this gap by constructing asymptotic confidence

bands in one of the most popular problems of stereology—the Wicksell’s corpuscle
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problem. To achieve this, we use a kernel-type estimator and, following Bickel

and Rosenblatt (1973) and Bissantz et al. (2007), construct asymptotic confidence

bands that are based on strong approximations and on a limit theorem for the

supremum of a stationary Gaussian process. It should be stressed here that,

although (1.1) resembles a convolution of f with the density ψ(z) = 1/(2
√
−z),

z ∈ [−1, 0), the Wicksell’s problem is not a deconvolution problem, because the

convoluted density is additionally lower truncated at zero and renormalized.

To be fully practicable, our method requires an algorithm for choosing the

bandwidth. We propose a modification of the data-driven bandwidth selection

procedure introduced by Bissantz et al. (2007), focusing on ensuring a good finite-

sample performance in terms of both the coverage probability and the size of the

resulting confidence bands.

The outline of the paper is as follows. The kernel-type estimator and the

basic assumptions are presented in Sections 2.1 and 2.2, respectively. Section 2.3

contains asymptotic results needed for construction of confidence bands. Section

3 is devoted to a numerical implementation of our procedures (with a data-

driven choice of the bandwidth) and reports on some Monte Carlo experiments.

In Section 4, we illustrate our approach on some data in a closely related globular

cluster problem of astronomy. Proofs are given in the Appendix and in the online

Supplement.

2. Confidence Bands

In this section, the main result of this article is presented: the construction

of asymptotic confidence bands for f on a compact subset of its support.

2.1. Central estimator

The confidence bands are constructed around the Hall and Smith (1988)

version of the kernel-type estimator originally proposed by Taylor (1983). In

order to estimate the density of the squared spheres radii from the observed

squared radii Y 2
1 , . . . , Y

2
n of circular profiles, the ordinary kernel estimator ĝn of

the density g,

ĝn(y) =
1

nh

n∑
i=1

K0

(
y − Y 2

i

h

)
, y ≥ 0,

is substituted to (1.2), which gives an estimator of f of the form

fn(x) =
−2m

π

d

dx

∫ ∞
x

(y − x)−1/2ĝn(y) dy, x ≥ 0.
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For a regular kernel K0, it can be transformed to an easily computable kernel

form

fn(x) =
−2m

nh3/2π

n∑
i=1

K

(
x− Y 2

i

h

)
, x ≥ 0, (2.1)

with the kernel

K(x) =

∫ ∞
0

y−1/2K ′0(y + x) dy, x ∈ R. (2.2)

The estimator defined in this way depends on the parameter m, which is

usually unknown in practice. One possible remedy to that is to confine oneself

to estimating f/m instead of f (cf., e.g., van Es and Hoogendoorn (1990)). If

necessary, the estimator of f/m can be rescaled to a density. In our theoretical

results and simulations, however, m is replaced with an appropriate estimator

m̂.

Hall and Smith (1988) showed that, with sufficiently regular kernel, Taylor’s

estimator is pointwise optimal in the minimax sense for the class of k-times

boundedly differentiable densities f . As the upper bounds are uniform in x, they

can also be used to produce upper bounds for the L2-risk. Those coincide with

known lower bounds of the order of n−2k/(2k+2), which means that the estimator

is rate minimax also in the global L2-sense. For the construction of confidence

bands, however, this aspect is only of secondary importance, and is not discussed

here in any more detail.

2.2. Assumptions

In the Wicksell’s corpuscle problem, it is typically assumed that the density

f (and hence also g) has a bounded support [0, R]. Without loss of generality,

we assume here R = 1. For reasons explained, e.g., by van Es and Hoogendoorn

(1990), the density f cannot be reliably estimated in a vicinity of zero. Also,

because of technical reasons, we need a positive lower bound for g, which means

that arguments in a neighbourhood of one must be excluded. Therefore, the

confidence bands will be constructed on an interval [a, b] ⊂ [0, 1], with a > 0 and

b < 1.

In the sequel, we impose the following regularity conditions.

Assumptions on the kernel:

(1a) For some integer k ≥ 1, K0 is a kernel of order at least k, supported and

differentiable on [−1, 1].

(1b) The kernel K defined in (2.2) is differentiable, integrable, square integrable,
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and satisfies

K(x)|x|1/2[log log |x|]1/2 → 0, when |x| → ∞.

Moreover, K ′ is square integrable and for some α > 0 satisfies∫
|K ′(x)||x|1/2+α dx <∞.

Assumptions on the problem:

(2a) The density g is bounded away from zero on [a, b] and g1/2 is differentiable

with bounded derivative on [0, 1].

(2b) For k as in assumption (1a), f is (k − 1)-times continuously differentiable

in [0, 1] and there exists bounded f (k) in (0, 1).

The biweight kernel K0(x) = (15/16)(1− x2)2I[−1,1](x), with I denoting the

indicator function, is an example of a kernel function that satisfies assumptions

(1a) and (1b) with k = 2. This function is used in our simulation studies in

Section 3 and in the real data example in Section 4. Verification of assumption

(2a) for some given f can be difficult, because it is expressed in terms of g, related

to f at (1.1). By a direct calculation, this can be done for, e.g., densities of the

beta distribution. For more details, see Section 3.

2.3. Main results

Adapting the Bickel-Rosenblatt methodology, we start with investigating the

limiting distribution of the supremum of the process

Yn(t) = − n1/2hπ

2mg(t)1/2
[fn(t)− E {fn(t)}] , t ∈ [a, b],

where the estimator fn is defined in (2.1). Denote with ‖·‖ the sup-norm on the

chosen interval [a, b]. The following theorem is proved in the Appendix.

Theorem 1. Under assumptions (1b) and (2a), if h→ 0 and nh/(log n)3 →∞,

then, for each x ∈ R,

P

[2 log

(
1

h

)]1/2
‖Yn‖
C

1/2
K,1

− dn

 < x

→ exp{−2 exp(−x)},

where

dn =

[
2 log

(
1

h

)]1/2

+
log{C1/2

K,2

/
(2π)}

[2 log(1/h)]1/2
,

CK,1 =

∫
K(x)2 dx, CK,2 =

b− a
CK,1

∫
K ′(x)2 dx.
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If m and g(t) with t ∈ [a, b] were known, confidence bands for E (fn) would

directly follow from Theorem 1. (We will propose appropriate estimators for m

and g(t) later.) To construct confidence bands for f , one has to control the bias

of fn. We achieve that by undersmoothing, as in Bissantz et al. (2007), Bissantz

and Birke (2009), Birke, Bissantz and Holzmann (2010), and Proksch, Bissantz

and Dette (2015) (cf. also Giné and Nickl (2016, Sec. 6.4.2)). This means, in

our case, choosing a bandwidth that converges to zero faster than n−1/(2k+2),

which is the rate of the optimal bandwidth in the mean squared error sense

(Hall and Smith (1988)). The choice of sufficiently small bandwidths assures the

same limiting behaviour of fn(t) − E {fn(t)} and fn(t) − f(t) (see the proof of

Corollary 1 in the online Supplement). There are also some theoretical arguments

implying that undersmoothing should be a preferable method when constructing

confidence intervals (see Hall (1992)). For an alternative approach to controlling

the bias, see, e.g., Eubank and Speckman (1993), where the bias is explicitly

estimated and substracted.

Hall and Smith (1988) proved that

E {fn(x)} =

∫
K0(z)f(x− hz) dz.

Therefore, the mean of fn has the same form as the mean of the ordinary kernel

estimator with the kernel K0. Consequently, standard reasoning based on the

Taylor expansion of f (see, e.g., Silverman (1986, Sec. 3.3.1)) shows that, under

our assumptions,

|E {fn(x)} − f(x)| = O(hk), (2.3)

uniformly in x ∈ [a, b]. To continue the construction, one needs to estimate the

unknown density g of the observations. We assume that this is done using an

estimator g̃n, not necessarily equal to ĝn, that satisfies

‖g̃n − g‖ = op

(
1

log(1/h)

)
, (2.4)

where h is the bandwidth chosen for the construction of the estimator fn of f .

Further, one needs to estimate the unknown mean m. Assume that this is done

with an estimator m̂ such that, for all ε > 0,

m̂−m = Op(n
−1/2+ε). (2.5)

Examples of such estimators g̃n and m̂ are given at the end of this section.

Denote with f̂n the estimator obtained from fn by replacing m in the defi-

nition (2.1) with m̂,
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f̂n(x) =
−2m̂

nh3/2π

n∑
i=1

K

(
x− Y 2

i

h

)
. (2.6)

The confidence bands constructed in this way have the form given in the following

corollary, proved in the online Supplement.

Corollary 1. Let g̃n be an estimator of g satisfying (2.4) and let m̂ be an es-

timator of m satisfying (2.5). Under assumptions (1a), (1b), (2a), and (2b), if

h → 0 in such a way that n−1+δ log(1/h) = O(1), nδh log(1/h)1/2 = O(1) for

some δ > 0, n1/2hk+1 log(1/h)1/2 → 0, and nh2/ log(1/h) → ∞, then, for each

x ∈ R,

P (f̂n(t)−bn(t, x) ≤ f(t) ≤ f̂n(t) + bn(t, x) for all t ∈ [a, b])→ exp{−2 exp(−x)},
(2.7)

where

bn(t, x) =
2m̂g̃n(t)1/2C

1/2
K,1

n1/2hπ

[
x

[2 log(1/h)]1/2
+ dn

]
,

and the constants CK,1 and dn are defined in Theorem 1.

The assumptions imposed above on the rate of convergence of h to zero

can be met simultaneously. For example, for all δ ∈ (0, 1/2), a bandwidth of

the form h = n−γ , with any γ ∈ (max{δ, 1/(2k + 2)}, 1/2), satisfies them. The

width of the confidence bands is of the order of
[
log(1/h)/(nh2)

]1/2
, and hence

the condition nh2/ log(1/h) → ∞ ensures that the width converges to zero as

n→∞.

With h = n−γ , the convergence-in-probability condition (2.4) reduces to

‖g̃n − g‖ = op(1/ log n), which is satisfied by kernel estimators in typical cases,

in which E‖g̃n− g‖ decays as n−β, with some β > 0 (cf., e.g., Dony and Einmahl

(2006)).

Condition (2.5) is satisfied, for example, by the estimator

m̂ =
nπ

2

(
n∑
i=1

Y −1
i

)−1

, (2.8)

if the distribution of the spheres radii has finite variance (Ripley (1981, Sec. 9.4);

Hall and Smith (1988)).

3. Implementation and Simulations

Finite sample performance of the proposed asymptotic confidence bands and

of data-driven bandwidth selection algorithms was investigated in Monte Carlo

experiments. The simulations were conducted in the R environment, version
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3.2.0. All results are based on 1, 000 simulation runs. For the unknown proba-

bility density f , nine functions supported on [0, 1] were considered:

Decreasing B(1, 3) f(x) = 3(1− x)2,

Unimodal B(2, 4) f(x) ∼ x(1− x)3,

Unimodal B(5, 3) f(x) ∼ x4(1− x)2,

Bimodal BM1 0.55 ·B(3, 7) + 0.45 ·B(7, 3),

Bimodal BM2 0.45 ·B(6, 13) + 0.55 ·B(15, 8),

Constant Unif f(x) = 1,

Increasing B(2, 1) f(x) = 2x,

Triangular TR f(x) = 4xI[0,0.5] + 4(1− x)I(0.5,1],

Step function SF f(x) = 0.6I[0,1/3] + 0.9I(1/3,0.75] + 1.7I(0.75,1],

where B(α, β) stands for the beta distribution. The first five functions satisfy

the assumptions formulated in Section 2.2. The last four densities do not satisfy

the assumptions and were included to check the performance of the confidence

bands, when some of the conditions are violated. An additional difficulty with

SF (taken from Dudek and Szkutnik (2008)) is that it is not continuous.

Given a density function f of the squared spheres radii, artificial data samples

from the density g of the squared circles radii were generated with the following

algorithm. Pairs (R2, Z) of independent random variables were generated: R2

from the density f and a distance Z from the ball center to the slicing plane,

uniformly distributed on [0, 1]. For Z > R the points were dropped; otherwise,

R2 − Z2 were taken as the observed squared circles radii.

B(α, β)-distributed random numbers were computed with the function rbeta()

from the R package stats. The variates from densities TR and SF were computed

from the uniform ones by inversion of the corresponding cumulative distribution

function. All uniform variates were generated using the function runif() from

the R package stats.

In order to construct the confidence bands (2.7), we first estimated f with the

estimator (2.6), with K obtained from the biweight kernel K0(x) = (15/16)(1−
x2)2I[−1,1](x) according to (2.2), with a data-driven bandwidth h chosen as de-

scribed in the next subsection, and with the estimator m̂ defined at (2.8). The

Epanechnikov kernel, for which K has a simpler form, does not satisfy assumption

(1b), and for that reason it is not used here; nevertheless, it was tried in simula-

tions and performed comparably to the biweight kernel. As g̃n, we tried kernel

estimators with several kernels and several bandwidth choice methods. Extensive

simulations, not reported here, showed that all of them produced similar results.



102 JAKUB WOJDY LA AND ZBIGNIEW SZKUTNIK

Therefore, we finally used the computationally cheap estimator implemented in

the R function density() with a Gaussian kernel and a simple rule-of-thumb

for choosing the bandwidth, implemented in the function bw.nrd0() from the R

package stats. Finally, confidence bands on the interval [a, b] = [0.1, 0.9] were

constructed according to Corollary 1.

3.1. Bandwidth selection

It is known that bandwidth selection is crucial for the quality of nonpara-

metric confidence bands (Bissantz et al. (2007); Bissantz and Holzmann (2008);

Birke, Bissantz and Holzmann (2010)).

Figure 1 presents simulated coverage probabilities and average areas of nom-

inal 90% confidence bands as functions of the bandwidth h for the true functions

B(5, 3) and BM1, and for sample size n = 5,000. The area of the confidence

bands has been normalized such that its maximum value always equals one. The

results are similar to those obtained previously for density deconvolution (Bis-

santz et al. (2007, Fig. 1)) and for inverse regression model (Birke, Bissantz and

Holzmann (2010, Fig. 1)). For proper determination of the confidence bands, the

bandwidth should be chosen somewhat smaller than the L∞-optimal bandwidth,

which corresponds to the minimum of the dotted curve (representing the mean

L∞-error ‖fn,h − f‖ as a function of h). This finite sample undersmoothing in

the L∞-sense corresponds to the asymptotic undersmoothing in the L2-sense in

Corollary 1 (cf. also the discussion directly following Theorem 1).

In practice, however, the true function f , used to produce the dotted curves,

is not known and the estimation of the L∞-optimal bandwidth is not straightfor-

ward. Standard data-driven bandwidth selection procedures for kernel density

estimators usually tend to produce oversmoothed estimators, and cannot be used

directly when constructing uniform confidence intervals. Bissantz et al. (2007)

proposed a L∞-based bandwidth selector for the density deconvolution problem,

which was later successfully applied also by Bissantz and Holzmann (2008), Birke,

Bissantz and Holzmann (2010) and Proksch, Bissantz and Dette (2015).

The algorithm of Bissantz et al. (2007) is based on the practical observa-

tion that, in the deconvolution problem studied by them, “the bandwidth, where

d
(∞)
j−1,j changes its slope suddenly, is a good indicator of the bandwidth which

minimizes the L∞-distance between the true function and the estimator”, where

d
(∞)
j−1,j denotes the L∞-distance between estimators f̂n,hj−1

and f̂n,hj
for two adja-

cent bandwidths hj−1, hj on a sufficiently dense grid (cf. Figures 2, 3 in Bissantz

et al. (2007)). They concluded that, in the density deconvolution problem, such
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Figure 1. Simulated coverage probability (——) and normalized average area (– –
–) of asymptotic confidence bands with a nominal coverage probability of 90% for the
densitiesB(5, 3) (left) and BM1 (right) for 5,000 observations. The dotted curves (· · · · · · )
represent the mean L∞ estimation errors and the horizontal dotted lines indicate the
nominal coverage probability.

hj works satisfactorily as a data-driven bandwidth in finite samples, in spite of

theoretically motivated need for asymptotic undersmoothing.

Our preliminary simulations showed, however, that this algorithm, when

applied to Wicksell’s problem, often selects too small bandwidths and, as a re-

sult, the corresponding confidence bands are too wide. This usually happens for

unimodal or flat densities. We thus had to modify the original algorithm.

Figure 2 shows, for four different samples, the plots of the L∞ estimation

errors for the densities B(5, 3) and BM1. For the same data sets, Figure 3 shows

the L∞-distances d
(∞)
j,j+1 as function of the bandwidths computed on the grid

hj = h0j/20, for j = 1, . . . , 20 and h0 = 0.2. Figures 2 and 3 suggest that in our

problem the smallest hj , for which d
(∞)
j,j+1 < d

(∞)
j+1,j+2, say h∗, is usually somewhat

smaller than the bandwidth that minimizes the estimation error ‖f̂n,h − f‖ and

may possibly be a good candidate for a data-driven bandwidth in our problem.

This conjecture was further confirmed in our extensive simulation studies (not

reported here), in which our proposal was compared with the original algorithm

of Bissantz et al. (2007). Except for BM2 and SF, the coverage probabilities for

the confidence bands were satisfactory for both algorithms. However, the areas

of confidence bands produced with our h∗ tended to be significantly smaller.

For example, for nominal 90% coverage probability and n = 5, 000, the average
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Figure 2. The L∞ estimation error for densities B(5, 3) (left) and BM1 (right) as function
of the bandwidth h, for four different samples of size 5,000.

Figure 3. The L∞-distance d
(∞)
j,j+1 between the estimates f̂n,hj

and f̂n,hj+1
of B(5, 3)

(left) and BM1 (right) as function of the bandwidths hj , using the same curve style and
the same samples as in Figure 2.

reduction of the areas with respect to those obtained with bandwidth selected

with the method of Bissantz et al. (2007) amounted to 50.6%, 38.1%, 7.8%,

27.4%, 32.0%, 8.9%, and 17.3%, respectively, for B(1, 3)÷BM1 and Unif÷TR.

Although the existence of h∗ is not generally guaranteed, it existed in almost

all cases studied in our simulations (96.7% for B(5, 3), 94.8% for BM2, and 100%

in all remaining cases, with n = 5, 000, h0 = 0.2, J = 20, and 1, 000 runs for each

f). Moreover, it was always tightly related to the bandwidth, say h∞, optimal in

the L∞ error sense. For example, for B(5, 3) and n = 5, 000, the mean value of

the quotient h∗/h∞ amounted to 0.76, with the variance of its distribution equal

to 0.03.
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Taking those observations into account, we suggest the following procedure

for a data-driven bandwidth selection.

1. Choose some oversmoothing pilot bandwidth h0.

2. If the density of interest is expected to be unimodal or arbitrary, but rather

flat, compute f̂n,hj
for a grid of J-values hj = h0j/J , j = 1, . . . , J , with

J ≈ 20 and choose the bandwidth as the smallest hj such that d
(∞)
j,j+1 <

d
(∞)
j+1,j+2, if such hj does exist. Otherwise, select the bandwidth using the

algorithm from Bissantz et al. (2007), with the pilot bandwidth h0, J ≈ 20,

and τ ≈ 2.

When selecting h0, it is important to guarantee it is oversmoothing. In all simu-

lations reported in this article, h0 = 0.2 was used and proved satisfactory for all

sample sizes and all densities. The same holds true for the selected values of J

and τ . The impact of varying parameters on the selected bandwidth is discussed

in detail by Bissantz et al. (2007).

In simulation studies reported in this section, the BM2 and SF functions

were treated as “not expected to be unimodal or flat”, which means that the

original method of Bissantz et al. (2007) was used in those cases (with J = 20

and τ = 2.1).

3.2. Simulation results

Tables 1 and 2 show the simulated coverage probabilities and the confidence

band areas for all considered probability densities f , for sample sizes n = 3,000,

5,000, 7,000 and for three levels of nominal coverage probability. Except for

BM2 and SF, the confidence bands perform reasonably well with respect to the

coverage probabilities. For bimodal and relatively rapidly changing BM2, the

procedure properly reconstructs the shape but has problems with covering the

true function, especially at the right tail, which is close to zero. Here BM1, also

bimodal but with less pronounced modes, poses no problems. The problem with

SF is a rather obvious consequence of the lack of continuity. The results in Table

2 indicate that the proposed procedure may perform well even when not all of the

assumptions are satisfied, provided the estimated function is continuous. Figure

4 shows some typical examples of 80% and 95% confidence bands for n = 5,000,

obtained with h chosen with the procedure described in the previous section.

The estimator (2.8) of m was used in the simulation studies described in

this section. In additional simulations, not reported in detail here, three other

estimates of m were investigated. One of them was
∫ 1

0 (1− F̂n(x)) dx, where F̂n is
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Table 1. Simulated coverage probabilities and mean confidence band areas for densities
that satisfy the assumptions and for various sample sizes n. Approximate standard errors
for simulated coverage probabilities are 1.3%, 0.9%, and 0.7%, respectively, for nominal
coverage 80%, 90%, and 95%.

Nominal coverage
80% 90% 95%

Density n Coverage Area Coverage Area Coverage Area
B(1, 3) 3,000 74.6 0.39 86.6 0.43 94.0 0.48

5,000 74.7 0.31 89.4 0.35 94.5 0.38
7,000 76.5 0.26 89.8 0.30 95.4 0.33

B(2, 4) 3,000 71.0 0.47 85.1 0.54 90.3 0.60
5,000 72.1 0.38 85.0 0.43 92.2 0.49
7,000 70.6 0.33 85.1 0.37 91.0 0.42

B(5, 3) 3,000 73.7 0.62 86.9 0.70 92.8 0.77
5,000 73.7 0.51 86.2 0.57 92.5 0.64
7,000 73.5 0.44 88.0 0.50 94.7 0.55

BM1 3,000 76.1 0.61 86.2 0.69 93.2 0.76
5,000 77.2 0.48 88.1 0.55 93.4 0.61
7,000 72.3 0.42 86.4 0.48 93.5 0.51

BM2 3,000 36.8 0.63 50.9 0.71 63.2 0.79
5,000 34.9 0.55 47.6 0.61 60.1 0.68
7,000 36.6 0.50 51.1 0.56 59.7 0.62

Table 2. Similar to Table 1, but for densities that do not satisfy the assumptions.

Nominal coverage
80% 90% 95%

Density n Coverage Area Coverage Area Coverage Area
Unif 3,000 82.3 0.61 91.7 0.69 95.7 0.76

5,000 82.8 0.49 92.8 0.55 97.4 0.61
7,000 81.3 0.41 92.0 0.47 96.6 0.52

B(2, 1) 3,000 76.9 0.65 87.3 0.75 94.9 0.82
5,000 82.8 0.54 90.7 0.61 95.3 0.67
7,000 81.4 0.47 92.7 0.53 95.8 0.59

TR 3,000 75.8 0.60 87.9 0.69 93.8 0.76
5,000 77.1 0.49 88.5 0.55 95.3 0.61
7,000 75.4 0.42 88.2 0.48 94.3 0.53

SF 3,000 47.1 0.82 66.9 0.92 79.1 1.01
5,000 40.8 0.74 60.2 0.82 74.6 0.90
7,000 34.6 0.68 54.4 0.77 67.1 0.83

the isotonic estimator of F proposed by Groeneboom and Jongbloed (1995) (see

also Sen and Woodroofe (2012)). This gave results similar to those obtained with

the estimator (2.8). Norming of the estimator of f/m and norming of its positive
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part (both on [0, 1]) worked, however, considerably worse than plugging-in the

standard estimator (2.8).
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Figure 4. Estimate f̂n along with associated 80% (——) and 95% (– – –) nominal
coverage probability confidence bands of the densities (a) B(5, 3), (b) BM2, (c) TR, (d)
SF. In all cases the sample size is n = 5,000 and the thick solid line represents the true
function.

4. A Real Data Example

Let (X1, X2, X3) denote the random position of a star in a spherically sym-

metric subsystem of a galaxy, with a density of the form ρ(x2
1+x2

2+x2
3). When the



108 JAKUB WOJDY LA AND ZBIGNIEW SZKUTNIK

star is observed through a telescope, only the projected stellar position (X1, X2)

can be observed. Let f1 and g1 denote, respectively, the density of the squared

distance X2
1 +X2

2 +X2
3 of the star to the center of the cluster and the density of

the squared distance X2
1 +X2

2 of the projected position of the star to the center

of the projection plane. Then, it follows from Sen and Woodroofe (2012) that

the relationship between f1 and g1 has the form

f1(x) =
−2
√
x

π

d

dx

∫ ∞
x

(y − x)−1/2g1(y) dy, x ≥ 0,

which is almost identical to (1.2), considered in previous sections, but with
√
x

in place of the unknown m. This makes the astronomical problem slightly eas-

ier than Wicksell’s problem. Obvious modifications of the result formulated in

Corollary 1 give the confidence band for f1:

f̄n(t)− b̄n(t, x) ≤ f1(t) ≤ f̄n(t) + b̄n(t, x), t ∈ [a, b],

where

f̄n(t) =
−2
√
t

nh3/2π

n∑
i=1

K

(
t− Z2

i

h

)
,

b̄n(t, x) =
2
√
tḡn(t)1/2C

1/2
K,1

n1/2hπ

[
x

[2 log(1/h)]1/2
+ dn

]
,

Z2
1 , . . . , Z

2
n are independent observations ofX2

1 +X2
2 , and ḡn is a suitable estimator

of g1.

Globular clusters—compact, tightly bound by gravity groups of hundreds of

thousands of stars, with the highest concentration of stars toward their centres—

provide a good example of (approximately) symmetrical systems of stars. The

study of globular clusters orbiting the core of the Milky Way can provide us with

important clues about the evolution of the Galaxy (see, e.g., Alonso-Garćıa et

al. (2012); Sen and Woodroofe (2012)).

Our analysis is based on 5,000 measurements of the projected positions of

stars in the inner core of the globular cluster M62 (courtesy of B. Sen), the subset

of which (of size 2,000) was previously used by Sen and Woodroofe (2012) for

pointwise estimation of the distribution function of the squared distances in this

cluster. Figure 5 shows the estimators and 95% confidence bands for the density

of the squared distances of the stars of the cluster to its centre, obtained from

the whole sample and from the subsample of 2,000 observations. The interval

was rescaled to [0, 1] and the bands were constructed on [0.1, 0.9] using the proce-

dures proposed here. The result looks consistent with the estimated distribution
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Figure 5. Estimates and associated 95% nominal coverage probability confidence bands
for the density of the squared distances to the centre of the globular cluster M62, obtained
from 2,000 (– – –) and 5,000 (——) observations.

function from Sen and Woodroofe (2012) and, being statistically consistent in the

interval [0.1, 0.9] with an approximately constant function, suggests a density of

stars sharply growing towards the centre of the cluster.

Supplementary Materials

The online supplement contains proofs of Corollary 1 and of Lemma 1, for-

mulated in the Appendix.
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Appendix: Proof of Theorem 1

The general idea of the proof is similar to that of the proofs of Theorem 3.1

of Bickel and Rosenblatt (1973) and of Theorem 1 of Bissantz et al. (2007). The
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Hungarian embedding we employ in this context is well described in Giné and

Nickl (2016, Sec. 5.1.3). The basic idea of the proof is to approximate the process

Yn with a Gaussian process that does not depend in any way on the true density

function f . It is derived in several steps.

Let G denote the distribution function of the observed squared radii of the

circular profiles, and let αGn (t) = n1/2[Gn(t)−G(t)] be the corresponding empiri-

cal process, where Gn is the empirical distribution function based on Y 2
1 , . . . , Y

2
n .

The Komlós-Major-Tusnády approximation (see, e.g., Theorem 4.4.1 in Csörgő

and Révész (1981)) gives the existence of a sequence of Brownian bridges Bn
such that

sup
t∈R
|αGn (t)−Bn{G(t)}| = Op(n

−1/2 log n), n→∞, (A.1)

and Bn(t) = Wn(t)−tWn(1), t ∈ [0, 1], where Wn are standard Wiener processes.

Writing Yn as a Stieltjes integral

Yn(t) =
h−1/2

g(t)1/2

∫ 1

0
K

(
t− x
h

)
dαGn (x), t ∈ [a, b],

and integrating by parts (due to assumption (1b), K ′ is absolutely integrable in

[0, 1]), one obtains

Yn(t) =
h−3/2

g(t)1/2

∫ 1

0
K ′
(
t− x
h

)
αGn (x) dx. (A.2)

Consider two processes that approximate Yn:

Yn,0(t) =
h−1/2

g(t)1/2

∫ 1

0
K

(
t− x
h

)
dBn{G(x)}, t ∈ [a, b],

Yn,1(t) =
h−1/2

g(t)1/2

∫ 1

0
K

(
t− x
h

)
dWn{G(x)}, t ∈ [a, b],

with Bn and Wn as in (A.1). Integrating by parts the stochastic integrals (cf.

Corollaries 8.5 and 8.7 in Klebaner (2005)) and using the fact that K has bounded

variation, since
∫
|K ′(x)| dx <∞ from assumption (1b), one obtains

Yn,0(t) =
h−3/2

g(t)1/2

∫ 1

0
K ′
(
t− x
h

)
Bn{G(x)} dx. (A.3)

From (A.2) and (A.3), substituting u = (t− x)/h, one obtains

|Yn(t)− Yn,0(t)| ≤ h−1/2

g(t)1/2
sup
x∈R

∣∣αGn (x)−Bn{G(x)}
∣∣ ∫ |K ′ (u) | du.

It follows from assumption (2a), (A.1), and assumption (1b) that, as n→∞,

‖Yn − Yn,0‖ = Op(n
−1/2h−1/2 log n). (A.4)
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Further, one has

|Yn,0(t)− Yn,1(t)| ≤ h−1/2

g(t)1/2
sup
x∈[0,1]

|g(x)||Wn(1)|
∣∣∣∣∫ 1

0
K

(
t− x
h

)
dx

∣∣∣∣ .
Substituting u = (t − x)/h and using assumptions (2a), and (1b), one obtains,

as n→∞,

‖Yn,0 − Yn,1‖ = Op(h
1/2). (A.5)

For further approximation steps, define the processes:

Yn,2(t) =
h−1/2

g(t)1/2

∫ 1

0
K

(
t− x
h

)
g(x)1/2 dW (x), t ∈ [a, b],

Yn,3(t) = h−1/2

∫
K

(
t− x
h

)
dW (x), t ∈ [a, b],

where W is a two-sided Wiener process on R.

The processes Yn,0, Yn,1, Yn,2, Yn,3 are well defined (see, e.g., Klebaner (2005,

Chap. 8)), since the corresponding integrands are square integrable on R. For

convenience, suppose that the sample paths of all the processes defined above

belong to D[a, b], the space of cadlag functions on [a, b].

Integration by parts and the substitution u = (t− x)/h give

Yn,2(t) =
h−1/2

g(t)1/2

∫ t/h

(t−1)/h

[
K ′(u)g(t−hu)1/2−hK(u)

g′(t− hu)

2g(t− hu)1/2

]
W (t−hu) du.

(A.6)

The following lemma is proved in the online Supplement.

Lemma 1. Under assumptions (1b) and (2a), with α > 0 as in assumption (1b),

as n→∞,

‖Yn,2 − Yn,3‖ = Op(h
min{α/2,1/2}).

The process {Yn,3(t) : a ≤ t ≤ b} has the same distribution as {
∫
K([(b −

a)t+a]/h− s) dW (s) : 0 ≤ t ≤ 1}. Apply Corollary A1 of Bickel and Rosenblatt

(1973) to the stationary Gaussian process{
C
−1/2
K,1

∫
K

(
(b− a)t+

a

h
− s
)
dW (s) : 0 ≤ t ≤ 1

h

}
.

Theorem 1 now follows from (A.4) and (A.5), Lemma 1, and the fact that Yn,1
and Yn,2 have the same joint laws.
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