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Abstract: We consider two-sample tests for high-dimensional data under two dis-

joint models: the strongly spiked eigenvalue (SSE) model and the non-SSE (NSSE)

model. We provide a general test statistic as a function of a positive-semidefinite

matrix. We give sufficient conditions for the test statistic to satisfy a consistency

property and to be asymptotically normal. We discuss an optimality of the test

statistic under the NSSE model. We also investigate the test statistic under the

SSE model by considering strongly spiked eigenstructures and create a new effec-

tive test procedure for the SSE model. Finally, we discuss the performance of the

classifiers numerically.
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1. Introduction

A common feature of high-dimensional data is that the data dimension is

high, however, the sample size is relatively low. This is the so-called “HDLSS”

or “large p, small n” data, where p is the data dimension, n is the sample size

and p/n→∞. Statistical inference on this type of data is becoming increasingly

relevant, especially in the areas of medical diagnostics, engineering, and other

big data. Suppose we have independent samples of p-variate random variables

from populations πi, i = 1, 2, with unknown mean vectors µi and unknown

positive-definite covariance matrices Σi. We do not assume the normality of the

population distributions. The eigen-decomposition of Σi (i = 1, 2) is given by

Σi = H iΛiH
T
i =

∑p
j=1 λijhijh

T
ij , where Λi = diag(λi1, . . . , λip) is a diagonal

matrix of eigenvalues, λi1 ≥ · · · ≥ λip > 0, and H i = [hi1, . . . ,hip] is an or-

thogonal matrix of the corresponding eigenvectors. Note that λi1 is the largest

eigenvalue of Σi for i = 1, 2. For the eigenvalues, we consider two disjoint models:

the strongly spiked eigenvalue (SSE) model, which will be defined by (1.6), and

the non-SSE (NSSE) model, which will be defined by (1.4).

https://doi.org/10.5705/ss.202016.0063
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In this paper, we consider the two-sample test:

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. (1.1)

Having recorded i.i.d. samples, xij , j = 1, . . . , ni, of size ni from each πi, we

define xini
=
∑ni

j=1 xij/ni and Sini
=
∑ni

j=1(xij −xini
)(xij −xini

)T /(ni− 1) for

i = 1, 2. We assume ni ≥ 4 for i = 1, 2. Hotelling’s T 2-statistic is

T 2 = (n1 + n2)
−1n1n2(x1n1

− x2n2
)TS−1(x1n1

− x2n2
),

where S = {(n1 − 1)S1n1
+ (n2 − 1)S2n2

}/(n1 + n2 − 2). However, S−1 does

not exist in such HDLSS contexts as p/ni → ∞, i = 1, 2. In such situations,

Dempster (1958, 1960) and Srivastava (2007) considered the test when π1 and π2
are Gaussian. When π1 and π2 are non-Gaussian, Bai and Saranadasa (1996) and

Cai, Liu and Xia (2014) considered the test under homoscedasticity, Σ1 = Σ2.

Chen and Qin (2010) and Aoshima and Yata (2011, 2015) considered the test

under heteroscedasticity, Σ1 6= Σ2.

In this paper, we first consider a test statistic with a positive-semidefinite

matrix A of dimension p:

T (A) = (x1n1
− x2n2

)TA(x1n1
− x2n2

)−
2∑
i=1

tr(Sini
A)

ni

= 2

2∑
i=1

∑ni

j<j′ x
T
ijAxij′

ni(ni − 1)
− 2xT1n1

Ax2n2
. (1.2)

Note that E{T (A)} = (µ1−µ2)
TA(µ1−µ2). Let Ip denote the identity matrix

of dimension p. We note that T (Ip) is equivalent to the statistics given by Chen

and Qin (2010) and Aoshima and Yata (2011). We call the test with T (Ip)

the “distance-based two-sample test”. In Section 3, we discuss a choice of A.

We consider the divergence condition p → ∞, n1 → ∞ and n2 → ∞, that is

equivalent to

m→∞, where m = min{p, nmin} with nmin = min{n1, n2}.

By using Theorem 1 in Chen and Qin (2010), or Theorem 4 in Aoshima and Yata

(2015), we can claim that under H0 in (1.1),

T (Ip)

{K1(Ip)}1/2
⇒ N(0, 1) as m→∞ (1.3)

if we assume (A-i), see Section 2, and the condition that

λ2i1
tr(Σ2

i )
→ 0 as p→∞ for i = 1, 2. (1.4)
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Here, K1(A) is defined in Section 2.1, “⇒” denotes convergence in distribution

and N(0, 1) denotes the standard normal. Thus, by using T (Ip) and an estimate

of K1(Ip), one can construct a test procedure of (1.1) for high-dimensional data.

As discussed in Section 2 of Aoshima and Yata (2015), the distance-based two-

sample test is quite flexible for high-dimension, non-Gaussian data. In Section

3, we investigate an optimality of the test statistic in (1.2) and discuss a choice

of A.

Remark 1. If all λij ’s are bounded as lim supp→∞ λij < ∞ and lim infp→∞
λij > 0, (1.4) trivially holds. On the other hand, they often have a spiked model

such as

λij = aijp
αij (j = 1, . . . , ti) and λij = cij (j = ti + 1, . . . , p), (1.5)

where the aij ’s, cij ’s and αij ’s are positive fixed constants and the ti’s are positive

fixed integers. If they satisfy (1.5), (1.4) holds when αi1 < 1/2 for i = 1, 2. See

Yata and Aoshima (2012) for the details.

For eigenvalues of high-dimensional data, Jung and Marron (2009), Yata

and Aoshima (2012, 2013b), Onatski (2012), and Fan, Liao and Mincheva (2013)

considered spiked models such that λij → ∞ as p → ∞ for j = 1, . . . , ki, with

some positive integer ki. The above references show that spiked models are quite

natural because the first several eigenvalues should be spiked for high-dimensional

data. Hence, we consider the following situation as well:

lim inf
p→∞

{ λ2i1
tr(Σ2

i )

}
> 0 for i = 1 or 2. (1.6)

In (1.6), the first eigenvalue is more spiked than in (1.4). For example, (1.6) holds

for the spiked model in (1.5) with αi1 ≥ 1/2. We call (1.6) the “strongly spiked

eigenvalue (SSE) model”. We emphasize that the asymptotic normality in (1.3)

is not satisfied under the SSE model. See Section 4.1. See also Katayama, Kano

and Srivastava (2013) and Ma, Lan and Wang (2015). Recall that (1.3) holds

under (1.4). We call (1.4) the “non-strongly spiked eigenvalue (NSSE) model”.

The organization of this paper is as follows. In Section 2, we give sufficient

conditions for T (A) to satisfy a consistency property and asymptotic normal-

ity. In Section 3, under the NSSE model, we give a test procedure with T (A)

and discuss the choice of A. In Section 4, under the SSE model, we investi-

gate test procedures by considering strongly spiked eigenstructures. In Section

5, we create a new test procedure by estimating the eigenstructures for the SSE

model. We show that the power of the new test procedure is much higher than

the distance-based two-sample test for the SSE model. In Section 6, we discuss
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the performance of the test procedures for the SSE model with simulations. In

Section 7, we highlight the benefits of the new models. In the online supplemen-

tary material, we give additional simulations, data analyses, and proofs of the

theoretical results. We also provide a method to distinguish between the NSSE

model and the SSE model, and estimate the required parameters.

2. Asymptotic Properties of T (A)

In this section, we give sufficient conditions for T (A) to satisfy a consistency

property and to be asymptotically normal. For a positive-semidefinite matrix

A, we write the square root of A as A1/2. Let xij = H iΛ
1/2
i zij + µi, where

zij = (zi1j , . . . , zipj)
T is considered as a sphered data vector having the zero mean

vector and identity covariance matrix. We assume that the fourth moments of

each variable in zij are uniformly bounded. More specifically, we assume that

xij = Γiwij + µi for i = 1, 2; j = 1, . . . , ni, (2.1)

where Γi is a p× ri matrix for some ri ≥ p such that ΓiΓ
T
i = Σi, and wij , j =

1, . . . , ni, are i.i.d. random vectors having E(wij) = 0 and Var(wij) = Iri . Note

that (2.1) includes the case that Γi = H iΛ
1/2
i and wij = zij . Refer to Bai and

Saranadasa (1996), Chen and Qin (2010) and Aoshima and Yata (2015) for the

details of the model. As for wij = (wi1j , . . . , wirij)
T , we assume the following

assumption for πi, i = 1, 2, as necessary.

(A-i) The fourth moments of each variable in wij are uniformly bounded,

E(w2
isjw

2
itj) = E(w2

isj)E(w2
itj) and E(wisjwitjwiujwivj) = 0 for all s 6=

t, u, v.

When the πis are Gaussian, (A-i) naturally holds.

2.1. Consistency and asymptotic normality of T (A)

Let µA = A1/2(µ1 −µ2), Σi,A = A1/2ΣiA
1/2, i = 1, 2, and ∆(A) = ‖µA‖2,

where ‖ · ‖ denotes the Euclidean norm. Let K(A) = K1(A) +K2(A), where

K1(A) = 2

2∑
i=1

tr(Σ2
i,A)

ni(ni − 1)
+ 4

tr(Σ1,AΣ2,A)

n1n2
and K2(A) = 4

2∑
i=1

µTAΣi,AµA
ni

.

Here E{T (A)} = ∆(A) and Var{T (A)} = K(A). Also, ∆(A) = 0 under H0

in (1.1). Let λmax(B) denote the largest eigenvalue of a positive-semidefinite

matrix, B. We assume the following condition of the Σi,A’s, as necessary.

(A-ii)
{λmax(Σi,A)}2

tr(Σ2
i,A)

→ 0 as p→∞ for i = 1, 2.
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When A = Ip, (A-ii) is (1.4). We assume one of the following conditions, as

necessary.

(A-iii)
K1(A)

{∆(A)}2
→ 0 as m→∞; (A-iv) lim sup

m→∞

{∆(A)}2

K1(A)
<∞;

(A-v)
K1(A)

K2(A)
→ 0 as m→∞.

Note that (A-iv) holds under H0 in (1.1). If Σ1 = Σ2 (= Σ, say), (A-iii) holds

when tr{(ΣA)2}/{nmin∆(A)}2 → 0 as m→∞. On the other hand, (A-iv) holds

when lim infm→∞ tr{(ΣA)2}/{nmin∆(A)}2 > 0. See Section 3.2 for the details

of (A-v).

Proposition 1. (A-v) implies (A-iii).

Theorem 1. If (A-iii) holds, then T (A)/∆(A) = 1 + oP (1) as m→∞.

Theorem 2. If (A-i) and either (A-ii) and (A-iv) or (A-v) hold, then {T (A)−
∆(A)}/{K(A)}1/2 ⇒ N(0, 1) as m→∞.

Lemma 1. If (A-ii) and (A-iv) hold, then K(A)/K1(A) = 1 + o(1) as m→∞.

Since the Σi’s are unknown, it is necessary to estimate K1(A). Consider the

estimator

K̂1(A) = 2

2∑
i=1

Wini
(A)

ni(ni − 1)
+ 4

tr(S1n1
AS2n2

A)

n1n2
,

where Wini
(A) is defined by (2.2) in Section 2.2.

Lemma 2. If (A-i) holds, then K̂1(A)/K1(A) = 1 + oP (1) as m→∞.

By combining Theorem 2 with Lemmas 1 and 2, we have the following result.

Corollary 1. If (A-i), (A-ii), and (A-iv) hold, then {T (A)−∆(A)}/{K̂1(A)}1/2

⇒ N(0, 1) as m→∞.

2.2. Estimation of tr(Σ2
A)

Throughout this section, we omit the population subscript. Chen, Zhang and

Zhong (2010) considered an unbiased estimator of tr(Σ2), Wn =
∑n

i 6=j(x
T
i xj)

2/

nP2−2
∑n

i 6=j 6=s x
T
i xjx

T
j xs/nP3+

∑n
i 6=j 6=s 6=t x

T
i xjx

T
s xt/nP4, where nPr = n!/(n−

r)!. Aoshima and Yata (2011) and Yata and Aoshima (2013a) gave a different

unbiased estimator of tr(Σ2). From these backgrounds, we construct an unbiased
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estimator of tr(Σ2
A) as

Wn(A) =

n∑
i 6=j

(xTi Axj)
2

nP2
− 2

n∑
i 6=j 6=s

xTi Axjx
T
j Axs

nP3
+

n∑
i 6=j 6=s 6=t

xTi Axjx
T
sAxt

nP4
.

(2.2)

Note that E{Wn(A)} = tr(Σ2
A) and Wn(Ip) = Wn. In view of Chen, Zhang and

Zhong (2010), one can claim that

Var

{
Wn(A)

tr(Σ2
A)

}
→ 0 (2.3)

as p→∞ and n→∞ under (A-i), so that Wn(A) = tr(Σ2
A){1 + oP (1)}.

3. Test Procedures for Non-Strongly Spiked Eigenvalue Model

In this section, we consider test procedures given by T (A) when (A-ii) is

met as in the NSSE model. With the help of asymptotic normality, we discuss

an optimality of T (A) for high-dimensional data.

3.1. Test procedure by T (A)

Let zc be a constant such that P{N(0, 1) > zc} = c for c ∈ (0, 1). For given

α ∈ (0, 1/2), from Corollary 1, we consider testing the hypothesis at (1.1) by

rejecting H0 ⇐⇒
T (A)

{K̂1(A)}1/2
> zα. (3.1)

The power of the test (3.1) depends on ∆(A); we denote it by power(∆(A)).

Theorem 3. If (A-i) and (A-ii) hold, then the test (3.1) has, as m→∞,

size = α+ o(1) and power(∆(A))− Φ

(
∆(A)

{K(A)}1/2
− zα

(K1(A)

K(A)

)1/2)
= o(1),

where Φ(·) denotes the cumulative distribution function (c.d.f.) of N(0, 1).

Corollary 2. If (A-i) holds, then, under H1, the test (3.1) has as, m→∞,

power(∆(A)) = 1 + o(1) under (A-iii);

power(∆(A))− Φ
( ∆(A)

{K1(A)}1/2
− zα

)
= o(1) under (A-ii) and (A-iv);

power(∆(A))− Φ
( ∆(A)

{K2(A)}1/2
)

= o(1) under (A-v).

3.2. Choice of A in (3.1)

Consider the case when (A-v) is met under H1. From Corollary 2,
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power(∆(A)) ≈ Φ

(
∆(A)

{K2(A)}1/2

)
.

LetA? = c?(Σ1/n1+Σ2/n2)
−1 with c? = 1/n1+1/n2. Note thatA? = Σ−1 when

Σ1 = Σ2 (= Σ). Also, note that ∆(A?) = (µ1−µ2)
TΣ−1(µ1−µ2) (= ∆MD, say)

when Σ1 = Σ2, where ∆
1/2
MD is the Mahalanobis distance. Then, from Proposition

S1.1 of the supplementary material, A? maximizes ∆(A)/{K2(A)}1/2 over the

set of positive-definite matrices of dimension p. Here, consider (A-v). Note that

c2?p = c2?tr{(A?A
−1
? )2} =

∑2
i=1 tr{(ΣiA?)

2}/n2i + 2tr(Σ1A?Σ2A?)/(n1n2), so

that K1(A?) = 2c2?p{1 + o(1)} as m→∞. Also, note that K2(A?) = 4c?∆(A?).

Thus, if (A-v) holds,

K1(A?)

K2(A?)
= O

(
pc?

∆(A?)

)
= O

(
p

nmin∆(A?)

)
→ 0 as m→∞.

This is severe for high-dimensional data. For example, when Σ1 = Σ2 and the

Mahalanobis distance is bounded as lim supp→∞∆MD < ∞, the sample size

should be large enough that nmin/p→∞ because ∆(A?) = ∆MD. Hence, (A-v)

is quite strict for high-dimensional data. From Proposition 1 and Corollary 2,

for any choice of A in (3.1), power(∆(A)) = 1 + o(1) under (A-v). Hence, the

optimal choice of A does not make much improvement in the power if (A-v) is

met. If (A-v) is not met (i.e., (A-iv) is met), the test (3.1) has

power(∆(A)) ≈ Φ

(
∆(A)

{K1(A)}1/2
− zα

)
from Corollary 2. In this case, A? is not the optimal choice any longer. Because

of these reasons, we do not recommend using a test procedure based on the

Mahalanobis distance, such as (3.1) with A = A?. In addition, it is difficult to

estimate A? for high-dimensional data unless the Σi’s are sparse. When they

are sparse, see Bickel and Levina (2008).

Srivastava, Katayama and Kano (2013) considered a two-sample test using

A?(d) = c?(Σ1(d)/n1 + Σ2(d)/n2)
−1 for A, where Σi(d) = diag(σi(1), . . . , σi(p))

with σi(j) (> 0) the j-th diagonal element of Σi for i = 1, 2; j = 1, . . . , p. We

do not recommend choosing A?(d) unless (A-v) is met and the Σi’s are diagonal

matrices. If (A-ii) holds, as in the NSSE model, we rather recommend choosing

A = Ip in (3.1), yielding the distance-based two-sample test. When A = Ip,

it is not necessary to estimate A and it is quite flexible for high-dimensional,

non-Gaussian data. See Section 2 of Aoshima and Yata (2015) for the details.

3.3. Simulations

We used computer simulations to study the performance of the test procedure
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given by (3.1) when A = Ip, A = A?, A = A?(d) and A = Â?(d). Here,

Â?(d) = c?(S1n1(d)/n1 + S2n2(d)/n2)
−1, where Sini(d) = diag(sini1, . . . , sinip), i

= 1, 2, with sinij the j-th diagonal element of Sini
. Srivastava, Katayama and

Kano (2013) considered a test procedure given by T (Â?(d)). We set α = 0.05.

Independent pseudo-random observations were generated from πi : Np(µi,Σi),

i = 1, 2. We set p = 2s, s = 4, . . . , 10 and n1 = n2 = dp1/2e, where dxe denotes

the smallest integer ≥ x. We set µ1 = 0 and Σ1 = Σ2 = C(0.3|i−j|
1/2

)C, where

C = diag[{0.5 + 1/(p + 1)}1/2, . . . , {0.5 + p/(p + 1)}1/2]. We considered three

cases: (a) µ2 = 0, (b) µ2 = (1, . . . , 1, 0, . . . , 0)T whose first ten elements are 1,

and (c) µ2 = (0, . . . , 0, 1, . . . , 1)T whose last ten elements are 1. When A = Ip,

A = A?, and A = A?(d), we note that (A-ii) and (A-iv) are met for (a), (b), and

(c).

We checked the performance of the test procedures given by (3.1) with (I)

A = Ip, (II) A = A?, (III) A = A?(d), and (IV) A = Â?(d). The findings

were obtained by averaging the outcomes from 2,000 (= R, say) replications

in each situation. We defined Pr = 1 (or 0) when H0 was falsely rejected (or

not) for r = 1, . . . , 2, 000 for (a) and defined α =
∑R

r=1 Pr/R to estimate the

size. We also defined Pr = 1 (or 0) when H1 was falsely rejected (or not) for

r = 1, . . . , 2, 000 for (b) and (c) and defined 1− β = 1−
∑R

r=1 Pr/R to estimate

the power. Note that their standard deviations are less than 0.011. In Fig. 1, we

plotted α for (a) and 1−β for (b) and (c). We also plotted the asymptotic power,

Φ(∆(A)/{K(A)}1/2 − zα{K1(A)/K(A)}1/2), for (I) to (III) by using Theorem

3. As expected, we observe that the plots get close to the theoretical values. The

test with (II) gave a better performance compared to (I) for (b); however, it gave

quite a poor performance for (c). The test procedure based on the Mahalanobis

distance does not always give a preferable performance for high-dimensional data

even when the population distributions are Gaussian with a known and common

covariance matrix. See Section 3.2 for the details. We observe that the test

with (III) gives a good performance compared to (I) for (b); however, they trade

places under (c), because ∆(Ip) < ∆(A?(d)) for (b) and ∆(Ip) > ∆(A?(d)) for

(c) when p is sufficiently large. The test with (IV) gave quite a poor performance

because the size for (IV) was much higher than α even when p and the ni’s

are large. Hence, we do not recommend using the test procedures based on the

Mahalanobis distance or the diagonal matrices unless the ni’s are large enough

to claim (A-v).

We also checked the performance of the test procedures by (3.1) for the mul-

tivariate skew normal (MSN) distribution. See Azzalini and Dalla Valle (1996)
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(a)

(b) (c)

Figure 1. Tests by (3.1) when (I) A = Ip, (II) A = A?, (III) A = A?(d) and (IV)

A = Â?(d). The values of α are denoted by the dashed lines in the top panel. The values

of 1−β are denoted by the dashed lines in the left panel for (b) and in the right panel for
(c). The asymptotic powers were given by Φ(∆(A)/{K(A)}1/2− zα{K1(A)/K(A)}1/2)
for (I) to (III) which are denoted by the solid lines both in the panels.

for the details of the MSN distribution. We observed performance similar to that

in Fig. 1. The results are in Section S4.1 of the supplementary material.

4. Test Procedures for Strongly Spiked Eigenvalue Model

In this section, we consider test procedures when (A-ii) is not met, as in

the SSE model. We emphasize that high-dimensional data often obey the SSE

model. See Fig. 1 in Yata and Aoshima (2013b) or Section S3 of the supplemen-

tary material as well. In case of (A-iv), T (A) does not satisfy the asymptotic

normality in Theorem 2, so that one cannot use the test (3.1). For example, as

for T (Ip), we cannot claim either (1.3) or “size= α+o(1)” under the SSE model.

In such situations, we consider alternative test procedures.
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4.1. Distance-based two-sample test

We write TI = T (Ip), K1(I) = K1(Ip), and K̂1(I) = K̂1(Ip) when A =

Ip. For the SSE model, Katayama, Kano and Srivastava (2013) considered a

one-sample test. Ma, Lan and Wang (2015) considered a two-sample test for a

factor model which is a special case of the SSE model. Katayama, Kano and

Srivastava (2013) showed that a test statistic is asymptotically distributed as a

χ2 distribution under the Gaussian assumption. For the two-sample test in (1.1),

we have the following result.

Theorem 4. Assume

|hT11h21| = 1 + o(1) and
Ψi(2)

λ2i1
→ 0, i = 1, 2, as p→∞, (4.1)

where

Ψi(s) =

p∑
j=s

λ2ij for i = 1, 2; s = 1, . . . , p.

Then, (2/K1(I))
1/2TI+1⇒ χ2

1 as m→∞ under H0, where χ
2
ν denotes a random

variable having a χ2 distribution with ν degrees of freedom.

We test (1.1) by

rejecting H0 ⇐⇒
(

2

K̂1(I)

)1/2

TI + 1 > χ2
1(α), (4.2)

where χ2
1(α) denotes the (1 − α)th quantile of χ2

1. Note that K̂1(I)/K1(I) =

1 + oP (1) as m→∞ under (A-i). Then, from Theorem 4, the test (4.2) ensures

that size= α+ o(1) as m→∞ under (A-i).

We note that “|hT11h21| = 1 + o(1) as p → ∞” in (4.1) is not a general

condition for high-dimensional data, so that it is necessary to check the condition

in data analyses. See Lemma 4.1 in Ishii, Yata and Aoshima (2016) for checking

the condition. When (4.1) is not met, the test (4.2) cannot ensure accuracy.

4.2. Test statistics using eigenstructures

We consider the following model.

(A-vi) For i = 1, 2, there exists a positive fixed integer ki such that λi1, . . . , λiki
are distinct in the sense that lim infp→∞(λij/λij′ − 1) > 0 when 1 ≤ j <

j′ ≤ ki, and λiki and λiki+1 satisfy

lim inf
p→∞

λ2iki
Ψi(ki)

> 0 and
λ2iki+1

Ψi(ki+1)
→ 0 as p→∞.
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Note that (A-vi) implies (1.6); (A-vi) is one of the SSE models. (A-vi) is also a

power spiked model given by Yata and Aoshima (2013b). For the spiked model

in (1.5), (A-vi) holds under the conditions that αiki ≥ 1/2, aij 6= aij′ for 1 ≤
j < j′ ≤ ki (< ti), and αiki+1 < 1/2 for i = 1, 2. We consider the following test

statistic with positive-semidefinite matrices, Ai, i = 1, 2, of dimension p:

T (A1,A2) = 2

2∑
i=1

∑ni

j<j′ x
T
ijAixij′

ni(ni − 1)
− 2xT1n1

A
1/2
1 A

1/2
2 x2n2

.

We do not recommend choosing Ai = Σ−1i , i = 1, 2; see Section S1.2 in the

supplementary material for the details. In addition, it is difficult to estimate

Σ−1i ’s for high-dimensional, non-sparse data. Here, we consider Ai’s as

Ai(ki) = Ip −
ki∑
j=1

hijh
T
ij =

p∑
j=ki+1

hijh
T
ij for i = 1, 2.

Note that Ai(ki) = A
1/2
i(ki)

. We write µ∗ = A1(k1)µ1 − A2(k2)µ2 and Σi∗ =

Ai(ki)ΣiAi(ki) =
∑p

j=ki+1 λijhijh
T
ij for i = 1, 2. Let T∗ = T (A1(k1),A2(k2)),

∆∗ = ‖µ∗‖2, and K∗ = K1∗ +K2∗, where

K1∗ = 2

2∑
i=1

tr(Σ2
i∗)

ni(ni − 1)
+ 4

tr(Σ1∗Σ2∗)

n1n2
and K2∗ = 4

2∑
i=1

µT∗Σi∗µ∗
ni

.

Note that E(T∗) = ∆∗ and Var(T∗) = K∗. Also, note that tr(Σ2
i∗) = Ψi(ki+1)

and λmax(Σi∗) = λki+1 for i = 1, 2, so that

λ2max(Σi∗)

tr(Σ2
i∗)

→ 0 as p→∞ for i = 1, 2, under (A-vi).

From Theorem 2, we have the following result.

Corollary 3. If (A-i) holds and lim supm→∞∆2
∗/K1∗ <∞, then, under (A-vi),

(T∗ −∆∗)/K
1/2
∗ ⇒ N(0, 1) as m→∞.

It does not always hold that ∆∗ = 0 under H0 when A1(k1) 6= A2(k2). We

assume the following.

(A-vii)
∆2
∗

K1∗
→ 0 as m→∞ under H0.

This is a mild condition because A1(k1) −A2(k2) =
∑k2

j=1 h2jh
T
2j −

∑k1
j=1 h1jh

T
1j

is a low-rank matrix with rank k1 + k2 at most, and under H0 ∆∗ = ‖(A1(k1) −
A2(k2))µ1‖2 is small. From Corollary 3, under H0, it follows that P (T∗/K

1/2
1∗ >

zα) = α+ o(1). Similar to (3.1), one can construct a test procedure by using T∗.
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Let

xijl = hTijxil = λ
1/2
ij zijl + µi(j) for all i, j, l, where µi(j) = hTijµi.

Then, we write that

T∗ = 2

2∑
i=1

∑ni

l<l′(x
T
ilxil′ −

∑ki
j=1 xijlxijl′)

ni(ni − 1)

− 2

∑n1

l=1

∑n2

l′=1(x1l −
∑k1

j=1 x1jlh1j)
T (x2l′ −

∑k2
j=1 x2jl′h2j)

n1n2
.

In order to use T∗, it is necessary to estimate the xijl’s and hij ’s.

5. Test Procedure Using Eigenstructures for Strongly Spiked Eigen-

value Model

In this section, we assume (A-vi) and the following for the πi’s:

(A-viii) E(z2isjz
2
itj) = E(z2isj)E(z2itj), E(zisjzitjziuj) = 0 and E(zisjzitjziujzivj)

= 0 for all s 6= t, u, v, with zijl’s defined in Section 2.

Note that (A-viii) implies (A-i) because the E(z4ijl)’s are bounded and (2.1)

includes the case that Γi = H iΛ
1/2
i and wij = zij . When the πi’s are Gaussian,

(A-viii) naturally holds.

5.1. Estimation of eigenvalues and eigenvectors

Throughout this section, we omit the population subscript for the sake of

simplicity. Let λ̂1 ≥ · · · ≥ λ̂p ≥ 0 be the eigenvalues of Sn, and write the eigen-

decomposition of Sn as Sn =
∑p

j=1 λ̂jĥjĥ
T

j , where ĥj denotes a unit eigenvector

corresponding to λ̂j . We assume hTj ĥj ≥ 0 w.p.1 for all j, without loss of

generality. LetX = [x1, . . . ,xn] andX = [xn, . . . ,xn]. Then, we define the n×n
dual sample covariance matrix by SD = (n− 1)−1(X −X)T (X −X). Note that

Sn and SD share non-zero eigenvalues. We write the eigen-decomposition of SD
as SD =

∑n−1
j=1 λ̂jûjû

T
j , where ûj = (ûj1, . . . , ûjn)T denotes a unit eigenvector

corresponding to λ̂j . Note that ĥj can be calculated as ĥj = {(n−1)λ̂j}−1/2(X−
X)ûj . Let δj = λ−1j

∑p
s=k+1 λs/(n− 1), for j = 1, . . . , k. Let m0 = min{p, n}.

Proposition 2. If (A-vi) and (A-viii) hold, then for j = 1, . . . , k, λ̂j/λj =

1 + δj +OP (n−1/2) and (ĥ
T

j hj)
2 = (1 + δj)

−1 +OP (n−1/2) as m0 →∞.

If δj → ∞ as m0 → ∞, λ̂j and ĥj are strongly inconsistent in the sense

that λj/λ̂j = oP (1) and (ĥ
T

j hj)
2 = oP (1). See Jung and Marron (2009) for the
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concept of the strong inconsistency. Also, from Proposition 2, under (A-vi) and

(A-viii), as m0 →∞,

‖ĥj − hj‖2 = 2{1− (1 + δj)
−1/2}+OP (n−1/2) for j = 1, . . . , k. (5.1)

In order to overcome the curse of dimensionality, Yata and Aoshima (2012) pro-

posed an eigenvalue estimation called the noise-reduction (NR) methodology,

which was brought about by a geometric representation of SD. If one applies the

NR methodology, the λj ’s are estimated by

λ̃j = λ̂j −
tr(SD)−

∑j
l=1 λ̂l

n− 1− j
(j = 1, . . . , n− 2). (5.2)

Here λ̃j ≥ 0 w.p.1 for j = 1, . . . , n−2, and the second term in (5.2) is an estimator

of λjδj . When applying the NR methodology to the PC direction vector, one

obtains

h̃j = {(n− 1)λ̃j}−1/2(X −X)ûj (5.3)

for j = 1, . . . , n− 2.

Proposition 3. If (A-vi) and (A-viii) hold, then for j = 1, . . . , k, λ̃j/λj =

1 +OP (n−1/2) and (h̃
T
j hj)

2 = 1 +OP (n−1) as m0 →∞.

Here h̃j is not a unit vector because ‖h̃j‖2 = λ̂j/λ̃j . From Propositions 2

and 3, under (A-vi) and (A-viii), ‖h̃j − hj‖2 = δj{1 + oP (1)} + OP (n−1/2) as

m0 →∞ for j = 1, . . . , k. We note that 2{1− (1 + δj)
−1/2} < δj . Thus, in view

of (5.1), the norm loss of h̃j is larger than that of ĥj . However, h̃j is a consistent

estimator of hj in terms of the inner product even when δj →∞ as m0 →∞.

We note that hTj (xl − µ) = λ
1/2
j zjl for all j, l. For ĥj and h̃j , we have the

following result.

Proposition 4. If (A-vi) and (A-viii) hold, then for j = 1, . . . , k (l = 1, . . . , n),

λ
−1/2
j ĥ

T

j (xl−µ) = (1 + δj)
−1/2[zjl+ (n−1)1/2ûjlδj{1 +oP (1)}] +OP (n−1/2) and

λ
−1/2
j h̃

T
j (xl − µ) = zjl + (n− 1)1/2ûjlδj{1 + oP (1)}+OP (n−1/2) as m0 →∞.

Consider the standard deviation of these quantities. Note that [
∑n

l=1{(n −
1)1/2ûjlδj}2/n]1/2 = O(δj) and δj = O{p/(nλj)} for λk+1 = O(1). Hence, in

Proposition 4, the inner products are quite biased when p is large, as follows. Let

P n = In − 1n1
T
n/n, where 1n = (1, . . . , 1)T . Then, 1Tn ûj = 0 and P nûj = ûj

when λ̂j > 0, since 1TnSD1n = 0. Also, when λ̂j > 0,

{(n− 1)λ̃j}1/2h̃j = (X −X)ûj = (X −M)P nûj = (X −M)ûj ,

where M = [µ, . . . ,µ]. Thus it holds that {(n− 1)λ̃j}1/2h̃
T
j (xl − µ) = ûTj (X −
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M)T (xl−µ) = ûjl‖xl−µ‖2+
∑n

s=1(6=l) ûjs(xs−µ)T (xl−µ), so that ûjl‖xl−µ‖2

is biased since E(‖xl − µ‖2)/{(n − 1)1/2λj} ≥ (n − 1)1/2δj . Hence, one should

not apply the ĥj ’s or the h̃j ’s to the estimation of the inner product.

Consider a bias-reduced estimation of the inner product. Write

ûjl =

(
ûj1, . . . , ûjl−1,

−ûjl
n− 1

, ûjl+1, . . . , ûjn

)T
with l-th element −ûjl/(n−1) for all j, l. Note that ûjl = ûj− (0, . . . , 0, {n/(n−
1)}ûjl, 0, . . . , 0)T and

∑n
l=1 ûjl/n = {(n− 2)/(n− 1)}ûj . Let

cn =
(n− 1)1/2

n− 2
and h̃jl = cnλ̃

−1/2
j (X −X)ûjl (5.4)

for all j, l. Here
∑n

l=1 h̃jl/n = h̃j . When λ̂j > 0, c−1n λ̃
1/2
j h̃jl = (X−M)P nûjl =

(X −M)ûj(l) since 1Tn ûj =
∑n

l=1 ûjl = 0, where

ûj(l) = (ûj1, . . . , ûjl−1, 0, ûjl+1, . . . , ûjn)T + (n− 1)−1ûjl1n(l) for l = 1, . . . , n.

Here, 1n(l) = (1, . . . , 1, 0, 1, . . . , 1)T whose l-th element is 0. Thus it holds that

c−1n λ̃
1/2
j h̃

T
jl(xl − µ) = ûTj(l)(X −M)T (xl − µ)

=

n∑
s=1(6=l)

{ûjs + (n− 1)−1ûjl}(xs − µ)T (xl − µ),

so that the large biased term, ‖xl − µ‖2, has vanished.

Proposition 5. If (A-vi) and (A-viii) hold, then for j = 1, . . . , k (l = 1, . . . , n),

λ
−1/2
j h̃

T
jl(xl − µ) = zjl + ûjl ×OP {(n1/2λj)−1λ1}+OP (n−1/2) as m0 →∞.

As [
∑n

l=1{ûjlλ1/(n1/2λj)}2/n]1/2 = λ1/(λjn), the bias term is small when

λ1/λj is not large.

5.2. Test procedure using eigenstructures

Let x̃ijl = h̃
T
ijlxil for all i, j, l, where the h̃ijl’s are defined by (5.4). From

Propositions 3 and 5, we consider the test statistic for (1.1),

T̂∗ = 2

2∑
i=1

∑ni

l<l′(x
T
ilxil′ −

∑ki
j=1 x̃ijlx̃ijl′)

ni(ni − 1)

− 2

∑n1

l=1

∑n2

l′=1(x1l −
∑k1

j=1 x̃1jlh̃1j)
T (x2l′ −

∑k2
j=1 x̃2jl′h̃2j)

n1n2
,

where the h̃ij ’s are defined by (5.3). We assume the following conditions when

(A-vi) is met.
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(A-ix)
λ2i1

niΨi(ki+1)
→ 0 as m→∞ for i = 1, 2;

(A-x)
µT1∗Σi∗µ1∗ + µT2∗Σi∗µ2∗

Ψi(ki+1)
→ 0 as p→∞ and

lim sup
m→∞

ni{µ2i(j) + (hTijµi′∗)
2}

λij
<∞ (i′ 6= i) for i = 1, 2; j = 1, . . . , ki.

Then, we have the following result.

Theorem 5. If (A-vi) and (A-viii) to (A-x) hold, then T̂∗ − T∗ = oP (K
1/2
1∗ ) as

m → ∞. If also lim supm→∞∆2
∗/K1∗ < ∞, then (T̂∗ −∆∗)/K

1/2
∗ ⇒ N(0, 1) as

m→∞.

By using Lemma 1, K1∗/K∗ = 1 + o(1) as m → ∞ under (A-vi) and

lim supm→∞∆2
∗/K1∗ < ∞. Thus, we consider estimating K1∗. Let Âi(ki) =

Ip −
∑ki

j=1 ĥijĥ
T

ij for i = 1, 2. We estimate K1∗ by

K̂1∗ = 2

2∑
i=1

Ψ̂i(ki+1)

ni(ni − 1)
+ 4

tr(S1n1
Â1(k1)S2n2

Â2(k2))

n1n2
,

where Ψ̂i(ki+1) is defined by (S2.1) of the supplementary material.

Lemma 3. If (A-vi), (A-viii) and (A-ix) hold, then K̂1∗/K1∗ = 1 + oP (1) as

m→∞.

Now, we test (1.1) by

rejecting H0 ⇐⇒
T̂∗

K̂
1/2
1∗

> zα. (5.5)

Let power(∆∗) denote the power of the test (5.5). Then, from Theorem 5 and

Lemma 3, we have the following result.

Theorem 6. If (A-vi) and (A-vii) to (A-x) hold, then the test (5.5) has, as

m→∞,

size = α+ o(1) and power(∆∗)− Φ

(
∆∗

K
1/2
∗
− zα

(K1∗
K∗

)1/2)
= o(1).

In general, the ki’s are unknown in T̂∗ and K̂1∗. See Section S2.2 in the

supplementary material for estimation of the ki’s. If (4.1) is met, one may use

the test (4.2). However, under (4.1), (A-vi) and lim supm→∞∆2
∗/K1∗ < ∞, we

note that Var(T∗)/Var(TI) = O(K1∗/K1) → 0 as m → ∞, so that the power of
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(4.2) must be lower than that of (5.5). See Section 6 for numerical comparisons.

We recommend the use of the test (5.5) for the SSE model in general.

5.3. How to check SSE models and estimate parameters

We provide a method to distinguish between the NSSE model at (1.4) and

the SSE model at (1.6). We also give a method to estimate the parameters

required in the test procedure (5.5). We summarize the results in Section S2 of

the supplementary material.

5.4. Demonstration

We introduce two high-dimensional data sets that obey the SSE model. We

illustrate the proposed test procedure at (5.5) by using microarray data sets. We

summarize the results in Section S3 of the supplementary material.

6. Simulations for Strongly Spiked Eigenvalue Model

We used computer simulations to study the performance of the test proce-

dures at (4.2) and (5.5) for the SSE model. In general, the ki’s are unknown

for (5.5). Hence, we estimated ki by k̂i, where k̂i is given in Section S2.2 of the

supplementary material. We set κ(ni) = (n−1i log ni)
1/2 in (S2.2) of the supple-

mentary material. We checked the performance of the test procedure at (5.5)

with ki = k̂i, i = 1, 2. We considered a naive estimator of T∗ as T (Â1(k1), Â2(k2))

and checked the performance of the test procedure given by

rejecting H0 ⇐⇒
T (Â1(k1), Â2(k2))

K̂
1/2
1∗

> zα. (6.1)

We also checked the performance of the test procedure at (3.1) with A = Ip. We

set α = 0.05, µ1 = 0, and

Σi =

(
Σ(1) O2,p−2
Op−2,2 ciΣ(2)

)
with Σ(1) = diag(p2/3, p1/2) and Σ(2) = (0.3|i−j|

1/2

)

for i = 1, 2, where Ol,l′ is the l× l′ zero matrix and (c1, c2) = (1, 1.5). Here (4.1)

and (A-vi) with k1 = k2 = 2 are met. When considering the alternative hypoth-

esis, we set µ2 = (0, . . . , 0, 1, 1, 1, 1)T with last four elements 1. We considered

three cases:

(a) πi : Np(µi,Σi), p = 2s, n1 = 3dp1/2e and n2 = 4dp1/2e for s = 4, . . . , 10;

(b) The zij ’s are i.i.d. as the p-variate t-distribution, tp(ν), with mean zero,

covariance matrix Ip, and degrees of freedom ν = 15, (n1, n2) = (40, 60), and
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(a) πi : Np(µi,Σi), p = 2s, n1 = 3dp1/2e and n2 = 4dp1/2e for s = 4, . . . , 10.

(b) zijs are i.i.d. as tp(15), (n1, n2) = (40, 60) and p = 50 + 100(s− 1) for s = 1, . . . , 7.

(c) zitj = (vitj − 5)/101/2 (t = 1, . . . , p) in which vitjs are i.i.d. as χ2
5, p = 500, n1 = 10s and

n2 = 1.5n1 for s = 2, . . . , 8.

Figure 2. The performances of five tests: (I) from (3.1) with A = Ip, (II) from (4.2),

(III) from (5.5), (IV) from (5.5) with ki = k̂i, i = 1, 2, and (V) from (6.1). For (a) to (c),
the values of α are denoted by the dashed lines in the left panel and the values of 1− β
are denoted by the dashed lines in the right panel. The asymptotic power of (III) was

given by Φ(∆∗/K
1/2
∗ − zα(K1∗/K∗)1/2) which is denoted by the solid line in the right

panels. When nis are small or p is large, α for (V) was too high to describe.
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p = 50 + 100(s− 1) for s = 1, . . . , 7;

(c) zitj = (vitj−5)/101/2 (t = 1, . . . , p) in which the vitj ’s are i.i.d. as χ2
5, p = 500,

n1 = 10s and n2 = 1.5n1 for s = 2, . . . , 8.

Here (A-viii) is met both for (a) and (c). However, (A-viii) (or (A-i)) is not met

for (b). Similar to Section 3.3, we calculated α and 1− β with 2000 replications

for five test procedures: (I) from (3.1) with A = Ip, (II) from (4.2), (III) from

(5.5), (IV) from (5.5) with ki = k̂i, i = 1, 2, and (V) from (6.1). Their standard

deviations are less than 0.011. In Fig. 2, for (a) to (c), we plotted α in the left

panel and 1− β in the right panel. From Theorem 6, we plotted the asymptotic

power, Φ(∆∗/K
1/2
∗ − zα(K1∗/K∗)

1/2), for (III).

We observe that (II) gives better performances compared to (I) regarding

size. The size of (I) did not get close to α, probably because TI does not satisfy

the asymptotic normality given in Theorem 2 when (1.4) is not met. On the

other hand, (II) (or (I)) gave quite poor performances compared to (III) and

(IV) regarding power, probably because Var(TI)/Var(T∗)→∞ as p→∞ in the

current setting. The size of (V) was much higher than α, probably because of

the bias of T (Â1(k1), Â2(k2)). See Section 5.1 for the details. We observe that

(III) and (IV) gave adequate performances even in the non-Gaussian cases. The

performances of (III) and (IV) were similar to each other in almost all cases.

When p and the ni’s are not small, the plots of (IV) were close to the theoretical

values. Hence, we recommend the use of the test procedure at (5.5) with ki = k̂i,

i = 1, 2, when (1.6) holds.

We also checked the performance of the test procedures for the MSN distribu-

tion and the multivariate skew t (MST) distribution. See Azzalini and Capitanio

(2003) and Gupta (2003) for the details of the MST distribution. We give the

results in Section S4.2 of the supplementary material.

7. Conclusion

By classifying eigenstructures into two classes, the SSE and NSSE models,

and then selecting a suitable test procedure depending on the eigenstructure,

we can quickly obtain a much more accurate result at lower computational cost.

These benefits are vital in groundbreaking research of medical diagnostics, engi-

neering, big data analysis, etc.

Supplementary Materials

We give data analyses and proofs of the theoretical results, together with ad-
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ditional simulations, in the online supplementary material. We also give methods

to distinguish between the NSSE model and the SSE model, and estimate the

parameters required in the test procedure (5.5).
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