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S1 Further discussion of alternative priors

In Section 4.1, it is stated that ‘one must avoid selecting prior distributions

for analytical convenience if they do not accurately represent the available

expert belief or knowledge’. Here we provide further discussion of this point.

As an example, in Section 2.1 we found that P : θ ∼ U(0, a) is singular

for the exponential regression model. A natural question is whether it is

sufficient to find designs for the non-singular prior Pε : θ ∼ U(ε, a) for some

small value of ε (e.g. 10−3 or 10−6). The adequacy of Pε as a representation

of the expert’s beliefs will depend substantially on the specifics of the appli-

cation. For small ε, the quartiles of P and Pε are similar, thus for example
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it is possible for both distributions to fit expert statements obtained by the

bisection method (Garthwaite et al. (2005)). However, the implication of

Pε that there is zero probability that θ < ε is too strong unless the expert

is certain that θ ≥ ε. The fidelity of the representation Pε would be less

important if the resulting design decision were insensitive to the choice of

ε. Unfortunately this is not the case, as shown by the proposition below

and its proof. Intuitively, as ε→ 0, some points in the Bayesian D-optimal

design for Pε will converge to zero (while never being equal to zero).

Proposition 1. For the exponential model, if ξ does not vary with ε then

Bayes-eff(ξ;Pε)→ 0 as ε→ 0 .

Thus, even if one were to compute the Bayesian D-optimal design for

Pε′ , with say ε′ = 10−6, the resulting design would be highly inefficient

when evaluated under Pε for ε� ε′.

The situation above is somewhat similar to problems in the objective

Bayesian approach with improper uninformative priors (e.g. Berger (1985,

Ch.3); Berger (2006)), which one may need to modify in order to obtain

a proper posterior. For example, if an improper prior, say U(10,∞), does

not give a proper posterior, one might attempt to replace it with U(10,M),

with M large, e.g. 105 or 106. However, the results would often be highly

sensitive to the value chosen for M , which is arbitrary and typically has no



S2. PROOFS OF ANALYTICAL RESULTS

objective justification.

S2 Proofs of analytical results

Proof of Proposition 2. Assume that at least one xi > 0. For the θ pa-

rameterization, we demonstrate two implications: (i) if EP(1/θ) < ∞

and EP(log θ) < ∞, then φ(ξ;P) > −∞; and (ii) if EP(log θ) = ∞ or

EP(1/θ) = ∞, then φ(ξ;P) = −∞. Here, φ(ξ;P) = E{log |Mθ(ξ; θ)|},

where log |Mθ(ξ; θ)| is given by (2.2).

For (i), observe that −∞ ≤ EP {(2/θ) maxi=1,...,n{xi}+ 4 log θ} < ∞.

Considering the left hand side of (2.1) and the reparameterization (2.2),

−∞ < log
n∑
i=1

x2i − EP
{

(2/θ) max
i=1,...,n

{xi}+ 4 log θ

}
≤ φ(ξ;P) ,

as required. For (ii), note that in addition to (2.1), the following weaker

inequality holds:

φ(ξ;P) ≤ log
n∑
i=1

x2i − 4 log θ .

Taking expectations of both sides, if EP(log θ) =∞ then φ(ξ;P) = −∞.

For the other case, let

b(θ) =
1

θ

{
2 min
i=1,...,n

{xi : xi > 0}+ 4θ log θ

}
.

Since θ log θ → 0 as θ → 0, there is some δ > 0 such that, for θ < δ,

b(θ) ≥ (1/θ) min
i=1,...,n

{xi : xi > 0} .
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Hence, with I denoting an indicator function,

EP{b(θ)} ≥ EP{b(θ)I(θ < δ) + inf
θ≥δ

b(θ) I(θ ≥ δ)}

≥ min
i=1,...,n

{xi : xi > 0}EP{(1/θ)I(θ < δ)}+ (4 log δ) Pr(θ ≥ δ)

(S2.1)

If EP(1/θ) = ∞, then EP{(1/θ)I(θ < δ)} = ∞, and so by (S2.1), we have

that EP{b(θ)} = ∞, regardless of whether EP(log θ) = −∞. Recall from

(2.1) that

φ(ξ;P) ≤ log
n∑
i=1

x2i − EP{b(θ)} .

Hence if EP(1/θ) = ∞, we have φ(ξ;P) = −∞. This is sufficient to

establish the proposition.

Proof of Lemma 1. Observe that M(xi; θ) = e−2θ1xiM̃
(i)
δ,θ3

, where M̃
(i)
δ,θ3

is

defined in the statement of the lemma. Moreover, for i = 1, . . . , n, either

(i) xi = 0 or (ii) xi ≥ xmin. In (ii), we have

e−2θ1xmaxM̃
(i)
δ,θ3
�M(xi; θ) � e−2θ1xminM̃

(i)
δ,θ3

. (S2.2)

Moreover, the above holds also in (i) since then M(xi; θ) and M
(i)
δ,θ3

are

matrices of zeroes. Summing (S2.2) over i = 1, . . . , n, we obtain:

e−2θ1xmaxM̃δ,θ3 �M(ξ; θ) � e−2θ1xminM̃δ,θ3 . (S2.3)

Taking log-determinants throughout (S2.3) yields the result, when com-

bined with the fact that |M̃δ,θ3| = θ43|M̃δ,1|.
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Define gξ(δ) = |M̃δ,1|. The following is needed to establish Lemma 2.

Lemma 5. Suppose that ξ contains at least three distinct xi > 0. Then the

derivatives of gξ(δ) satisfy: (i) g
(k)
ξ (0) = 0, k = 1, . . . , 7, (ii) g

(8)
ξ (0) > 0.

Proof of Lemma 5. Part (i) can be verified using symbolic computation, e.g.

Mathematica. It can also be shown that

g
(8)
ξ (0) = 280{S2S4S6 − S2S

2
5 − S2

3S6 + S3S4S5 + S3S4S5 − S3
4} ,

where Sl =
∑n

i=1 x
l
i. Define the following,

K =


S2 S3 S4

S3 S4 S5

S4 S5 S6

 , K ′ =
∑
i:xi>0


1 xi x2i

xi x2i x3i

x2i x3i x4i

 ,

and xmin = min{xi : xi > 0}. Note that K � x2minK
′ . We have

g
(8)
ξ (0) = 280|K| ≥ 280x6min|K ′| .

Observe also that K ′ is the information matrix of the design ξ′ = (xi : xi >

0) under the linear model with regressors 1, x, x2. By the assumption that

there are at least three distinct xi > 0, the above linear model is estimable

and so |K ′| > 0. This establishes part (ii).

Proof of Lemma 2. If ξ has fewer than three distinct xi > 0, then we have

rank(M̃δ,1) ≤ 2 and EP(log |M̃δ,1|) = −∞ for any prior P . Thus we may
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assume that ξ has at least three distinct xi > 0. From Lemma 5, it is clear

that gξ(δ) ≈ (κ/2)δ8 for small δ, where κ > 0. We show that the approxima-

tion is sufficiently close that EP(log |M̃δ,1|) = −∞ if
∫
δ<1

log δ dP(θ) = −∞.

By Taylor’s theorem, there is an ε1 > 0 and λ > 0 such that, for δ ∈ (0, ε1),

|gξ(δ)− (κ/2)δ8| ≤ λδ9 .

Hence, for δ ∈ (0, ε1),

|2gξ(δ)/(δ8κ)− 1| ≤ (2λ/κ)δ .

As the logarithm function has derivative 1 at argument 1, there exists 0 <

ε2 ≤ ε1 such that for δ ∈ (0, ε2),∣∣∣∣log
2gξ(δ)

δ8κ
− log 1

∣∣∣∣ ≤ 2|2gξ(δ)/(δ8κ)− 1| ≤ (4λ/κ)δ .

Thus, for δ ∈ (0, ε2),

| log gξ(δ)− log(κδ8/2)| ≤ (4λ/κ)δ ,

so that∣∣∣∣∫
δ<ε2

log gξ(δ)dP(θ)−
∫
δ<ε2

{8 log δ + log(κ/2)}dP(θ)

∣∣∣∣ ≤ (2λ/κ)ε22 .

Hence it is clear that
∫
δ<ε2

log gξ(δ)dP(θ) = −∞ if and only if
∫
δ<ε2

log δ dP(θ) =

−∞. Further, gξ(δ) is bounded above, and∫
log gξ(δ)dP(θ) =

∫
δ<ε2

log gξ(δ)dP(θ) +

∫
δ>ε2

log gξ(δ)dP(θ) .
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Thus,
∫

log gξ(δ)dP(θ) = −∞ when
∫
δ<ε2

log δ dP(θ) = −∞. The result

is finally established by observing that
∫
δ<ε2

log δ dP(θ) = −∞ if we have∫
δ<1

log δ dP(θ) = −∞.

Proof of Proposition 3. From Lemma 1,

log |M(ξ; θ)| ≤ −6θ1xmin + 4 log θ3 + log |M̃δ,1| . (S2.4)

It can be shown that |M̃δ,1| ≤ 2S0S
2
2 + 4S2S

2
1 , thus

∫
log |M̃δ,1| dP(θ) <∞.

As θ1 > 0,
∫
−6θ1xmindP(θ) ≤ 0 < ∞. If

∫
θ3>1

log θ3 dP(θ) < ∞, as

assumed by the lemma, then all terms on the right hand side of (S2.4) have

integral <∞ and

∫
log |M(ξ; θ)| dP(θ) ≤

∫
−6θ1xmin dP(θ) + 4

∫
log θ3 dP(θ)

+

∫
log |M̃δ,1| dP(θ) .

Hence if, in addition to
∫
θ3>1

log θ3 dP(θ) <∞, we have that at least one of∫
log |M̃δ,1| dP(θ) = −∞,

∫
−6θ1xmin dP(θ) = −∞, or

∫
θ3<1

log θ3 dP(θ) =

−∞ holds, then also
∫

log |M(ξ; θ)| dP(θ) = −∞. Using Lemma 2, the con-

dition
∫

log |M̃δ,1| dP(θ) = −∞ in the preceding statement may be replaced

by
∫
δ<1

log δ dP(θ) = −∞. This establishes the result.
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Proof of Theorem 1. It follows from Lemma 3 that

log |M(ξ; β)| ≥ log |FTF |+ pmin
i

logwi .

From (2.6), w(η) ≥ (1/4)e−|η|. Thus,

log |M(ξ; β)| ≥ log |FTF |+ p log
[
(1/4)e−maxi |ηi|

]
≥ log |FTF | − pmax

i
|ηi| − p log 4 .

Moreover, by the triangle inequality, maxi |ηi| ≤
∑

j maxi |fj(xi)||βj|, and

hence

log |M(ξ; β)| ≥ log |FTF | − p log 4− p
∑
j

max
i
|fj(xi)||βj| . (S2.5)

The right hand side of (S2.5) has expectation greater than −∞ due to the

assumptions that EP(|βj|) < ∞ and |FTF | > 0. Therefore we have that

EP{log |M(ξ; β)|} > −∞.

Proof of Proposition 4. From Lemma 3,

log |M(ξ; β)| ≤ log |FTF |+ pmax
i

logwi .

It can also be shown that w(η) is a decreasing function of |η| and, from

(2.6), that w(|η|) ≤ exp(−|η|). Hence,

log |M(ξ; β)| ≤ log |FTF |+ p logw(min
i
|ηi|)

≤ log |FTF | − pmin
i
|ηi| .
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It remains to prove EP(mini |ηi|) =∞ to establish that EP{log |M(ξ; β)|} =

−∞. This is achieved by conditioning on an event where the parameter βj

dominates. Given j ∈ {0, . . . , p − 1}, let E ∈ Σ be an event such that (a)

βj > 1, and (b)
∑

k 6=j |fk(xi)||βk| < ε for all i, where ε > 0 is such that

||fj(xi)| − |fj(xi′)|| > 2ε for any i, i′ with |fj(xi)| 6= |fj(xi′)| .

We can guarantee (a) and (b), for example by taking

E = {β : βj > 1, |βk| < δ , for k 6= j} ∈ Σ , (S2.6)

with δ = ε/[(p− 1) maxi,l |fl(xi)|]. The above satisfies

Pr(E) = Pr(βj > 1) Pr(|βk| < δ for all k 6= j | βj > 1) > 0 ,

by assumptions (i) and (ii) of the proposition.

By the reverse triangle inequality and from (b), on event E ,

||ηi| − |fj(xi)|βj| ≤
∑
k 6=j

|fk(xi)||βk| ≤ ε . (S2.7)

Since on E the term from βj dominates, the minimum of |ηi| is found

by minimizing the βj term. To see this formally, observe that if |fj(xi)|βj >

|fj(xi′)|βj, then by the definition of ε,

|fj(xi)|βj − |fj(xi′)|βj > 2εβj > 2ε .

and, by also using (S2.7),

|ηi′ | < |fj(xi′)|βj + ε < |fj(xi)|βj − ε < |ηi| .



TIMOTHY W. WAITE

Thus, on E , if |fj(xi)|βj > |fj(xi′)|βj then |ηi| > |ηi′ |. This can be used to

show that on E , if i∗ ∈ arg mini |ηi| then i∗ ∈ arg mini |fj(xi)|, as follows.

Suppose that i∗ 6∈ arg mini |fj(xi)|, then there would exist some i such that

|fj(xi∗)|βj > |fj(xi)|βj. By the above, we would have that |ηi∗| > |ηi|,

which contradicts the definition of i∗ as a member of arg mini |ηi|. Hence,

min
i
|ηi| = |ηi∗| , i∗ ∈ arg mini |fj(xi)|

≥ |fj(xi∗)|βj − ε .

Consequently,

EP(min
i
|ηi| | E) ≥ |fj(xi∗)|EP(βj | E)− ε

=∞ by assumptions (iii) and (iv) of the proposition.

For the marginal expectation, note that Pr(E) > 0, and hence

EP(min
i
|ηi|) ≥ Pr(E)EP(min

i
|ηi| | E) =∞ .

Proof of Proposition 5. Case (i): assume that fj(xi) > 0. On the event

E defined in the previous proof, we have that ηi ≥ fj(xi)βj − ε. Hence

E(ηi | E) =∞. Let P = Pr(yi = 1 | β), noting that 1−Pr(yi = 1 | β) ≤ e−ηi .

Then,

EG(1− P | E) = expE log{1− P | E} ≤ expE(−ηi | E) = 0 ,
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where EG denotes the geometric mean. Hence the conditional geometric

mean of 1− P is zero.

Case (ii): assume fj(xi) < 0. On E , ηi ≤ fj(xi)βj + ε and so E(ηi | E) =

−∞. However, P ≤ eηi and so EG(P | E) ≤ expE(ηi | E) = 0.

Proof of Theorem 2. Assume ξ is such that |FTF | > 0. Note that w(η) is

decreasing in |η| and so, by Lemma 3,

log |M(ξ; β)| ≥ log |FTF |+ p logw(max
i
|ηi|) .

We split E log |M(ξ; β)| into two components,

E log |M(ξ; β)| = E [ log |M(ξ; β)| I(max |ηi| ≤ κ) ]

+ E [ log |M(ξ; β)| I(max |ηi| > κ) ] , (S2.8)

where κ > 0, and then show that both components are > −∞.

Note that for |η| ≤ κ, w(η) is bounded below by a constant, λ > 0.

Thus, if maxi |ηi| ≤ κ, then log |M(ξ; β)| ≥ log |FTF |+ p log λ and so

E
[

log |M(ξ; β)| I(max
i
|ηi| ≤ κ)

]
> −∞ . (S2.9)

For |η| > κ, with κ sufficiently large, by the asymptotic approximation

(2.8),

w(η) ≥ L|η|e−η2/2 ,
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for some L > 0. Hence if maxi |ηi| > κ, then

log |M(ξ; β)| ≥ log |FTF |+ p logL+ p log max
i
|ηi| − pmax

i
η2i /2

≥ log |FTF |+ p logL+ p log κ− pmax
i
η2i /2 .

However, it is straightforward to show that if Eβ2
k < ∞ and E|βkβl| < ∞

for k, l = 0, . . . , p− 1, then Emaxi η
2
i <∞. This is sufficient to prove that

E
[

log |M(ξ; β)| I(max
i
|ηi| > κ)

]
> −∞ . (S2.10)

Combining (S2.8), (S2.9) and (S2.10), we find that overall E log |M(ξ; β)| >

−∞, and so P is non-singular.

Lemma 6. Let X be a random variable taking values in A ⊆ R, with A

unbounded above, and let s, t : A → R̄ be measurable extended real-valued

functions that satisfy (i) for all k ∈ R, sup{x∈A |x≤k} |s(x)| <∞ (ii) t(x) is

increasing, and (iii) r(x) = t(x)/s(x) → 0 as x → ∞. Given the above, if

E[s(X)] =∞ then E[s(X)− t(X)] =∞.

Proof. Note that from (iii) there exists k′ > 0 such that when X > k′, we

have s(X)−t(X) ≥ (1/2)s(X). When X ≤ k′, by (ii) we have t(X) ≤ t(k′).
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Hence,

E[s(X)− t(X)] = E{[s(X)− t(X)] I(X ≤ k′) + [s(X)− t(X)] I(X > k′)}

≥ E{[s(X)− t(k′)] I(X ≤ k′) + (1/2)s(X) I(X > k′)} .

By condition (i), s(x) is bounded on {x ≤ k′}. Therefore the first term

inside the expectation above is also bounded, and since E{s(X)} = ∞ we

must have that E{s(X)I(X > k′)} =∞. Hence the right hand side of the

above inequality has infinite expectation, and so E[s(X)− t(X)] =∞.

Proof of Proposition 7. Similar to the proof of Theorem 2, we split the in-

tegral E log |M(ξ; β)| into two components,

E log |M(ξ; β)| = E
[

log |M(ξ; β)| I(min
i
|ηi| ≤ κ)

]
+ E

[
log |M(ξ; β)| I(min

i
|ηi| > κ)

]
, (S2.11)

where κ > 0. Note that w(η) is symmetric and decreasing in |η|. Thus, by

Lemma 3, for mini |ηi| ≤ κ we have log |M(ξ; β)| ≤ log |FTF |+ logw(0), so

E
[

log |M(ξ; β)| I(min
i
|ηi| ≤ κ)

]
≤ Pr(min

i
|ηi| ≤ κ)[log |FTF |+logw(0)] <∞ ,

i.e. the first term in (S2.11) is always <∞.

We now consider the second term in (S2.11). For mini |ηi| > κ, provided
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κ is sufficiently large then by (2.8),

max
i
w(ηi) = w(min

i
|ηi|) ≤ Lmin

i
|ηi| e−mini η

2
i /2 ,

for some L > 0. By Lemma 3, for mini |ηi| > κ,

log |M(ξ; β)| ≤ log |FTF |+ p logL+ p log min
i
|ηi| − (p/2) min

i
η2i .

Assume that |FTF | > 0. Let X1 = mini |ηi|, A1 = [0,∞), s1(X1) =

(p/2)X2
1 I(X1 > κ), and t1(X1) = p logX1 I(X1 > κ). We have that

E
[
log |M(ξ; β)| I(min

i
|ηi| > κ)

]
≤ E

[
t1(X1)− s1(X1) + (log |FTF |+ p logL) I(X1 > κ)

]
. (S2.12)

We may assume that κ > 1, in which case t1 is increasing and so X1, A1,

s1, t1 satisfy the conditions of Lemma 6. Hence, if E[s1(X1)] = ∞ then

E[t1(X1)− s1(X1)] = −∞, in which case, from (S2.12),

E[log |M(ξ; β)| I(min
i
|ηi| > κ)] = −∞ ,

and so by (S2.11) we have that E log |M(ξ; β)| = −∞. Hence to prove the

proposition it is sufficient to show that E[s1(X1)] = ∞; we demonstrate

that this holds in the next paragraph.

Recall that on the event E , defined in (S2.6), we have that mini |ηi| ≥
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mini |fj(xi)||βj| − ε. Thus, on E ,

min
i
η2i ≥ min

i
|fj(xi)|2|βj|2 − 2εmin

i
|fj(xi)||βj|+ ε2

≥ s2(X2)− t2(X2) + ε2 , (S2.13)

where above X2 = mini |fj(xi)||βj|, A = [0,∞), with s2(X2) = X2
2 and

t2(X2) = 2εX2. From assumptions (ii) and (iii) of the proposition we have

that E[|βj|2
∣∣ E ] =∞ and mini |fj(xi)| > 0, thus

E[s2(X2) | E ] = E[min
i
|fj(xi)|2|βj|2 | E ] =∞ .

Hence, applying Lemma 6 we see that E[s2(X2) − t2(X2) | E ] = ∞ and so,

by (S2.13), E[mini η
2
i | E ] =∞. To complete the proof we must consider the

marginal expectation of s1(X1) = (p/2)X2
1 I(X1 > κ), where X1 = mini |ηi|.

Note that by assumption (i), Pr(E) > 0, thus

EX2
1 = Emin

i
η2i ≥ Pr(E)E(min

i
η2i | E) =∞ .

Finally, observe that X2
1 = X2

1 I(X1 ≤ κ) +X2
1 I(X1 > κ) and

0 ≤ E{X2
1 I(X1 ≤ κ)} ≤ κ2 .

Since EX2
1 = ∞, we therefore have that E{X2

1 I(X1 > κ)} = ∞. Hence

E[s1(X1)] = ∞. As shown in the previous paragraph, this is enough to

establish that E log |M(ξ; β)| = −∞, and the proposition is proved.



TIMOTHY W. WAITE

Proof of Theorem 3. From Lemma 3 and the fact that w(η) = exp(η),

log |M(ξ; β)| ≥ pmin
i

logwi + log |FTF |

≥ pmin
i
ηi + log |FTF | .

However, mini ηi ≥ −maxi |ηi| and so

log |M(ξ; β)| ≥ −pmax
i
|ηi|+ log |FTF | .

We know from the proof of Theorem 1 that Emaxi |ηi| < ∞ under the

conditions given, and so we also have that E log |M(ξ; β)| > −∞ for the

Poisson model.

Proof of Proposition 8. First note from Lemma 3 that

log |M(ξ; β)| ≤ pmax
i
ηi + log |FTF | .

Thus, to establish that E log |M(ξ; β)| = −∞, it is sufficient to show that

Emaxi ηi = −∞. Similar to the proof of Proposition 4, the strategy is to

find an event where ηi is well approximated by fj(xi)βj. Let E2 be an event

such that βj < −1 and
∑

k 6=j |fk(xi)||βk| < ε for all i, where ε > 0 satisfies

||fj(xi)| − |fj(xi′)|| > 2ε for any i, i′ with |fj(xi)| 6= |fj(xi′)| .

For example, one possible definition is

E2 = {β : βj < −1 , |βk| < δ for all k 6= j} ,
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with δ = ε/[(p− 1) maxi,k |fk(xi)|]. On E2, by arguments similar to those in

the proof of Proposition 4,

max
i
ηi ≤ max

i
{fj(xi)βj}+ ε

≤ βj min
i
fj(xi) + ε , (S2.14)

where the second line follows since, by assumptions (i) and (v), we have

maxi{fj(xi)βj} = βj mini fj(xi). By condition (iii), E[βj | E2] = −∞ and so,

from (S2.14) and condition (v), we have E[maxi ηi | E2] = −∞. Moreover,

by condition (ii), Pr(E2) > 0 and so

E[max
i
ηi I(E2)] = Pr(E2)E[ max

i
ηi | E2 ] = −∞ . (S2.15)

Note that

max
i
ηi = max

i
ηi I(E2) + max

i
ηi I(EC2 ) . (S2.16)

By assumptions (i) and (v), fj(xi)βj is negative and so we have maxi ηi ≤∑
k 6=j maxi |fk(xi)||βk| . Thus by assumption (iv), E{maxi ηi I(EC2 )} < ∞.

Hence, by (S2.16),

Emax
i
ηi = Pr(E2)E[ max

i
ηi | E2 ] + Pr(EC2 )E[ max

i
ηi | EC2 ] ,

and, by (S2.15), we have Emaxi ηi =∞ and hence E log |M(ξ; β)| = −∞.

Proof of Proposition 1. Let ζε denote a one-run exact design with design
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point xε = −1/ log ε, with xε → 0 as ε→ 0. We show that, compared to ζε,

the relative Bayesian D-efficiency under Pε of a fixed (exact) design ξ tends

to zero as ε→ 0. It is not claimed that ζε is Bayesian D-optimal. However,

the relative Bayesian D-efficiency of ξ is an upper bound for the absolute

Bayesian D-efficiency of ξ, and so this argument is sufficient to establish

that Bayes-eff(ξ;Pε)→ 0 as ε→ 0.

First note that under Pε

E(β) =

∫ a

ε

1

θ

1

a− ε
dθ =

log a− log ε

a− ε
→∞ as ε→ 0 . (S2.17)

Observe that, for the β-parameterization, using (2.1),

φ(ξ;Pε)− φ(ζε;Pε) ≤ logSxx − 2 min
i:xi>0

{xi}Eβ − 2 log xε + 2Eβxε

≤ logSxx − 2

{
min
i:xi>0

xi − xε
}
Eβ − 2 log xε .

Using (S2.17) and the definition of xε, for ε sufficiently small,

φ(ξ;Pε)− φ(ζε;Pε) ≤ logSxx + 2K log ε− 2 log

(
−1

log ε

)
,

for someK > 0. Hence, provided ε is sufficiently small, the relative Bayesian

D-efficiency satisfies

exp{φ(ξ;Pε)− φ(ζε;Pε)} ≤ Sxx(ε
K log ε)2 → 0 as ε→ 0 ,

which is sufficient to prove the claim. The limit above can be found using

L’Hospital’s rule. Using (2.2), the same result for the Bayesian D-efficiency
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also holds under the θ-parameterization.
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