Sequential Model Averaging for High Dimensional
Linear Regression Models
Supplementary Materials

Wei Lan, Yingying Ma, Junlong Zhao, Hansheng Wang and Chih-Ling Tsai

Southwestern University of Finance and Economics, Beihang Unwversity, Beijing

Normal University, Peking University and University of California, Davis

Abstract

This document includes five sections. Section 1 presents simulation studies
that compare SMA with SIS, FR, MCV, and Bstg for less sparse regression
models. These numerical results are given in Tables S1 and S2 for 10 and
20 true relevant predictors, respectively. Section 2 compares SMA with the
Bayesian model averaging method for Examples 1-4, and the simulation results
are given in Tables S3 and S4. Section 3 investigates the average number of
steps reached via our proposed stopping rule. Sections 4 and 5 provide useful

lemmas and theoretical proofs, respectively.

Section 1: Simulation Results For Less Sparse Models

We adopt and modify the simulation settings of Examples 1 and 2, respectively,
from the manuscript. Specifically, we generate data from the model Y; = X,' 3 + oz,
where ¢g; is generated from a standard normal distribution for ¢ = 1,--- ,n, and o
is selected to generate a theoretical R? = var(X,' 3)/{var(X," 8) + 02} = 20%. The

detailed structures of X; and [ in these two examples are illustrated below.

Example S1: We adapt this example from Fan and Lv (2008) and let dy be the

size of the true model. In addition, for each 7, the j-th covariates X;; (1 < j < p) are
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independently generated from N(0,1). The r-th (1 < r < dy) nonzero true coefficient
of B is set equal to (—1)* (a, + |v,])/10, a, = 4log(n)n~/2, where u, is a binary
random variable with P(u, = 1) = 0.5 and v, is generated from a standard normal

distribution.

Example S2: This example is modified from Tibshirani (1996). Specifically, the
covariate vector X; is generated from a multivariate normal distribution with mean
zero and cov(X;j,, Xij,) = 0.5Vl for 1 < ji, jo < p. In addition, the true non-zero
coefficients are set to be By; = (—1)7 x 0.5 for any 1 < j < dy. Accordingly, So; = 0

for any 7 > dp.

The simulation results for dy = 10 and 20 based on 1,000 realizations are presented
in Tables S1 and S2, respectively. Both tables indicate that SMA performs well in
comparison with SIS, FR, MCV and Bstg.

Section 2: Comparison of SMA versus Bayesian Model Averaging

In this section, we compare SMA with the Bayesian model averaging method. It
is worth noting that, when p is ultra-high, the size of possible candidates models is
2P, Hence, this method is computationally infeasible. To this end, we propose the

following approach.

We randomly select a sub-model with size dy, and then evaluate its BIC score
(Chen and Chen, 2008). We next repeat the same procedure 1,000 times, which
yields 1,000 sub-models, denoted them by SW, ... S1000)  Afterwards, we record
their associated BIC scores BIC(SW), ...  BIC(S1%9) and calculate the average.
For making comparisons, we name this method feasible Bayesian model averaging
(FB). Tables S3 and S4 present simulation results of SMA and FB, based on 1,000
realizations with dy = n/4, for Examples 1-4 in the manuscript. Both tables show

that SMA is mostly superior to FB in terms of all three measures, AOR, SD, and
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WP across all four examples.
Section 3: Average Number of Steps Reached via our Stopping Rule

The aim of this section is to study whether our proposed stopping criterion can
be reached within a very limited number of steps when the number of true relevant
predictors is small. To this end, we examine the average number of steps reached via
our stopping rule for Examples 1-2 with the sample sizes n = 100, 200 and 300. Table
S5 indicates that the resulting average numbers can be considerably larger than their
associated true model sizes dy = 5 and 3. Hence, in practice, SMA may take more
steps but yields better results. In addition, we have conducted simulation studies for
Examples S1 and S2 with dy = 10 and dy = 20, respectively. The results yield similar
findings in Table S6.

To assess whether our proposed stopping rule is sufficient for good prediction, we
consider a simple simulation example below. Let K = 50 be the maximal number of
steps during the sequential process of SMA, and define SMA* be the k-th sequential
step for k = 1,--- , K. We then evaluate the averaged out-of-sample R? values (AOR)
for SMA* with k = 1,--- , K. For the sake of illustration, we only consider Example
S1 with n = 100 and p = 100. Figure S1 shows that AOR can increase very quickly
when k is small, and it tends to be flat when k is larger than 25. Since the average
stopping step is 24 for n = 100 and p = 100 (see Table S5), we conclude that the
updates for up to 24 of SMA are sufficient for this example.

To see whether S;; quickly become ignorable as k grows large. We also include the
plot of max; | Bkj| (we name it beta) against the number of steps k for k =1,--- | K.
Figure S2 indicates that max; | Bkj| deceases to 0 quite slowly after k& > 1. Hence, Bkj

is unlikely to become ignorable within a very limited number of sequential steps.



Section 4: Useful Lemmas

Before providing the theoretical proofs of Theorems 1-5, we present the following
four useful lemmas. Lemma 1 can be shown in a manner similar to Proposition 1 of
Jiang (2013). Lemma 2 can be verified by using the Bonferroni inequality; see, for
example, Lemma A.3 in Bickel and Levina (2008). Lemma 3 is slightly modified from
Lemma 1 of Wang (2009) and its proof is quite similar to that of Wang. Accordingly,

we only present the detailed proof of Lemma 4.

Lemma 1. Under Conditions (C2) and (C3), we have that, for any 0 < & < 2 and
]E {17 ap}7
m]aXP(\ﬁj —pjl > f) < d5exp ( — d6n£2),

where ds and dg are finite constants and they are a function of Cy, Csy, and dy only,

Cy and Cy are defined in Condition (C2), and dy is defined in Condition (C3).

Lemma 2. Under Conditions (C1)-(C3), we have that max X[ X;/n—1] =, 0 and
<j<p

(logp)~Y/% max |n~2eTX;| = O,(1) as n — oo.
1<j<p

Lemma 3. Under conditions (C2), (C5) and (C6), as n — oo, we have

2Tnin < ‘Mr‘r<1'1‘§\1/t ‘)\min{n’lX(TM)X(M)} < |MI|I§|L/}\(/[ ‘)\max{n’lX(TM)X(M)} < Tmax/ 2

Lemma 4. Assume that Conditions (C1)-(C4) and the assumption in Theorem 1
hold. We then have that, for any finite k < oo, (i.) /n(pxj — prj) = Op(1) (j =
1,---,p); (ii.) max; |ﬁi] — pzj| — 0, where py; is the population version of py; and it

1s defined in Remark 1.

Proof of Lemma 4. The result of kK = 1 can be directly obtained from Lemma 1
and the Bonferroni inequality. By induction, we can show that it holds for general k.

For the sake of simplicity, we only demonstrate that the result is valid for £ = 2 by
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assuming that it holds when k = 1. Recall that V) = (w1811, ,wi,B1,)" € RP,
B\(l) = (@11311, s ,{ﬁlpglp)T - Rp, and ?2 = Y1 — Xﬁ(l), where wlj and U/jlj are

defined in Section 2.3. Then, for any j = 1,--- ,p, we have that
Py = Y%7 Y5 X

= || Yy + X (8V — 3(1))”*1“&”*1{?;& + (B — 3(1))TXTX]}_

By Conditions (C1)—(C3) and Lemmas 1-2, one can easily verify that, for every fixed
7, ||}72||*1||Xj||’1(172TX]—) is \/n-consistent of py; and it is uniformly consistent of po;
over j, where py; = corr(\?g, X,) is defined in Remark 1. Hence, to prove Lemma 4,

it suffices to demonstrate the following two results:

X (8% = B[] = 0,(1) (0.1)

and max [n~ Y280 — FOTXTX;| = 0,(1). (0.2)
j
We next prove them via the following two separate steps, respectively.

STEP I. Let wy1y > -+ > wy(p) be the ordered statistics of {wy; : 1 < j < p} and
let @ (;) be their corresponding estimators for j = 1,---,p. By the assumption of
Theorem 1 that pi1) — pi2) > da for some positive constant d; > 0, the techniques
used in the proof of Theorem 1 and the result that max; |57, — p3;| — 0, we have that

there exists some constant ( < 1 such that
(:.)\1(1) — 1, CAdl(j) < Cn, Wi(1) — 1, and W1(5) < Cn

Define 6'\j1j2 = HleH_lHXJ'QH_IX]'—EX'

j, as the sample counterpart of o; ;,. Then, we

have

mjax ‘n_l/Q(ﬁ(l) _ B(l))TXTXj‘ < Ijrll%f |3j1j2|n1/2|5(1) _ 3(1)|1’



where |31 — B(l)h = > |BJ(-1) - Bj(l)|. After algebraic simplification, we obtain
!B — O} < 2|30 — B| + nY2(p — 1)¢". In addition, Condition (C1)
implies that n'/2(p — 1)¢™ — 0. Hence, n'/2|31) — |, = O,(1). Moreover, Condi-
tions (C1)—(C3), together with the Bonferroni inequality and Lemma 1, lead to, for

any arbitrary positive constant v > 0,

P<max G2 = Tjujal > ’Y) < ZPOajm — Ojija| > 7)

Ji,J2 —
J1,j2

< p*ds exp ( — d6n72) < dsexp (Vno‘ — d6nfy2},

where d5 and dg are defined in Lemma 1 and a < 1 is assumed in Condition (C1).
Since dgny? dominates vn®, we obtain that maxj, j, [6;,;, — 0jj.| = 0. Accordingly,
max;, j, [0;,5,] = Op(1). This, in conjunction with n'/2|8® — FW|; = 0,(1), yields
max; [n~1/2(BM) — B\(l))TXTXj| = O,(1), which completes the proof of (0.2).

STEP II. Note that
(0~ B = (59— B XX~ 30
. 1) A\ 1) A0 ~ 3
=n Zgjljz(ﬁj(i) - 5;1))(53(‘2) - ﬁj('z)) < I}}Eﬁ( |Uj1j2| X n|(5(1) - ﬂ(l))ﬁ'
J1,32 7
Then, using the results | (3" —E(l))ﬁ = Op(n™') and max;, j, [7;,,| = O,(1) obtained

in STEP I, we have that || X(8") — B(l))H2 = 0,(1), which completes the proof of
(0.1).

Section 5: Proofs of Theorems 1-5

Proof of Theorem 1: By theorem’s assumption, we know that p?l) — pé) > dy. We



then examine the difference between the corresponding estimates. That is,

AL

P?l)

— Pz

(AVARRAY/

v

Py = Py + Py = Play + Play = Pla)

P%l) - P%Q) - ‘P%m - A%1)| - ‘Pé) - ﬁ(2)|

Phy — Ploy — 2max|p] — 7]

d2—2mjax\p?—fo\?|, (0.3)

where the last inequality is due to fact that p%l) —p%z) > dy. Furthermore, by Condition

(C1), Bonferroni’s inequality and Lemma 1, we have that

P(max |33~ )| > €) < S P(12 — 0}l > €) < 3 P15 —nil > €/2)

< pds exp ( — d6n§2/4) < dsexp (logp — d6n£2/4) — 0.

This, together with (0.3), leads to, with probability tending to one, 5%1) - ﬁé) > dy /2.

Next, by definition, BIC = nlog ||[Y — X(M)E(M)HQ + M| x (logn + 2logp) =
nlog{Y" (I — Hy)Y} + |M|(logn + 2log p), where

Ha = X (X X)) ™ X pg)-

For the sake of convenience, let BIC(;) represent the BIC score associated with ,5?1).



We then have

1
wrlleax = €eXp ( - §BIC(1)> [ exp ( — —BICM*>

It is noteworthy that Y, ) (1 = 5g,))™*(1 — pfyy) ™% < p(1 = pgy))"*(1 = plyy) 7 =

exp [logp + n/2{log(1 — p¢,)) — log(1 — p,))}]. This, in conjunction with the result

proved earlier that pf,) — pfy, > d2/2 with probability tending to 1 and Condition
(C3), implies that the right-hand side of the above inequality can be further bounded
above by the following quantity

exp{ logp +27'n log(1 ~ 7y) ~ log(1 ~ 7, + da/2)] |
1—p?
- 1)
= expX logp+ 2 'nlog
{ L =Py + da/2
_ dy /2
= exp< logp+2~'nlog |1 —
{ L =5 + da/2

_ dz/2
1 2 nl 1l .
< exp{ogp—ir nlog 1—d1+d2/2>}

By Condition (C1), we know immediately that the right-hand side of the above in-

equality is 0,(1). Analogously, we can prove that /np(1 — ﬁ%l))”/ 2 —,0. As a result,
U

max

we have wy .. —, 1, which completes the proof.

Proof of Theorem 2: By the definitions of Yy, wy;, and H;, we know that Y1 =
P -
(I — > wy;H;)Y. Then, define X; = X;/[|X;||, which immediately leads to H; =
j=1



}Ejfij After algebraic simplification, we obtain that

p p
Ykl = (1Yl =2> @ Y HyYs+ || Y g Hy Y

J=1 Jj=1

p p
= YRIP = 2012 @iy + 11D 0 X (X Y|P
j=1 j=1
p P .
= 1Y, (1 —2> Doy + |l Z@ijjﬁijQ)
j=1 j=1

p

= 1Y, (1—22@;@3* > @km@kg‘zﬁkﬁﬁkﬂ'ﬁjm), (0.5)
Jj=1 1<)1,j2<p

where 7;, ;, = X;Xm Note that |7j,;,| < 1 for any 1 < j,jo < p since ||XJH =1

Thus, the right-hand side of equation (0.5) can be bounded above by

p
HYkHZ{l—QZ@Mﬁ%JF > @kjﬁka\ﬁkjﬁm\}
j=1

1<j1,j2<p
p P 9
= IYRlP Q1 =23 @dt, + (D dwslinl) ¢
j=1 j=1

This suggests that

p p 2
IV = Va2 > (Y2 {zzwkjﬁzj = (D= sl } . (09)
j=1

=1

p p p
By Cauchy’s Inequality, we have (> @Wx;) (Y Wk;jPp;) > (D2 Wiylpks|)?, which implies
=1 =1 =1

J
p p
that Y~ Wx;pp; > (D2 Wijlprs])?. This, together with (0.6), yields [[Yg|[* = [[ Yy []* >
= =

p
1Y 5|I> > @ P, This completes the proof.
=1

Proof of Theorem 3: Using the result of Theorem 2, we have that [[Y}||? —

1Y gi1]]? > ||Yk||2{0k(1)ﬁi(l). Hence, to prove this theorem, it suffices to show that



W)y = 1+ 0,(1). By definition,

-1
p
Wy = (1= ppy) ™ {Z(l Drj) n/2+\/_p}

j=1
—1

= ST =B (1= )T+ ap(l = B P+ L (0)
J#(1)

It is noteworthy that the first term on the right-hand side of (0.7) satisfies

~ n/2 ~ n/2
" (1= D 1= proy
) Phi P
In addition, the right-hand side of the above inequality equals

exp [2_1 {2logp +nlog(1— ,/0\2(1)) —nlog (1 — ﬁi@))}} . (0.9)

Moreover, by Lemma 4 and using similar arguments for obtaining (0.2), we have
that 97 — Pyl = da — 2max; |pf; — pi;| > da/2 with probability approaching
1. Subsequently, by Conditions (C1) and (C4), (0.9) can be further asymptotically
bounded by

exps logp +27'n log(l—pk ) — log(l—pk +d4/2)]}

1—p?
= expX logp+ 2 'nlog P
1_ﬁ?1)+d4/2

2
logp+ 27 'nlog [ 1 — da/ )}

= ex
P L~y + da/2
_ dy/2
1 27n1 1l 0.
< exp{ogp+ n log 1—d3+d4/2>}_>

As a result, the right-hand side in (0.8) goes to 0. Similarly, by Condition (C4), we can
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prove that the second term in (0.7) is of order 0,(1). Consequently, Wiy = 14 0,(1),

which completes the proof.

Proof of Theorem 4: By the definitions of Yy, wy;, and ﬁ%j, and the equation (0.5)

in the proof of Theorem 2, we obtain the following relationship:

Zwk] ]pk:j
2/ (Z mm) : (0.10)
j

IYRll? = ([ Yral® = 2 Yl (Z@kaﬁzJ Y k]f* -
j

IN

Since p; ij pk for j = 1,---,p and Z?:l Wg; = 1 — Wy, the right-hand side of
(0.10) is bounded by 2(1 — wko)HYkHQﬁi(l). It is noteworthy that

p -1 P -1
o=V S b ST
j=1 j=1
In addition, by theorem’s assumption that pk = O(n™') and using the results of

Lemma 4, we have (1 — p3,)™"/? = O,(1) for any j. As a result, n="/?p~' 377 _ (1 -
ﬁij)*"/z —p 0, which implies that Wy = 1+ 0,(1). Consequently, we can obtain that
Y Rl? = 1Y k41 l®) /1Y R II” = 0,(P%1y)> which completes the proof.

Proof of Theorem 5: To prove the theorem, we consider two steps: (i.) demonstrate
that pra)y —p 0 as min{K,n} — oo; (ii.) wuse the result from (i) to show that

185 = Bol| = 0 as min{K, n} — .

STEP 1. We prove this step by the contradiction approach. Suppose there exists a
sequence of K, — oo and a positive constant ¢ € (0, 1) such that ﬁ%(nu) > ¢ for any

K, > 0. Accordingly,
~ ~ — \/_ {1 2 }n/2 < \/_ 1 — n/2
wKno/wKn(l) np PK,(1) < vnp( )"
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Since W, 1) < 1, we further have &g, o < /np(1 — ¢)™/2. This leads to
p
D Bk, = 1= p(l— )" (0.11)
j=1
Next, let j* = min {j : ﬁ%n(l) — ﬁin(j) > c/2}. Then, for any j > j*, we have
Bk () Py = {1 = Pre, )1 = Py} "

~2

1= D0

As a result, Y7 .. O, < p(l— c/2)"/2. This, together with (0.11), leads to

;"llen(J > 1 — /np(l — )"/ — p(1 — ¢/2)"2. In addition, by Theorem 2
and the assumption of var(Y;) = 1, we have that n7!||Yg|> > n7'|[Yxu|* and
n~Y|Y1]]? < oo, respectively, as K — oo. This indicates that n™!||Ygl|? is a
bounded decreasing sequence. Hence, there exists a positive constant ¢* such that
n Y Yk|* =, ¢, which implies that n™||[Ygl||? — n | Yk41|* = 0 as K goes to
infinity. Subsequently, by Theorem 2, we further have Z?Zl Ok, iPk,; — 0. Since

PR Y Z?;_ll @Kn(j)ﬁ%(n(jﬁ we finally obtain that

Jn—1
Z B ()Prca() —*p 0- (0.12)
j=1

On the other hand, by the definition of j, we have pj G) = PK 0/2 > ¢/2,

for any 1 < 5 < j* — 1. Accordingly, ZJ’*‘I WUk, (j) pK > c/QZJ L Or,G) =
{1 —/np(1 —¢)"* — p(1 — ¢/2)"*} /2. Using Condition (Cl), one can easily ver1fy
that

1—np(1 — )" = p(1 —¢/2)"* =1

12



as n — oo. Consequently, we obtain that
Jn—=1

> Ok = {1 — Viap(l — )" = p(1 — ¢/2)"?} /2 = ¢/2 #0,
Jj=1

which contradicts (0.12). Thus, we have shown that pxn) —, 0 as min{K,n} — oo.

STEP II. By the definition of ﬁﬁ((l), we have

Py = max (XY )" 1% 72 Y|
> -1y T 2 -1 q21yty, -1 21
> max (n”'X; Yoo { max o7 X7 {n 7 Yk}
> -1 T 2 -1 21ty -1 211
> max (™ XY { max n X7 {0 YP, (013

where the last inequality is due to the fact that |[Ygl|? < [[Y|* for any K > 1; see
Theorem 2. Using the assumptions of var(X;;) = var(Y;) = 1 for 1 < j < p and
Lemma 2, we obtain that n '||Y||* < 2 and max; n™ | X;||*> < 2 with probability
tending to 1. As a result, the right-hand side of (0.13) can be further bounded away
from 0; i.e.,

Pray =47 max (n' X[ Yg)? (0.14)

1<j<p

with probability approaching 1, and it is uniform for any K.

Next, define A = By — BK, which leads to Yx =Y — XBK = XA +e¢. By triangle

inequality, we obtain
1/2 1% T < 1/2 1T
|IM,,| max n X, XA < [ M, max n X, Yl

+|M,, |12 max nHX/el.
)P

Using equation (0.14) and the result, px 1) —, 0 as min{ K, n} — oo, proved in Step

I, we have [M,|"?maxi<j<,n '|X] Y| —, 0. In addition, Lemma 2 implies that
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M., |12 maxi<;<p n_1|X]-T8] —, 0. Accordingly,
[My['? max ™! [XTXA| =, 0. (0.15)
SIsp

Moreover, employing Cauchy-Schwarz inequality and the stated assumption, together
with the fact that |[Y|* < [|[Y]|* < 2 and pj; < 1 uniformly for any k = 1,--- | K,

we have

K K
MEIBEIP = M2 ST (Y aby)” < Melx S S a2 B2,

jEMS k=1 JEMS k=1
K
= MK Y Y @YX,
JEMS k=1
< {n11n||X 1} ||Y|| | ME|K? sup Z @iy — 0, (0.16)
P>1jems,

*<

with probability approaching to 1. As a result, we can have )\maX(X(TM% 1 X m)|| Bj;n
tr(X ey Xome) 1B 12 = O(ME 185
(C5.2), further implies that )\maX(X(TM%)X(M%))||A(M%)||2 — 0. Subsequently, by the

2) — 0. This, together with Condition

Cauchy-Schwarz inequality again, Lemma 2, and Condition (C5.2), we obtain that

2

IN

M, |[{n! wax X X me) A |}2

1<5<

’M |{n max HX H }{n 1HX(MC A( Mg)

A

2|Mn‘)\max{n_1XEr %)X(M%)}HA(Mﬁ)”z —p 0.

This, in conjunction with (0.15), implies that

M, |/ max n- X X () Ay = 0p(1). (0.17)
<j<p
For an arbitrary vector ¢ = (g1, ,qq4) € RY, define ||g|ls = > |g;| to be its L;

14



norm. Then, by Condition (C6) and Lemma 3, we have that

1A ) |I”

IN

T A oy {07 X ) X v FA M)

Ton HA(Mn)HlmjaX{”_l\XjTX(Mn)A(Mn)|}

min

IN

IN

min

Toni |Mn|1/2||A(Mn)||m?X{"_1|XJTX(Mn)A(Mn)|}-
This, in conjunction with (0.17), leads to

IA M) || < T MG [ mﬁx{n_wX;Xwn)A(Mnﬂ} —p 0.

2 — 0, we have that |Al| =

Furthermore, by the result )\maX(X(TM%)X(M%))HA(M%)
HEK — Boll —p 0, which completes the proof.
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Table S3: Simulation results for comparing SMA with FB in Examples 1 and 2.
AOR (%) SD (%) WP (%)
Example n D FB SMA | FB SMA FB
1 100 100 | 3.42  6.17 | 3.77  3.72 89.40
1000 | 1.77 243 | 3.68 3.73 86.60
10000 | 0.04 0.57 | 256 2.74 88.90

200 100 | 7.98 10.96 | 3.08  3.29 85.40
1000 | 5.21 712|345 3.92 82.60
10000 | 2.10 4.23 | 3.56  3.96 87.10

300 100 | 10.45 13.48 | 243  2.72 78.40

1000 | 7.43 10.41 | 3.07  3.49 76.00

10000 | 5.28 7.63 | 4.02 3.96 80.30

2 100 100 | 7.22  9.96 | 4.20 4.30 82.80
1000 | 4.21 6.13 | 433 4.93 77.50

10000 | 1.08  3.08 | 4.43 4.62 78.00

200 100 | 11.22 14.55 | 3.04  2.83 78.20
1000 | 8.69 12.24 | 3.75 3.6 75.10
10000 | 6.77 10.29 | 4.53 4.50 78.90

300 100 | 13.29 16.29 | 1.89  2.20 81.80
1000 | 10.12 14.63 | 2.43 2.31 80.40
10000 | 9.24 13.22 | 2.66  2.72 77.30
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Table S4: Simulation results for comparing SMA with FB in Examples 3 and 4.

AOR (%) SD (%) WP (%)

Example n D FB SMA | FB SMA FB
3 100 100 | 10.45 12.33 | 4.30  4.20 76.30
1000 | 9.77 11.81 | 3.89  4.05 75.10

10000 | 10.23 11.96 | 4.05  4.00 68.60

200 100 | 12.48 13.79 | 3.23  3.19 65.40

1000 | 11.27 12.71 | 3.45 3.30 70.60

10000 | 10.70 12.25 | 3.02  3.25 66.00

300 100 | 12.89 14.68 | 2.85  2.88 75.40

1000 | 10.56 13.46 | 3.17  3.30 78.20

10000 | 10.44 12.61 | 3.21  3.33 67.10

4 100 100 | 8.67 9.05 | 2.78 2.86 65.20
1000 6.54 7.52 232 241 63.60

10000 | 5.88 7.04 | 2.09 2.13 58.40

200 100 | 9.56 10.78 | 2.76  2.78 60.60

1000 | 10.06  9.13 | 2.25  2.30 46.80

10000 | 9.16  8.10 | 1.77 1.88 45.90

300 100 | 11.65 12.46 | 2.67 2.88 65.80

1000 | 9.78 10.27 | 2.56  2.61 56.70

10000 | 8.12 9.14 | 2.05 2.16 58.30

Table S5: Simulation results for the average number of steps reached via our
stopping rule in Examples 1 and 2 with dy = 5 and dy = 3, respectively.

n D Example 1 Example 2
100 100 24.2 22.0
1000 20.4 18.2
10000 17.8 16.4
200 100 22.1 20.1
1000 18.3 17.5
10000 14.4 13.9
300 100 20.6 18.9
1000 15.3 17.0
10000 12.8 11.7
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Table S6: Simulation results for the average number of steps reached via our
stopping rule in Examples S1 and S2 with dy = 10 and dy = 20, respectively.

Example S1 Example S2
100 100 26.0 33.5 32.0 37.0
1000 22.0 29.0 28.3 31.6
10000 18.9 26.5 26.2 28.8
200 100 24.6 30.1 29.7 32.5
1000 19.5 27.5 28.4 30.6
10000 16.8 27.5 25.8 27.1
300 100 25.3 20.9 14.7 13.0
1000 18.2 26.5 27.8 29.1
10000 15.4 27.2 24.0 27.2

Figure S1. AOR of SMAF versus the number of sequential steps k in Example S1.
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Figure S2. max; | Bk]| of SMAP” versus the number of sequential steps k in Example S1.
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