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Abstract: In high-dimensional data analysis, we propose a sequential model av-

eraging (SMA) method to make accurate and stable predictions. Specifically, we

introduce a hybrid approach that combines a sequential screening process with a

model averaging algorithm, where the weight of each model is determined by its

Bayesian information (BIC) score (Schwarz (1978); Chen and Chen (2008)). The

sequential technique makes SMA computationally feasible with high-dimensional

data, because the averaging process assures the prediction’s accuracy and stability.

Results show that SMA not only yields a good model, but also mitigates over-

fitting. We demonstrate that SMA provides consistent estimators for the regres-

sion coefficients and yields reliable predictions under mild conditions. Simulations

and empirical examples are presented to illustrate the usefulness of the proposed

method.
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1. Introduction

In regression analysis, parameter estimation and variable selection play im-

portant roles in the process of making accurate and reliable predictions. To

this end, various shrinkage methods have been proposed under a fixed dimen-

sion setting; see, for example, the least absolute shrinkage and selection opera-

tor (LASSO) of Tibshirani (1996), smoothly clipped absolute deviation operator

(SCAD) of Fan and Li (2001), adaptive LASSO of Zou (2006) and Zhang and Lu

(2007). These methods are further extended to the case of a diverging number

of parameters under the constraint that the predictor dimension (p) is no larger

than the sample size (n); see, for example, Fan and Peng (2004), Huang, Ma and

Zhang (2007), and Zou and Zhang (2009). For the case where the number of pre-

dictors (p) exceeds the sample size (n), several variable screening methods have

recently been developed. These methods for ultra-high dimensional models (say
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log(p) = O(na) for some a > 0), include sure independence screening (Fan and

Lv (2008); Fan and Song (2010))(SIS), forward regression (Wang (2009))(FR)

and distance correlation learning (Li, Zhong and Zhu (2012)). These screening

methods can reduce the data dimension from ultra-high to low, or even fixed, so

that classical methods are applicable.

Shrinkage and/or screening methods are useful for high-dimensional data

analysis. By identifying sparse solutions for the regression coefficients, model in-

terpretability and forecasting accuracy can be improved, provided the true sparse

structure is correctly identified. Otherwise, estimation and prediction results can

be biased. Hence, one typically requires that either the sample size or the signal-

to-noise ratio be sufficiently large. This is particularly true if the predictor di-

mension is high; see, for example, the simulation experiments reported in Zhang

and Lu (2007), Fan and Lv (2008), Wang (2009), Zou and Zhang (2009), and Fan

and Song (2010). In practice, sample size may be limited and the signal-to-noise

ratio weak due to complex data generating mechanisms. Then, estimation accu-

racy is unreliable for essentially any variable selection method (Shao (1997); Yang

(2005); Leeb and Pötscher (2008)) in finite samples, and the resulting forecasts

can be unstable and inaccurate.

Model averaging approaches are commonly used to improve predictive per-

formance. Instead of employing a single selected best model to make predictions,

these techniques average all possible candidate models with suitable weights.

Such methods include, but are not limited to, Akaike information criterion (AIC)

model averaging (Akaike (1979); Burnham and Anderson (2002)), Bayesian in-

formation criterion (BIC) model averaging (Buckland, Burnham and Augustin

(1997); Hoeting et al. (1999)), Mallows Cp model averaging (Hansen (2007);

Wan, Zhang and Zou (2010)) and Jackknife model averaging (Racine and Hansen

(2012); Zhang, Wan and Zou (2013); Ando and Li (2014)).

Commonly, averaging methods are designed for predictor dimensions no big-

ger than the sample size, as in low-dimensional data with p = o(n), and cannot be

directly applied to a model with ultra-high dimensional predictors. In practice,

classical results about risk efficiency (see, e.g., Li (1987)) may not be valid be-

cause of the difficulty in finding an optimal rate of convergence that can serve as

a universal lower bound for the lowest risk among all weight choices; see Theorem

1 of Ando and Li (2014) and the accompanying discussion. To resolve this, Ando

and Li (2014) suggested sorting the predictors into groups according to their

marginal correlation with the response, then averaging over this small number

of groups. Weights are determined by a delete-one cross-validation procedure
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(we refer to it as MCV for the model-averaging CV). The authors demonstrated

that MCV is computationally feasible for ultra-high dimensional predictors and

established its risk efficiency.

Thus, LASSO, SIS, and FR can handle variable selection and parameter

estimation simultaneously, while they focus on searching for a single best model to

improve prediction accuracy and model interpretability and discount some model

certainty. These methods require the true model to be sparse in order to attain

model selection consistency. With sequential screening, SIS and FR can cope

with high-dimensional data. Model averaging accounts for model uncertainty

and makes better predictions, but the commonly used averaging methods are

not directly applicable to high-dimensional data when p is much larger than

n. Accordingly, we propose a sequential model averaging (SMA) approach for

predictions that combines a sequential screening process and a model averaging

algorithm. This approach leverages the computational convenience of screening

procedures (Fan and Lv (2008); Wang (2009)) and the forecasting reliability of

model averaging methods (Claeskens and Hjort (2008)). Furthermore, it does

not require sparsity of regression coefficients.

SMA is implemented in a sequential manner so that in each step the candi-

date models with size one are considered. This is computationally feasible even

when the predictor dimension is ultra-high. The response vector in each step of

SMA is updated by the residual calculated from the previous step. The larger

weights determined by BIC scores (Schwarz (1978);Chen and Chen (2008)) can

be sequentially assigned to more relevant predictors. Accordingly, SMA conducts

both variable screening and model averaging. It yields consistent estimators of

regression coefficients even when the predictor dimension is much larger than the

sample size, even if it is ultra-high dimensional.

The rest of this article is organized as follows. Section 2 introduces SMA

and then investigates its theoretical properties. Applications to simulations and

data are reported in Section 3. The article concludes with a short discussion in

Section 4. Technical details are relegated to the supplementary materials.

2. Sequential Model Averaging

In this section, we review the classical Bayesian model averaging procedure,

and then extend it to high-dimensional data. Since it is not an optimal procedure,

we incorporate sequential screening approach into the univariate model averaging

process, which results in the sequential model averaging algorithm. Then we
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study its theoretical properties.

2.1. Model averaging

Let (Yi, Xi) for i = 1, · · · , n be n independent and identically distributed ran-

dom vectors, where Yi ∈ R1 (1 ≤ i ≤ n) is the response collected from the i-th

subject and Xi = (Xi1, · · · , Xip)
> ∈ Rp is the associated p-dimensional predic-

tor. We take the Yi and covariates Xi to be standardized; E(Yi) = E(Xij) = 0

and var(Yi) = var(Xij) = 1 for all 1 ≤ j ≤ p. The correlation of Xij1 and

Xij2 is labeled as σj1j2 for any j1 6= j2. We consider a response vector Y =

(Y1, · · · , Yn)> ∈ Rn and a design matrix X = (X1, · · · , Xn)> ∈ Rn×p. For j

with 1 ≤ j ≤ p, Xj = (X1j , · · · , Xnj)
> ∈ Rn denotes the j-th column of X.

Let M = {j1, · · · , jd} and MF = {1, 2, · · · , p} represent the candidate model

with explanatory variables Xij1 , · · · , Xijd and the full model, respectively. Ac-

cordingly, X(M) = (Xj : j ∈ M) ∈ Rn×|M| is the design matrix associated with

model M, where |M| denotes the size of the candidate model.

For any candidate model M ⊂ MF with |M| ≤ n, we establish the rela-

tionship between the response and explanatory variables via a linear regression,

Y = X(M)β(M) + ε, where β(M) = (βj : j ∈ M) ∈ R|M|, ε = (ε1, · · · , εn)>, and

the εis are i.i.d. normal with mean zero and finite variance σ2. The ordinary

least squares (OLS) estimator of β(M) is β̂(M) = (X>(M)X(M))
−1(X>(M)Y) ∈ R|M|.

Given candidate model fittings, one can employ Schwarz’s (1978) Bayesian infor-

mation criterion (BIC)

BIC∗M = n log ‖Y− X(M)β̂(M)‖2 + |M| × log n, (2.1)

to select the best model, where ‖ · ‖ stands for the usual L2 norm. Based on BIC

scores, we can assign each candidate model with an appropriate weight, leading

to a BIC model averaging estimator

β̂B =
∑
M⊂MF

wMβ̂M.

Specifically, wM = exp(−BIC∗M/2)
{∑

M∗⊂MF
exp(−BIC∗M∗/2)

}−1
and β̂M is a

p-dimensional vector such that the coefficients associated with M are given by

β̂(M), with the rest set to 0. More detailed discussion of the BIC model averaging

approach can be found in Hoeting et al. (1999), Claeskens and Hjort (2008), and

Hastie, Tibshirani and Friedman (2009).

An important feature of the BIC model averaging estimator is its stability,

due to utilizing the information of every candidate model. Many variable selec-

tion methods that aim for a single best model are unstable, particularly those
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designed for consistent model selection (Shao (1997); Yang (2005); Leeb and

Pötscher (2008)). Although BIC model averaging has nice properties, Burnham

and Anderson (2002) found it difficult to implement when the number of vari-

ables is large, as the number of candidate models increases exponentially as the

predictor dimensions grows large. As pointed out by Chen and Chen (2008), the

classical Bayesian information criterion (2.1) is too liberal for model selection

when p is large. They proposed the ultra-high dimensional Bayesian information

criterion

BICM = n log ‖Y− X(M)β̂(M)‖2 + |M| × (log n+ 2 log p). (2.2)

Under some mild assumptions, they showed that this BIC criterion is selection

consistent for high-dimensional data. This motivates us to employ it in our

averaging estimators.

2.2. Univariate model averaging

As traditional model averaging approach for high dimensional data can be

computationally intractable, we consider only candidate models with |M| = 1.

We define the Univariate Model Averaging (UMA) estimator as

β̂U =
∑
|M|≤1

wUMβ̂M, (2.3)

where wUM = exp(−BICM/2)
{∑

|M∗|≤1 exp(−BICM∗/2)
}−1

. Since we only av-

erage over candidate models of size one, there are only p univariate regression

models to be estimated. The UMA estimator is a smooth function of the data,

and thus, it is stable. We adopt Chen and Chen’s (2008) BIC score designed for

high-dimensional regression models to construct the weight for each candidate

model in (2.3).

To demonstrate theoretical properties of UMA, we need some notation and

conditions. Take ρj = cov(Xij , Yi), so that ρ2(1) ≥ ρ2(2) ≥ · · · ≥ ρ2(p). We use

ρ̂2(j) and ρ̂2j to represent their corresponding estimators. We have the following

conditions.

(C1) There are constants ν > 0 and 0 ≤ α < 1 such that log p ≤ νnα;

(C2) There exist some positive constants C1 and C2, free of n and p, such that

for any positive constant δ > 0, P (|Xij | > δ) ≤ C1 exp(−C2δ
2) and P (|εi| >

δ) ≤ C1 exp(−C2δ
2) for i = 1, · · · , n and j = 1, · · · , p;

(C3) There is a constant d1 > 0 such that maxj1 6=j2{|σj1j2 |, ρ2(1)} < d1 < 1.

Condition (C1) allows the predictor dimension p to be ultra-high (Fan and Lv
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(2008)). Condition (C2) is satisfied if (Xi, εi) is multivariate normal; see, for

example, Li, Zhong and Zhu (2012) and Wang (2012). Condition (C3) requires

that no predictor be perfectly correlated with the response vector, and that no

two predictors can be perfectly correlated with each other (Kalisch and Bühlmann

(2007)). These conditions are mild and make our results easily applicable.

Theorem 1. If (C1)–(C3) hold and ρ2(1) − ρ
2
(2) > d2 > 0 for some constant d2,

then wUmax →p 1 as n → ∞, where wUmax is the weight assigned by UMA to the

predictor that has the largest absolute coefficient of correlation with the response.

Accordingly, the information used for estimation and prediction is mainly

from the largest correlated predictor. The assumption that ρ2(1) − ρ
2
(2) > d2 > 0

for some constant d2 can be appropriately modified. For example, if ρ2(1) =

ρ2(2)+o(1) > ρ2(3), then the UMA approach assigns nearly equal weights to the first

two predictors that have the largest absolute correlations with the response, while

others have negligible effect. The resulting prediction via UMA may of cause not

be accurate since it only uses a small portion of the available information.

2.3. Sequential model averaging

To improve forecasting accuracy, one has to take into account the information

from other relevant predictors. This can be done by enlarging the candidate

model size from 1 to 2, in which case the number of candidate models is p2.

With high-dimensional data, the difference between p and p2 may carry a heavy

computational burden. This motivates us to utilize forward regression to update

the coefficient estimate sequentially.

Specifically, we sequentially update the coefficient estimate of the UMA algo-

rithm at each step. While updating the response vector to the residual calculated

from the previous step. Thus, the effects of heavily weighted predictors in the

previous steps can be substantially reduced, allowing other relevant predictors

to contribute more to subsequent parameter estimates. This hybrid approach

between a sequential method and an averaging method retains the estimation

stability of UMA, and achieves computational feasibility. We refer to this proce-

dure as sequential model averaging (SMA).

Assume that the SMA algorithm consists of K sequential steps; the selection

of K is discussed in Remark 4 at the end of Subsection 2.5. Let Y1 = Y be the

initial response vector, and Yk be the response vector used in the k-th step,

1 ≤ k ≤ K. For the given response Yk and explanatory variables Xj (j =

1, · · · , p), we fit the univariate regression model and obtain the OLS estimator
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β̂kj = (X>j Xj)−1(X>j Yk). Thus, β̂kj is the OLS estimator obtained in the k-th

sequential step via the j-th explanatory variable only. By (2.2), the corresponding

high-dimensional BIC score is given by

BICkj = n log ‖Yk − Xj β̂kj‖2 + log n+ 2 log p

= n log
{
‖Yk‖2(1− ρ̂2kj)

}
+ log n+ 2 log p,

where ρ̂2kj = ‖Yk‖−2Y>kHjYk is the squared correlation coefficient between Xj
and Yk, and Hj = ‖Xj‖−2XjX>j . We also fit the null model, which leads

to a residual sum of squares, ‖Yk‖2, and the resulting BIC score BICk0 =

n log(‖Yk‖2). Including the null model at every step is crucial for the SMA

procedure. By doing so, as long as the weight of the null model is less than

1, some information of the response can still be explained by the covariates.

We adopt the idea of classical BIC model averaging algorithm and define the

averaging weight for each candidate model j, 0 ≤ j ≤ p, as

ŵkj = exp
(
− 1

2
BICkj

) p∑
j′=0

exp
(
− 1

2
BICkj′

)−1 .
After algebraic simplification, one can verify that

ŵk0 =
√
np

[ p∑
j′=1

(
1− ρ̂2kj′

)−n/2
+
√
np

]−1
,

and ŵkj =
(

1− ρ̂2kj
)−n/2[ p∑

j′=1

(
1− ρ̂2kj′

)−n/2
+
√
np

]−1
for 1 ≤ j ≤ p.

This leads to a coefficient vector β̂(k) = (ŵk1β̂k1, · · · , ŵkpβ̂kp)> ∈ Rp. Subse-

quently, the response Yk is updated to Yk+1 = Yk − Xβ̂(k). After completing

K iteration steps, we obtain the SMA estimator, β̂K =
∑K

k=1 β̂
(k). Thus, for

(X∗, Y ∗), an independent copy of (Xi, Yi) for some 1 ≤ i ≤ n, we can predict the

value of Y ∗ by Ŷ ∗ = X∗>β̂K .

Remark 1. The weight ω̂kj for the j-th predictor in the k-th iteration step is

data driven and closely related to ρ̂kj . To study the properties of ω̂kj , we need to

control the magnitude of ρ̂kj for every k. We define ρkj , the population version

of ρ̂kj , in a sequential manner. When k = 1, we have ρ1j = ρj , and then take

w10 =
√
np

[ p∑
j′=1

(
1− ρ21j′

)−n/2
+
√
np

]−1
,

and w1j =
(

1− ρ21j
)−n/2[ p∑

j′=1

(
1− ρ21j′

)−n/2
+
√
np

]−1
for 1 ≤ j ≤ p.
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Table 1. Simulation results of comparisons for Examples 1 and 2.

AOR (%) SD (%) WP(%)
Example n p SIS FR MCV Bstg SMA SIS FR MCV Bstg SMA SIS FR MCV Bstg

1 100 100 2.03 1.50 2.79 4.52 6.17 7.39 4.40 4.07 3.87 3.72 76.00 91.80 86.70 75.60
1,000 −4.16 0.05 0.43 1.06 2.43 9.75 4.14 1.74 4.02 3.73 77.00 79.60 76.20 65.90

10,000 −11.01 −0.13 −0.04 0.18 0.57 9.71 3.25 1.10 3.21 2.74 87.90 52.10 50.30 54.60
200 100 8.05 7.13 4.24 8.43 10.96 4.56 5.20 4.38 3.44 3.29 84.20 89.50 95.50 72.60

1,000 5.83 4.42 1.66 6.12 7.12 5.65 5.13 1.21 4.01 3.92 66.00 87.20 96.20 63.40
10,000 2.18 2.34 −0.02 2.29 4.23 8.06 4.53 1.17 3.86 3.96 61.50 84.90 92.80 55.70

300 100 11.47 11.46 4.62 10.56 13.48 4.14 4.43 4.03 3.12 2.72 78.30 77.20 99.50 73.00
1,000 9.25 8.65 2.63 8.33 10.41 4.29 5.03 1.34 3.58 3.49 72.10 79.30 99.40 69.30

10,000 7.26 6.05 0.17 6.34 7.63 4.88 5.22 1.29 4.07 3.96 61.50 81.20 98.60 57.60
2 100 100 8.76 6.14 3.85 8.44 9.96 7.27 6.86 4.77 5.21 4.30 57.90 79.40 94.30 75.60

1,000 3.52 3.08 0.69 5.21 6.13 11.70 6.42 1.98 5.99 4.93 51.30 75.30 89.50 68.50
10,000 −4.26 0.94 −0.02 2.14 3.08 14.02 5.63 1.10 5.46 4.62 69.10 71.40 73.90 58.40

200 100 12.90 12.83 4.64 12.88 14.55 2.85 3.67 4.48 3.02 2.83 83.20 83.90 99.60 80.40
1,000 11.99 11.02 1.81 10.89 12.24 4.18 5.04 1.44 3.87 3.65 64.20 72.40 99.70 68.20

10,000 10.85 9.10 0.02 9.77 10.29 6.13 6.25 1.24 4.90 4.50 45.40 62.00 98.50 58.10
300 100 14.05 14.90 6.11 13.58 16.29 2.27 2.68 3.85 2.01 2.20 91.60 84.00 99.90 79.40

1,000 13.34 13.54 2.58 12.89 14.63 2.11 2.63 1.69 2.56 2.31 88.20 86.70 100.00 69.00
10,000 12.83 12.58 0.16 12.77 13.22 2.49 3.20 1.38 2.32 2.72 70.30 72.60 100.00 60.40

Using the fact that n−1‖Xj‖2 →p 1 and n−1‖Y‖2 →p 1, we obtain that β̂1j →p ρj .

As a consequence, the exact response is taken as Ỹ2 = Y1 −Xβ(1), where β(1) =

(w11β11, · · · , w1pβ1p)
> with β1j = ρ1j . At the k-th sequential step, if Ỹk+1 is well

defined, we then define ρ(k+1)j = corr(Ỹk+1,Xj) and β(k+1)j = cov(Ỹk+1,Xj);
this sequential procedure can be repeated for each k. Consequently, our technical

conditions are imposed on ρkj rather than on ρ̂kj ; e.g., see Condition (C4).

Remark 2. SMA is closely related to the method of boosting (see Friedman,

Hastie and Tibshirani (2000); Bühlmann and Yu (2003, 2006)), but SMA is more

stable than boosting; see the simulation results in Tables 1, 2 and 4. Further,

the weight assigned to each covariate in the SMA algorithm is solely data driven.

2.4. Fitting capability

In classical sequential learning algorithms, forward regression has the capa-

bility to reduce the residual sum of squares monotonically. This allows forward

regression to capture the true regression relationship in a very limited number of

steps (Wang (2009)). Our results show that SMA possesses this desirable feature.

Theorem 2. For k ≥ 1, we have ‖Yk‖2 − ‖Yk+1‖2 ≥ ‖Yk‖2
∑p

j=1 ŵkj ρ̂
2
kj.

Thus, SMA reduces the residual sum of squares in each iteration step, similarly

to forward regression. To go further, we need the following condition.

(C4) Let ρ2k(1) ≥ · · · ≥ ρ2k(p) denote the ordered statistics of {ρ2kj : 1 ≤ j ≤ p}
for any k = 1, · · · ,K. Assume that sup1≤k≤K ρ

2
k(1) ≤ d3 < 1 for some fixed

constant d3 > 0.
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Table 2. Simulation results of comparisons for Examples 3 and 4.

AOR (%) SD (%) WP(%)
Example n p SIS FR MCV Bstg SMA SIS FR MCV Bstg SMA SIS FR MCV Bstg

3 100 100 6.91 5.18 10.84 12.06 12.33 4.90 5.39 4.54 4.43 4.30 94.80 96.40 67.30 74.20
1,000 3.60 1.17 8.75 11.43 11.81 4.71 4.38 4.47 4.17 4.05 98.30 98.80 78.90 65.70

10,000 1.22 −1.39 7.24 10.89 11.96 4.87 4.73 4.83 4.07 4.00 99.30 99.70 89.00 58.30
200 100 10.46 10.26 13.66 12.64 13.79 3.86 4.12 3.02 3.28 3.19 94.80 91.80 53.40 72.30

1,000 7.18 6.57 11.34 11.78 12.71 3.99 4.05 3.08 3.08 3.30 98.50 96.80 71.70 60.40
10,000 4.97 4.16 10.07 11.08 12.25 3.58 3.56 3.32 3.12 3.25 99.30 98.60 78.50 56.70

300 100 13.28 13.31 14.57 12.79 14.68 3.27 3.34 2.60 2.51 2.88 79.00 76.90 53.40 78.00
1,000 9.86 9.76 12.95 12.38 13.46 3.98 4.13 2.77 3.37 3.30 94.20 91.50 60.00 66.90

10,000 7.23 6.97 11.42 12.06 12.61 3.76 3.70 2.97 3.45 3.33 97.80 96.30 70.90 60.50
4 100 100 5.15 2.52 7.85 6.88 9.05 3.42 4.09 4.72 2.79 2.86 93.80 97.20 59.50 76.30

1,000 4.27 0.59 6.92 6.76 7.52 3.82 3.28 4.82 2.80 2.41 87.80 98.80 53.90 67.70
10,000 3.47 −0.38 5.91 6.46 7.04 4.05 3.19 5.07 2.28 2.13 84.10 99.10 59.40 55.50

200 100 6.89 8.62 8.97 8.98 10.78 3.05 4.62 3.68 2.67 2.78 97.20 75.10 72.20 78.50
1,000 6.14 6.16 9.27 7.68 9.13 2.61 4.51 3.51 2.40 2.30 93.40 82.00 48.70 68.00

10,000 5.53 3.70 8.23 7.25 8.10 2.58 3.83 3.64 2.08 1.88 90.20 91.80 49.60 58.70
300 100 8.28 12.34 9.99 10.67 12.46 3.30 4.25 3.64 3.02 2.88 96.60 55.50 88.70 88.70

1,000 7.04 9.68 9.84 9.23 10.27 2.78 4.41 3.14 2.46 2.61 96.10 63.40 57.30 79.20
10,000 6.47 7.96 9.82 8.45 9.14 2.45 4.36 3.19 2.34 2.16 94.40 68.10 41.90 56.90

Table 3. Simulation results of
∑1,000

m=1 ‖β̂[m] − β0‖/1, 000 for Examples 1-4.

Example 1 Example 2 Example 3 Example 4
n p Mean Mean Mean Mean

200 100 0.225 0.634 0.888 1.246
1,000 0.274 0.752 0.992 1.387

10,000 0.303 0.854 1.029 1.446
400 100 0.163 0.444 0.798 1.033

1,000 0.200 0.546 0.895 1.207
10,000 0.227 0.623 0.969 1.324

800 100 0.106 0.223 0.662 0.767
1,000 0.127 0.271 0.731 0.913

10,000 0.146 0.344 0.810 1.002

Condition (C4) is fairly mild and similar to condition (C3). It requires that no

predictor can be perfectly correlated with the response vector at any sequential

step.

Theorem 3. If (C1), (C2), and (C4) hold, for those values of k satisfying

ρ2k(1) − ρ2k(2) > d4 > 0 with some constant d4, we have ‖Yk‖2 − ‖Yk+1‖2 ≥
‖Yk‖2ρ̂2k(1)ω̂k(1), where ρ̂2k(1) is the estimator of ρ2k(1). In addition, ω̂k(1) →p 1 as

n→∞.

Remark 3. One can verify that, after fitting Yk by Xj in the k-th step, the

incremental reduction in the residual sum of squares is ‖Yk‖2ρ̂2kj . This suggests

that the reduction in the residual sum of squares in the k-th step can never ex-

ceed ‖Yk‖2ρ̂2k(1). This, together with Theorem 3, indicates that the amount of

reduction achieved by SMA can be arbitrarily close to this upper bound asymp-
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Table 4. Data analysis results for 14 different datasets. Each row corresponds to a
dataset and the industry IDs 1 = online retailing, 2 = professional training, 3 = online
recruiting, 4 = microblogging, 5 = mortgage, 6 = travel planning, and 7 = real-estate
advertising. The sample and covariate sizes in boldface indicate n < p.

Industry Size AOR (%) SD (%) WP(%)
ID n p SIS FR MCV Bstg SMA SIS FR MCV Bstg SMA SIS FR MCV Bstg
1 150 296 3.35 −0.15 4.11 7.65 12.75 5.78 2.82 11.43 4.34 4.21 97.80 98.90 91.70 85.60

421 367 1.02 −0.04 −17.69 1.25 2.98 2.82 0.71 64.80 2.65 2.50 84.80 93.30 76.80 94.50
438 377 9.61 2.08 −15.65 9.64 10.45 3.08 7.63 53.79 2.88 3.18 80.80 96.30 97.10 58.70
497 490 8.87 2.33 −9.09 8.46 14.35 4.50 5.01 49.39 4.98 5.05 87.60 94.20 87.60 83.60

1,438 979 6.87 1.51 −11.58 9.32 11.29 8.24 4.03 38.94 3.02 2.97 96.80 97.30 92.50 78.40
1,277 808 7.12 1.02 0.25 3.78 13.23 4.63 2.71 40.78 1.90 2.80 91.20 98.70 73.30 92.70
1,438 979 9.38 1.90 −18.18 5.90 11.00 1.51 3.98 76.96 2.03 0.97 92.20 93.70 96.70 95.40

2 788 487 12.48 3.55 −18.52 11.87 13.33 1.98 5.85 65.24 2.05 1.81 83.20 94.60 94.20 75.40
3 883 517 3.61 2.42 −39.05 7.90 13.97 78.87 4.87 199.32 1.66 1.68 81.20 96.10 96.70 89.50

1,352 820 11.44 2.95 −3.59 15.28 18.46 1.36 5.37 67.59 1.90 1.74 99.80 99.70 94.90 79.40
4 154 275 40.24 18.46 6.83 38.49 42.21 32.05 24.90 25.86 15.57 13.46 73.20 88.80 96.00 68.00
5 257 312 −0.32 −0.42 −7.75 1.23 2.41 3.22 1.27 29.06 2.56 2.93 83.90 88.30 68.60 89.40
6 1,534 788 23.76 7.26 3.07 18.78 26.92 1.75 10.37 37.01 1.44 1.57 97.30 99.30 85.60 92.00
7 1,545 695 11.49 3.26 −17.31 11.67 13.28 1.93 5.47 54.33 1.49 1.66 98.60 98.00 93.90 76.30

totically since ω̂k(1) →p 1 as n → ∞ for any given k. This upper bound can

be achieved by setting ω̂k(1) = 1 for any k ≥ 1. Accordingly, this yields the FR

procedure. Although FR achieves the upper bound, it suffers from a nontrivial

overfitting effect.

2.5. Overfitting resistance

By Theorem 3, we know that SMA has good fitting capability, but only

under the assumption that ρ2k(1) is not too small. If ρ2k(1) is very small, we believe

that further reduction in the residual sum of squares is not desirable. It would

be primarily due to overfitting. This is a serious drawback, from which forward

regression suffers (Wang (2009)), but the overfitting effect suffered by SMA is

considerably weaker.

Theorem 4. If (C1)–(C4) hold, for those values of k satisfying ρ2k(1) = O(n−1),

we have that
(
‖Yk‖2 − ‖Yk+1‖2

)
‖Yk‖−2 ≤ 2(1 − ŵk0)ρ̂

2
k(1), where ρ̂2k(1) is the

estimator of ρ2k(1). In addition, ŵk0 →p 1 as n→∞.

If Xj is the overfitted variable, after fitting Yk by Xj in the k-th step, the resulting

overfitting effect is (‖Yk‖2 − ‖Yk+1‖2)‖Yk‖−2 = ρ̂2kj . This could be as large as

ρ̂2k(1) if Xj is the variable most correlated with Yk. Such an outcome is indeed

the case with forward regression. However, by Theorem 4, the overfitting effect

suffered by SMA is a smaller order of ρ̂2k(1) as ŵk0 →p 1. This suggests that the

SMA algorithm suffers considerably less overfitting than the forward regression

procedure.
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Remark 4. There is a close relationship between the reduction of the resid-

ual sum of squares and ŵk0. For example, if there is still one predictor that

contributes valuable information to Yk in the k-th sequential step, then the re-

sulting ŵk(1) tends to 1 and ŵk0 shrinks to 0. Accordingly, the reduction error is

large; see Theorem 3. Otherwise, ŵk0 tends to 1 and the reduction error grows

small; see Theorem 4. As we can demonstrate that as k gets large, the value of

ŵk0 increases, the SMA algorithm could be stopped if (ŵ(k+1)0 − ŵk0)/ŵk0 < δ

for some small δ > 0. In our numerical experiments, when we set δ = 0.001, the

resulting performance is satisfactory.

2.6. Estimation consistency

The accuracy of forecasts relies on parameter estimates, so we study the

asymptotic property of β̂K . To this end, we assume that the data is generated

from a linear regression model, Y = X>β0 + ε, where β0 = (β01, · · · , β0p)> ∈
Rp is the true regression coefficient vector and ε = (ε1, · · · , εn)> ∈ Rn is the

noise vector. As before, we use M = {j1, · · · , jd} to represent any candidate

model. And, for anyM, we useMc = {1, 2, · · · , p}\M to denote its complement.

Let β0(M) = (β0j : j ∈ M) ∈ R|M| be the subvector of β0 associated to M.

Analogously, we define the subvectors Xi(M), β̂
K
(M), and β̂K(Mc) as well as the

submatrices X(M) and X(Mc). Let λmax(A) and λmin(A), respectively, be the

largest and smallest eigenvalues of any semi-positive definite matrix A. We need

the following conditions.

(C5) There exists a sequence of Mn such that

(C5.1) |Mn| → ∞ and |Mn|/n→ 0 as n→∞;

(C5.2) |Mc
n|‖β0(Mc

n)
‖2 → 0 as K →∞ and n→∞;

(C6) As n → ∞, there exist two constants 0 < τmin < τmax < ∞ such that

τmin < λmin(Σ) ≤ λmax(Σ) < τmax, where Σ = cov(Xi).

Condition (C5.1) specifies a sequence of models Mn, whose size diverges.

This allows the regression coefficients to be estimated with less bias, but is not

possible if its size is larger than the sample size. Condition (C5.2) requires that

‖β0(Mc
n)
‖ → 0 at a sufficiently fast rate, β0(Mn) should be a sufficiently good

approximation to β0 and be estimable, since |Mn|/n → 0. This condition is

typically satisfied if the regression coefficient β is sparse (see, for example, Fan

and Lv (2008); Wang (2009)). Finally, Condition (C6) is a Sparse Riesz type
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condition as used by Zhang and Huang (2008), Wang (2009), Fan and Peng

(2004), and Zou and Zhang (2009).

If ρk(1) is relatively large for any k > 1, then Theorem 1 implies that SMA

assigns almost all of the weights to only a few of the largest correlated predictors.

Thus, the rest of the predictors are suppressed to 0 exponentially. If ρk(1) is

relatively small for any k > 1, then Theorem 4 indicates that ω̂k0 →p 1 and∑p
j=1 ω̂kj = 1 − ω̂k0 →p 0. Accordingly, the weight ω̂kj go to 0 at a sufficiently

fast rate for some j. In this case, we expect to have |Mc
n|
∑

j∈Mc
n
ω̂2
kj → 0 for

any k > 1 as n→∞.

Theorem 5. If Conditions (C1), (C2), and (C5) hold, and |Mc
n| supk>1

∑
j∈Mc

n

ω̂2
kj → 0 as n→∞, then ‖β̂K − β0‖ →p 0 as min{K,n} → ∞.

This indicates that SMA yields a consistent estimator of β0. Accordingly, Ŷ ∗ =

X∗>β̂K is a consistent estimator of X∗>β0 for the given X∗. So E(‖X∗>β̂K −
X∗>β0‖2) tends to 0 under Conditions (C1), (C2), (C5), and (C6).

3. Simulation Studies

3.1. Simulation examples and settings

We consider simulation examples based on the linear regression model Yi =

X>i β + σεi, where εi is generated from a standard normal distribution, for i =

1, · · · , n. Our findings in data examples (see Table 4) suggest that σ be selected

to generate a theoretical R2 = var(X>i β)/{var(X>i β) +σ2} = 20%. The detailed

structures of Xi and β in four examples are given below.

Example 1. We adapt this example from Fan and Lv (2008) assuming that the

size of the true model is d0 = 5. For each i, the j-th covariates Xij (1 ≤ j ≤ p)

were independently generated from N(0, 1). The r-th (1 ≤ r ≤ d0) nonzero true

coefficient of β was set equal to (−1)ur(ar + |vr|)/10, ar = 4 log(n)n−1/2, where

ur was a binary random variable with P (ur = 1) = 0.5 and vr was generated

from a standard normal.

Example 2. This example is modified from Tibshirani (1996). The covari-

ate vector Xi was generated from a multivariate normal with mean zero and

cov(Xij1 , Xij2) = 0.5|j1−j2| for 1 ≤ j1, j2 ≤ p. Three true non-zero coefficients

were set as β01 = −0.5, β04 = 1, and β07 = 0.5, with β0j = 0 for any j 6∈ {1, 4, 7}.
Example 3. This example is adapted from Fan and Lv (2008), where the covari-

ate Xi was generated from a normal distribution with mean zero and cov(Xi) =

Σ = (σj1j2) ∈ Rp×p, where σj1j2 = 0.5 for j1 6= j2. The true non-zero coefficients
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were set as β01 = 0.5, β02 = 0.5, and β03 = 0.5, while β0j = 0 for any 3 < j ≤ p.

Example 4. This example is modified from Wang (2009). The first 5 covari-

ates were taken as Xij = (Uij + Vij)/
√

2, for j = 1, · · · , 5, and Xij = (Uij +∑5
j′=1 Uij′)/2 for 5 < j ≤ p. In addition, Ui = (Uij) ∈ Rp and Vi = (Vij) ∈ Rp

were generated from N(0, Ip), where Ip is an identify matrix of dimension p. The

true non-zero coefficients were set as β01 = 0.2, β02 = 0.4, β03 = 0.6, β04 = 0.8,

and β05 = 1 with β0j = 0 for any 5 < j ≤ p.

In sum, the explanatory variables in Examples 1, 2, and 3, are independent,

autocorrelated, and uniform correlated, respectively. The setting in Example 4

was p − 5 irrelevant covariates Xij , j > 5, that have non-zero correlations with

the response variable.

For each simulation, we considered three sample sizes (n = 100, 200, and

300) and three covariate dimensions (p = 100, 1,000, and 10,000), which results

in 9 different (n, p) combinations. For each (n, p) combination, a total of M =

1,000 realizations were conducted, with the number of sequential steps K selected

according to the method proposed in Remark 4. We denote the data generated in

the m-th simulation replication as (Y[m],X[m]) with Y[m] ∈ Rn and X[m] ∈ Rn×p.
Based on this data, we subsequently obtained the SMA estimator, denoted as

β̂[m].

To evaluate the forecasting performance, we generated the independent test-

ing dataset, denoted as (Y∗[m],X
∗
[m]), where Y∗[m] ∈ Rn∗ and X∗[m] ∈ Rn∗×p with

n∗ = 2,000. We then employed the out-of-sample R2, OR[m] = 1 − ‖X∗[m]β̂[m] −
Y ∗[m]‖

2‖Y ∗[m]‖
−2, to measure performance. For the sake of comparison, similar

quantities were also computed for SIS (Fan and Lv (2008)), FR (Wang (2009)),

MCV (Ando and Li (2014)), and sparse L2-Boosting (Bühlmann and Yu (2006))

denoted by Bstg. The methods of SIS and FR were used to generate solution

paths, from which an optimal model was selected according to the BIC of (2.2).

To avoid unnecessary bias, we adopted the method of Fan and Li (2001) and

Leng, Lin and Wahba (2006) by applying the OLS estimates obtained from the

selected model to make out-of-sample forecasts. The number of models and

the number of regressors of the MCV method were optimized through cross-

validation, as suggested by Ando and Li (2014). Several known regularization

methods, such as the LASSO of Tibshirani (1996), SCAD of Fan and Li (2001),

and MCP of Zhang (2010), are not presented here since all these methods have

been demonstrated to be comparable to the method of MCV for high-dimensional

data predictions (see Ando and Li (2014)). We only report the results of MCV
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in our simulation studies. We quantified their predictability via the correspond-

ing averaged out-of-sample R2 values (AOR) as AOR = M−1
∑M

m=1 OR[m]. We

measured its forecasting stability by the corresponding standard deviation (SD).

To compare SMA with its specific competitor, we considered a measure, called

Winning Probability (WP), as

WP =
1

M

M∑
m=1

I

(
OR[m] > OR∗[m]

)
,

where OR∗[m] represents the OR value for one particular competitor (e.g., SIS,

FR, MCV and Bstg) in the m-th simulation replication.

3.2. Comparisons of SMA versus alternatives

Tables 1 and 2 present simulation results for Examples 1-2 and Examples

3-4, respectively. We find that the performance of SMA is often considerably

better than that of SIS in terms of AOR and SD; see columns 4 and 9 in Tables 1

and 2. This finding is not surprising since SIS employs the marginal correlation

between one covariate and the response to justify its relevance, and the useful

information contained in other covariates is ignored. In contrast, SMA takes the

approach of removing the contribution from previously selected covariates, which

can yield superior performance.

Since FR is only a variable screening algorithm, the resulting estimate is a

non-smooth and non-continuous function of data, with unsatisfactory forecasting

stability. This is particularly true for small sample sizes and high-dimensional

cases; see, for example, the case with (n, p) = (100, 10,000) in Tables 1 and 2.

The AORs in Examples 1 and 2 of Table 1 indicate that SMA outperforms

MCV. Although the SMA SDs are larger than those of MCV when p = 1,000

and p = 10,000, the overall measure MP shows that SMA is superior to MCV.

The performance of the MCV is largely due to leave-one-out cross-validation,

which exhibits deficiency in model selection and predictive ability (e.g., see Shao

(1993)). Analogous results with less superiority of SMA versus MCV can be

found in Example 3. Example 4 is a challenging for the task of discovering

relevant predictors. In this example, the overall MP measure shows that SMA

is better than, or comparable to, MCV, aside from the case (n = 300 and p =

10,000).

The performance of SMA is slightly better than that of boosting in terms

of forecasting accuracy. This finding is expected since SMA is more stable than

boosting. Overall, SMA is superior to boosting in these examples.
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Figure 1. Residual sum of squares for SMA and FR at the k-th sequential step (1 ≤ k ≤
50) in Example 2 with n = 1,000 and p = 4,000.

As suggested by an anonymous reviewer, we studied the computational cost

by assessing the execution times from programming in R with an Intel (R) Core

(TM) CPU (2.20 GHz). We found that SMA was computationally friendly. For

instance, in Example 1 with n = 100 and p = 1,000, SMA took about 0.033 (×
1,000) seconds to finish the computations, while SIS, FR, MCV, and Bstg took

about 0.015 (× 1,000), 0.025 (× 1,000), 0.062 (× 1,000) and 0.875 (× 1,000)

seconds, respectively, to finish the computations. Here, SMA is slightly inferior

to SIS and FR, while superior to MCV and Bstg in terms of computational cost.

The four simulation examples indicate that SMA is a computationally ef-

fective procedure and almost always has the best AOR values, and its SDs are

competitive. Here the WP measures demonstrate that SMA is generally superior

to its alternatives and can yield accurate and stable forecasts.

3.3. Finite sample properties of SMA

According to Theorems 3 and 4, it is not surprising that SMA performs

well in these studies. To further illustrate those theoretical properties in finite

samples, we repeated Example 2 with a relatively large sample size of n = 1,000,

with p = 4,000 and K = 50 to be the maximal number of steps in the sequential

SMA process. In each step, we computed the residual sum of squares (RSS),
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‖Yk‖2 for k = 1, · · · , 50. For the sake of illustration, we also include the FR

procedure. Figure 1 depicts the RSS versus k for SMA and FR. It shows that

the RSS values of SMA and FR are almost identical in the first three steps. Since

the number of relevant variables in Example 2 is 3, Figure 1 shows that SMA

has the same capability as FR to fit the model by including important variables

in a very limited number of steps; see Wang (2009). This result corroborates

Theorem 3. Starting from step 4, the RSS values of SMA decrease much slower

than those of FR. This indicates that, if useful information in covariates has all

been exhausted, SMA’s resistance to overfitting is considerably stronger than

that of FR. This finding supports Theorem 4.

Motivated by an anonymous referee’s suggestion, we also examined the av-

erage number of steps reached via our stopping rule for Examples 1–2 with the

sample sizes n = 100, 200 and 300. We found that the resulting average numbers

can be considerably larger than their associated true model sizes d0 = 5 and 3.

Hence, in practice, SMA may take more steps but yield better results.

We revisited all four examples to assess the finite sample performance of

Theorem 5. To better illustrate the asymptotic property of β̂, we increased the

sample sizes to n = 200, 400, and 800. In the m-th replication of M = 1,000

realizations, we denote the resulting SMA estimate and its error measure by β̂[m]

and ‖β̂[m] − β0‖, respectively. Table 3 reports the mean values of error measures

for Examples 1–4. For the fixed sample size n, the mean value of estimation error

steadily increases as p increases. This is expected, since a bigger model usually

yields larger errors. In contrast, for fixed p, the mean value of the estimation

error steadily decreases as n increases, which supports Theorem 5.

Due to an anonymous referee’s suggestion, we further compared SMA with

SIS, FR, MCV, and Bstg when d0 = 10 and d0 = 20. In addition, we com-

pare SMA with the modified version of the traditional Bayesian model averaging

method. A detailed description of these simulation settings and the results are

given in the Supplemental Materials. The numerical results demonstrate that

SMA is mostly superior to other methods. In conclusion, all simulations pre-

sented in the paper and its supplemental materials show that SMA performs well

in both estimation and forecasting.

4. Data Analysis

4.1. Background

Due the rapid development of the search engine market, many companies
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want to expand their product exposure by purchasing advertisements that ap-

pear on the desired pages of search engines of such as Google and Baidu. With

paid search advertising, a company purchases specific keyphrases and creates an

advertisement that is displayed alongside organic (non-sponsored) web search

results when a consumer searches for those keywords. Past industry experience

suggests that paid search advertising is extremely effective.

In practice, there exist many keyphrases with similar semantic meanings.

The only difference between these keyphrases is their textual formulation. Con-

sider, for example, if a consumer wants to search for information about a property

mortgage in the largest Chinese city, Shanghai. The customer can search for ei-

ther “Home Mortgage Loan in Shanghai” (directly translated from Chinese) or

“Mortgage Loan for Buying a Home in Shanghai” (among other options). These

have exactly the same meaning, but differ slightly in their formulation because

the latter includes the word “buying.” Past experience suggests that different

textual formulations can generate a dramatically different number of impressions,

even if their intended semantic meaning is perfectly identical. Since the number

of impressions reflects the number of customers who are looking for a partic-

ular keyphrase, it directly reflects the size of the potential market represented

by the keyphrase. Consequently, it is of importance to understand the relation-

ship between a keyphrase’s textual formulation and the number of impressions it

generates. Hence, it is critical for practitioners to have a statistical model that

can predict the number of impressions accurately and stably by simply using the

information contained in a keyphrase’s textual formulation. This motivates us

to apply SMA and its alternatives to such problems.

4.2. Data description

We considered 14 datasets collected by one of the largest search engine mar-

keting agencies in mainland China. The response of interest is the number of

impressions (after taking the log-transformation). The covariates we collected

included each keyphrase’s textual information. We created a high-dimensional

covariate vector, in which each component is a binary variable indicating the

presence or absence of a particular keyword. For example, we used i to represent

a particular keyphrase (e.g., “Home Mortgage Loan in Shanghai”). We then de-

fined a binary variable Xij = 1 if the j-th keyword (say “Shanghai”) appeared in

the keyphrase i. On the other hand, if the keyphrase is “Home Mortgage Loan,”

which does not contain the keyword “Shanghai”, we defined Xij = 0. Because

the number of keywords is large, the dimension of the binary vector Xi is usually
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high. For the sake of completeness, the number of keywords contained in the

keyphrase is also included as a covariate. The response variable and covariates

were standardized.

4.3. Performance comparison

Using this setting, we compared the SMA approach with its alternatives using

14 different datasets. Each dataset corresponds to one particular row in Table 4.

The 14 datasets can be roughly classified into seven different online industries:

online retailing, professional training, online recruiting, microblogging, mortgage

lending, travel planning, and real-estate advertising. For convenience, we labeled

each dataset with an industry ID; see the first column in Table 4. For evaluation

purposes, each dataset was randomly split into two subsets of equal size. One

subset serveed as the training sample, while the other one was used for testing.

Each experiment was randomly replicated 1,000 times. Table 4 shows that the

forecasting results were qualitatively similar to that of the simulation studies.

Due to SMA’s competitive performance in terms of both AOR and SD, most

of the WP values are well above 70%. Then, SMA can more effectively and

accurately predict impressions of keyphrases than the other four methods.

To make SMA practically useful, we propose a keyphrase index (KI). Specif-

ically, we randomly split each dataset into the training sample and the testing

sample. For a given dataset, let N be the total possible number of random split-

tings and denote splittings by l = 1, · · · , N . For the l-th random splitting, we

rank keyphrases according to their predicted impressions in the testing sample,

with r
(k)
l the rank of the k-th keyphrase in the l-th random splitting. The KI of

the k-th keyphrase is taken as KIk = N−1
∑N

l=1 r
(k)
l . Based on this index, the

top three keyphrases in the mortgage industry example with N = 1,000 were (1)

Shanghai real estate mortgage, (2) Shanghai housing mortgage, and (3) Shang-

hai bank mortgage. Based on the KI, vendors can purchase the most relevant

keyphrases to meet their advertising goals subject to budget constraints.

5. Concluding Remarks

For high-dimensional data analysis, we propose a sequential model averaging

approach to forecasting. Since it combines sequential screening and model aver-

aging, SMA yields accurate and stable predictions. Although we only present em-

pirical studies for internet advertising, SMA is applicable to such fields with high-

dimensional data, as biological science, engineering, finance, marketing, medicine,
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physics, social science, etc. Replacing the OLS estimator in the SMA algorithm

by a robust estimator is an interesting avenue for future research. We believe

that extending this work to generalized linear models (McCullagh and Nelder

(1989)) and semiparametric models (Fan and Gijbels (1996); Härdle, Liang and

Gao (2000)) would further facilitate the use of SMA.

Supplementary Materials

The online supplemental materials present simulation studies that compare

SMA with SIS, FR, MCV, and Bstg for less sparse regression models, compare

SMA with the Bayesian model averaging method for Examples 1-4, and investi-

gates the average number of steps reached via our proposed stopping rule. Proofs

are presented in this material.
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