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Abstract: We consider a two-sample homogeneity testing problem often encountered

in case-control studies with contaminated controls, or in detecting a treatment effect

when some subjects are not affected by the treatment in biological experiments.

We propose an EM-test designed to simultaneously detect mean difference and

differential variability in the two samples. We show that the EM-test statistic has

a chi-squared null limiting distribution. The asymptotic properties of the EM-test

under local alternatives are also investigated, and sample-size calculation is given.

The main results are established for general location-scale family of distributions.

Simulation results show that the EM-test outperforms existing methods, and two

data examples are used to illustrate the application of the proposed method.
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1. Introduction

Recently there has been increasing interest in the use of mixture models in

medical research. Motivated by case-control studies with contaminated controls,

or in the detection of a treatment effect in biological experiments when some

subjects are not affected by the treatment, a number of researchers have studied

the problem of testing homogeneity in a two-sample problem in which one of the

samples has a mixture structure (see Good (1979); Boos and Brownie (1991);

Fu, Chen and Kalbfleisch (2009); Qin and Liang (2011); Liu, Li and Fu (2012)).

Specifically, consider the independent samples

x11, . . . , x1n1
∼ f1(x), x21, . . . , x2n2

∼ (1− λ)f1(x) + λf2(x). (1.1)

The goal is to test the homogeneity of the two samples against the specified

mixture alternative.

A number of testing methods designed for this situation have been proposed
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in the literature. They can be classified as nonparametric or semiparametric

tests, and parametric tests. The semiparametric tests include Qin and Liang

(2011)’s score test and Liu, Li and Fu (2012)’s EM-EL test. These methods

are built on the assumption that the logarithm of the component density ratio

is linear in the observations and the component densities are otherwise unspec-

ified. Fu, Chen and Kalbfleisch (2009) proposed a modified likelihood ratio test

(MLRT), which falls into the second category. They showed that the MLRT

statistic has a simple chi-squared null limiting distribution in mixtures of general

one-parameter kernels, and in a situation where the kernels have an additional

structural parameter (e.g., normal kernels with different means and common

unknown variance). The assumption of homogeneity in the variance is the fun-

damental prerequisite for using the MLRT for this two-sample problem, but this

assumption is often violated, for example, in DNA methylation studies. Indeed,

some recent DNA methylation studies use differential variability as a tool for

cancer risk marker selection; see Jaffe et al. (2012) and the references therein.

When we seek to understand disease phenotypes, identifying markers that differ

in terms of variability may be as important as identifying markers that differ in

terms of mean. Teschendorff and Widschwendter (2012) have shown the merit

of combining differential variability with differential mean when selecting cancer

risk markers in DNA methylation studies.

Motivated by such studies, we aim to design an effective test for the situation

where the component densities differ in both mean and variance. Specifically,

suppose the component densities come from the same location-scale family of

distributions, f1(x) = f(x;µ1, σ1) and f2(x) = f(x;µ2, σ2) with f(x;µ, σ) =

σ−1f
(
(x− µ)/σ; 0, 1

)
. We wish to test

H0 : λ

(
µ1 − µ2
σ1 − σ2

)
= 0 (1.2)

under model (1.1). A two-component mixture of normal distributions, in both

mean and variance parameters, is a typical example here.

Designing an effective method for testing (1.2) under (1.1) with component

densities from a general location-scale distribution family is challenging, and

there are two issues worth highlighting. First, the likelihood function is un-

bounded (Chen, Tan and Zhang (2008); Tanaka (2009)). Second, the Fisher in-

formation on the mixing proportion can be infinite (Chen and Li (2009)). There-

fore, we cannot directly apply the asymptotic results for such existing methods

as the likelihood ratio test (Dacunha-Castelle and Gassiat (1999); Liu and Shao
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(2003)) and the D-test (Charnigo and Sun (2004, 2010)). Li, Chen and Mar-

riott (2009) and Chen and Li (2009) proposed a class of EM-tests for testing

homogeneity in the two-component mixture model with a one-dimensional mix-

ing parameter, in normal mixtures on the mean, and in normal mixtures on both

mean and variance. Some of the ideas of the EM-test can be traced back to the

MLRT, but it has several additional advantages. For example, its null limiting

distribution does not depend on the finiteness of the Fisher information on the

mixing proportion. Recently, the EM-test has been applied to test homogeneity

in multivariate mixture models (Niu, Li and Zhang (2011)), in linear switching

autoregressive models (Ketterer and Holzmann (2012)), and in subgroup analysis

(Shen and He (2015)).

To the best of our knowledge, the EM-test has not been extended to test

homogeneity in general location-scale mixture models in either one-sample or

two-sample problems. By taking advantage of the special two-sample struc-

ture, we extend the EM-test to mixtures of the general location-scale family of

distributions. We propose an EM-test that simultaneously detects differential

variability and mean difference in the two-sample problem. It outperforms the

MLRT in simulation studies and in data analyses. It also has the advantage that

the asymptotic results hold without the need for a bounded parameter space.

Establishing the asymptotic properties for the proposed EM-test is techni-

cally challenging. A key step here is to show that any estimator with mixing

proportion λ bounded away from 0 and with a large penalized log-likelihood

value is consistent for µh and σh, h = 1, 2, under the null model. Chen, Tan

and Zhang (2008) showed the consistency of penalized maximum likelihood es-

timators of unknown parameters under normal mixtures in the one-sample case.

Their results are not directly applicable to our problem since we are dealing with

mixtures whose component density is from a general location-scale distribution

family. Tanaka (2009) showed the consistency of penalized maximum likelihood

estimators of unknown parameters under a mixture of location-scale distributions

with one-sample data and correctly specified the order of the mixture. However,

his results cannot be used in our current setup since we overfit the number of

components in the second sample. Despite the rather complicated derivations,

we establish consistency for the component parameters (Lemma 1 in the supple-

mentary material). Building on this, we prove that the EM-test statistic has a

chi-squared null limiting distribution. We also investigate the asymptotic prop-

erties under local alternatives.

The rest of this paper is organized as follows. In Section 2, we provide



30 GUANFU LIU, YUEJIAO FU, PENGFEI LI AND XIAOLONG PU

a description of the EM-test procedure and its asymptotic results, including a

local power analysis. We also discuss sample-size calculation. In Section 3, we

use simulations to illustrate the empirical performance of the method. Section

4 presents data analyses, and Section 5 provides some discussion and a brief

conclusion.

2. Main Results

We propose an EM-test for the homogeneity problem (1.2), and establish its

theoretical foundations and asymptotic properties.

2.1. EM-test

Let n = n1 + n2 be the total sample size. Based on the observed data, the

log-likelihood function for (λ, µ1, µ2, σ1, σ2) is

ln(λ, µ1, µ2, σ1, σ2)

=

n1∑
i=1

log f(x1i;µ1, σ1) +

n2∑
i=1

log{(1− λ)f(x2i;µ1, σ1) + λf(x2i;µ2, σ2)}.

Note that because of the nonregularity of the mixture in the second sample, the

null hypothesisH0 in (1.2) is on the boundary of the parameter space (λ = 0), and

the parameters are not identifiable under the null hypothesis. In addition, the

log-likelihood ln(λ, µ1, µ2, σ1, σ2) is unbounded, because ln(λ, µ1, µ2, σ1, σ2) →
∞ when we set µ2 equal to one of the data points in the second sample and

σ2 → 0. To deal with these nonregularity problems, we propose the penalized

log-likelihood function

pln(λ, µ1, µ2, σ1, σ2) = ln(λ, µ1, µ2, σ1, σ2) + p(λ) + pn(σ2), (2.1)

where p(λ) is chosen such that it is maximized at λ = 1 and goes to negative

infinity as λ goes to 0, and pn(σ2) is selected such that it is bounded when σ2
is large but goes to negative infinity as σ2 goes to 0. The presence of the first

sample automatically prevents the fitting of σ1 close to 0, so there is no need for a

penalty function on σ1. Recommendations for p(λ) and pn(σ2) will be discussed

in Section 3.

The motivation for the EM-test comes from a constrained likelihood ratio

test in which the mixing proportion λ is set to a fixed value in (0, 1]. The null

hypothesis (1.2) with a fixed mixing proportion reduces to (µ1, σ1) = (µ2, σ2) and

the parameters are identifiable. Hence, we expect that the constrained likelihood

ratio test has a χ2-type limiting distribution. To improve the efficiency lost
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by setting λ to a fixed value, we suggest choosing multiple values for λ and

then using the EM-algorithm (Dempster, Laird and Rubin (1977)) to update the

mixing proportion λ and the other parameters. The EM-test statistic is taken as

the maximum of the likelihood ratio test statistics from the multiple values of λ.

Our experience indicates that a few, say three, iterations suffice.

We provide the complete-data penalized log-likelihood function and the mono-

tonicity of the EM algorithm in the supplementary material. Building on (2.1)

and the complete-data penalized log-likelihood function, we develop an EM-test

for the two-sample problem. The EM-test statistic can be constructed as follows.

We first choose a set {λ1, . . . , λJ} ⊂ (0, 1], for example {0.1, 0.4, 0.7, 1.0}, as the

initial values for λ and a positive integer K as the number of iterations.

Step 1. Set k = 1. For each j = 1, 2, . . . , J , set λ
(1)
j = λj and compute

(µ
(1)
1j , µ

(1)
2j , σ

(1)
1j , σ

(1)
2j ) = arg max

{µ1,µ2,σ1,σ2}
pln(λ

(1)
j , µ1, µ2, σ1, σ2).

Step 2. For i = 1, . . . , n2 and the current k, use an E-step to compute

w
(k)
ij =

λ
(k)
j f(x2i;µ

(k)
2j , σ

(k)
2j )

(1− λ(k)j )f(x2i;µ
(k)
1j , σ

(k)
1j ) + λ

(k)
j f(x2i;µ

(k)
2j , σ

(k)
2j )

.

Update λ and the other parameters via an M-step such that

λ
(k+1)
j = arg max

λ

{(
n2 −

n2∑
i=1

w
(k)
ij

)
log(1− λ) +

n2∑
i=1

w
(k)
ij log λ+ p(λ)

}
,

(µ
(k+1)
1j , σ

(k+1)
1j ) = arg max

{µ1,σ1}

{
n1∑
i=1

log f1(x1i) +

n2∑
i=1

(1− w(k)
ij ) log f1(x2i)

}
,

(µ
(k+1)
2j , σ

(k+1)
2j ) = arg max

{µ2,σ2}

{
n2∑
i=1

w
(k)
ij log f2(x2i) + pn(σ2)

}
.

Iterate the E-step and M-step K − 1 times.

Step 3. For each k and j, take

M (k)
n (λj) = 2{pln(λ

(k)
j , µ

(k)
1j , µ

(k)
2j , σ

(k)
1j , σ

(k)
2j )− pln(1, µ̂0, µ̂0, σ̂0, σ̂0)},

where (µ̂0, σ̂0) = arg max{µ,σ} pln(1, µ, µ, σ, σ). The EM-test statistic is

EM (K)
n = max{M (K)

n (λj) : j = 1, . . . , J}.

Finally, reject the null hypothesis H0 if EM
(K)
n exceeds a prespecified critical

value.
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As indicated in Chen and Li (2009), the choices of the initial values λj and

the integer K are not crucial; our simulation studies in Section 3 verify this.

Recommendations for these values, and for p(λ) and pn(σ2), will be discussed in

Section 3.

2.2. Asymptotic properties

In this section, we present the asymptotic properties of the EM-test under

regularity conditions given in the Appendix. The proofs are in the supplementary

material. The following theorem sheds light on the iterative process.

Theorem 1. Suppose Conditions B1–B7 and C1–C5 in the Appendix hold, nh/n

= ρh > 0 (h = 1, 2) are constant, and λj ∈ (0, 1] for j = 1, . . . , J . Under the null

distribution f(x;µ0, σ0), we have, for j = 1, . . . , J and any k ≤ K,

λ
(k)
j −λj = op(1), µ

(k)
hj −µ0 = Op(n

−1/2), and σ
(k)
hj −σ0 = Op(n

−1/2), h = 1, 2.

The iteration changes the value of λ by only an op(1) quantity. This is

crucial, and results in a simple null limiting distribution for the EM-test.

Theorem 2. Assume the conditions of Theorem 1, and that λ1 = 1. Under the

null distribution f(x;µ0, σ0), for any finite K, as n→∞,

EM (K)
n

d→ χ2
2.

Here
d→ stands for convergence in distribution, and χ2

m denotes the chi-squared

distribution with m degrees of freedom.

We observe that the regularity conditions on f(x;µ, σ) are not restrictive.

The commonly used location-scale distributions such as the normal, t, logistic,

and extreme value distributions all satisfy Conditions B1–B7. Examples of func-

tions satisfying Conditions C1–C5 are given in Section 3. Since the user has the

freedom to choose the penalty functions, these conditions are not restrictive as

long as such functions exist.

Asymptotic local power analysis has become an important and increasingly

used tool in statistical inference. To investigate the asymptotic local power of

the EM-test, we consider the local alternative

Hn
a : λ = λ0, (µ1, σ1) = (µ0, σ0), (µ2, σ2) = (µ0+n

−1/2
2 ∆1, σ0+n

−1/2
2 ∆2), (2.2)

where 0 < λ0 ≤ 1, (∆1,∆2) 6= (0, 0), and ∆2 > −σ0. Let χ2
m(c) denote the

noncentral chi-squared distribution with noncentrality parameter c andm degrees

of freedom.
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Figure 1. Dashed curve: MLRT; Solid curve: EM-test.

Theorem 3. Assume the conditions of Theorem 2. Under the local alternative

Hn
a in (2.2),

EM (K)
n

d→ χ2
2(c

2
0),

where c20 = λ20ρ1
{

∆2
1E(U2) + 2∆1∆2E(UV ) + ∆2

2E(V 2)
}

with

U =
∂f(x11;µ0, σ0)/∂µ

f(x11;µ0, σ0)
and V =

∂f(x11;µ0, σ0)/∂σ

f(x11;µ0, σ0)
,

and the expectation is taken under f(x;µ0, σ0).

From the above theorem, we could perform asymptotic local power analysis

to gain more insight into the testing problem. Specifically, we could compare

the asymptotic local power of the EM-test and the MLRT theoretically. Let

Mn be the MLRT statistic. Let f be the normal distribution and (µ0, σ0) =

(0, 1). In this setup, Mn and EM
(K)
n , respectively, converge to χ2

1(λ
2
0ρ1∆

2
1) and

χ2
2{λ20ρ1(∆2

1 +2∆2
2)} in distribution under the local alternative Hn

a . The theoret-

ical power functions for the MLRT and the EM-test at the 5% significance level

are respectively P (Mn > χ2
1,0.95) and P (EM

(K)
n > χ2

2,0.95), where χ2
m,1−α is the

1 − α upper quantile of the χ2
m distribution. Figure 1 presents the asymptotic

power curves of the two methods at the 5% significance level. Panel (a) shows

that when ∆2 = 0 the asymptotic local power of the EM-test is always lower than

that of the MLRT under the same ∆1. If ∆2 > 0, the EM-test can perform much

better than the MLRT in terms of power. Panel (b) shows that the asymptotic

local power of the EM-test increases as ∆2 increases, while that of the MLRT

stays the same.

Based on Theorem 3, we can calculate the sample size required to obtain a

target power 1−β. For the significance level α and the given ρ1, the sample size
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n2 can be calculated by solving
∆1 = n

1/2
2 (µ2 − µ1),

∆2 = n
1/2
2 (σ2 − σ1),

P (χ2
2(c

2
0) > χ2

2,1−α) = 1− β.

(2.3)

The size of the first sample can be calculated via n1 = ρ1n2/(1− ρ1). Because of

the complicated form of P (χ2
2(c

2
0) > χ2

2,1−α), we have no explicit formula for n1
or n2. In the supplementary material, we provide R code to solve (2.3) for the

normal and logistic kernels.

3. Simulation Studies

We conducted simulations to compare the finite-sample performance of the

EM-test with that of the MLRT in Fu, Chen and Kalbfleisch (2009) under the

normal and logistic kernels. We present empirical type I errors and the power of

the two methods for different combinations of (n1, n2, λ, µ2, σ2). To implement

the MLRT, we must specify a penalty function on λ: for the normal kernel, we

took 2 log(λ) as suggested by Fu, Chen and Kalbfleisch (2009); for the logistic

kernel, we chose 2.5 log(λ) based on our empirical study. To calculate the EM-test

statistics, we must specify K, {λ1, . . . , λJ}, p(λ), and pn(σ). We used K = 3 as

recommended by Chen and Li (2009), and chose {λ1, . . . , λJ} = {0.1, 0.4, 0.7, 1.0}
or {0.1, 0.2, . . . , 1.0}. Following Fu, Chen and Kalbfleisch (2009), we chose p(λ) =

a1 log(λ), and following Chen and Li (2009), we chose pn(σ2) = −a2{σ̂2/σ22 +

log(σ22/σ̂
2)}, where σ̂ is the maximum likelihood estimator of σ0 under the null.

These penalties satisfy the regularity conditions in the Appendix. Furthermore,

under the normal and logistic kernels, our simulation studies suggest that a1 = 1

and a2 = 1.5 work well in terms of accurate type I error and reasonable power. In

the simulation, all the empirical type I errors were based on 10,000 repetitions,

and the power values were based on 1,000 repetitions. The simulation results for

the normal and logistic kernels are quite similar. The simulation results for the

logistic kernel are given in the supplementary material.

Table 1 gives the empirical type I errors of the MLRT and EM-test for

the nominal type I errors α = 0.05 and α = 0.01. The data were generated

from N(0, 1). The critical values for the two test statistics were based on their

asymptotic distributions. The EM-test performs better than the MLRT in terms

of simulated type I error rates. In the supplementary material, we give the

quantile-quantile plot of EM (3), showing that its limiting distribution provides

an accurate approximation to its finite-sample distribution.
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Table 1. Type I error comparison for f1 = f2 = N(0, 1).

α = 0.05 α = 0.01

MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.0612 0.0523 0.0531 0.0143 0.0111 0.0111
n1 = 50, n2 = 100 0.0596 0.0542 0.0550 0.0129 0.0120 0.0121
n1 = 100, n2 = 50 0.0557 0.0526 0.0529 0.0128 0.0122 0.0124
n1 = 100, n2 = 100 0.0555 0.0519 0.0525 0.0119 0.0105 0.0106

Results in columns 3 and 6 used {λ1, . . . , λJ} = {0.1, 0.4, 0.7, 1.0}. Results in columns 4
and 7 used {λ1, . . . , λJ} = {0.1, 0.2, . . . , 1.0}.

Table 2. Power comparison for f1 = N(0, 1) and f2 = N(0.5, 1).

α = 0.05 α = 0.01

λ = 0.9 MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.577 0.494 0.492 0.298 0.233 0.233
n1 = 50, n2 = 100 0.722 0.657 0.658 0.472 0.385 0.382
n1 = 100, n2 = 50 0.728 0.625 0.625 0.458 0.371 0.371
n1 = 100, n2 = 100 0.881 0.825 0.825 0.706 0.638 0.635

α = 0.05 α = 0.01

λ = 0.7 MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.394 0.335 0.330 0.191 0.154 0.154
n1 = 50, n2 = 100 0.470 0.409 0.406 0.239 0.188 0.190
n1 = 100, n2 = 50 0.503 0.417 0.416 0.250 0.205 0.205
n1 = 100, n2 = 100 0.677 0.592 0.595 0.441 0.371 0.369

Results in columns 3 and 6 used {λ1, . . . , λJ} = {0.1, 0.4, 0.7, 1.0}. Results in columns 4
and 7 used {λ1, . . . , λJ} = {0.1, 0.2, . . . , 1.0}.

For the normal kernel, Tables 2–4 compare the power of the MLRT and

the EM-test. For a fair comparison, the critical values of the two methods were

obtained by 10,000 simulations from the homogenous model N(0, 1). The data

were generated from f1 and (1 − λ)f1 + λf2, where f1 = N(0, 1) and f2 =

N(µ2, σ
2
2). From Table 2, we see that when f1 and f2 have different means and

the same variance the MLRT performs better than the EM-test. In contrast,

from Table 3, when f1 and f2 have the same means but different variances, the

EM-test is superior to the MLRT. From Table 4, when f1 and f2 differ in both

mean and variance, the EM-test is again more powerful. For both methods, the

power of the test increases with sample size and with λ closer to 1.

As suggested by the associate editor, we also compared the performance

of the EM-test with that of the two-sample t-test with unequal variance and

the Wilcoxon rank sum test, in the situation where there is no mixture. We
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Table 3. Power comparison for f1 = N(0, 1) and f2 = N(0, 1.52).

α = 0.05 α = 0.01

λ = 0.9 MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.305 0.643 0.639 0.137 0.390 0.392
n1 = 50, n2 = 100 0.304 0.767 0.765 0.127 0.511 0.507
n1 = 100, n2 = 50 0.501 0.805 0.805 0.273 0.606 0.606
n1 = 100, n2 = 100 0.551 0.914 0.914 0.300 0.783 0.783

α = 0.05 α = 0.01

λ = 0.7 MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.222 0.514 0.508 0.088 0.270 0.270
n1 = 50, n2 = 100 0.218 0.632 0.630 0.094 0.369 0.368
n1 = 100, n2 = 50 0.367 0.615 0.614 0.173 0.399 0.399
n1 = 100, n2 = 100 0.436 0.809 0.809 0.212 0.622 0.619

Results in columns 3 and 6 used {λ1, . . . , λJ} = {0.1, 0.4, 0.7, 1.0}. Results in columns 4
and 7 used {λ1, . . . , λJ} = {0.1, 0.2, . . . , 1.0}.

Table 4. Power comparison for f1 = N(0, 1) and f2 = N(0.5, 1.52).

α = 0.05 α = 0.01

λ = 0.9 MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.694 0.833 0.831 0.443 0.617 0.618
n1 = 50, n2 = 100 0.778 0.918 0.918 0.572 0.755 0.755
n1 = 100, n2 = 50 0.834 0.917 0.917 0.690 0.784 0.785
n1 = 100, n2 = 100 0.944 0.989 0.989 0.836 0.949 0.949

α = 0.05 α = 0.01

λ = 0.7 MLRT EM
(3)
n EM

(3)
n MLRT EM

(3)
n EM

(3)
n

n1 = 50, n2 = 50 0.543 0.668 0.666 0.328 0.442 0.443
n1 = 50, n2 = 100 0.645 0.799 0.797 0.432 0.585 0.587
n1 = 100, n2 = 50 0.682 0.792 0.792 0.493 0.600 0.600
n1 = 100, n2 = 100 0.840 0.936 0.936 0.703 0.824 0.824

Results in columns 3 and 6 used {λ1, . . . , λJ} = {0.1, 0.4, 0.7, 1.0}. Results in columns 4
and 7 used {λ1, . . . , λJ} = {0.1, 0.2, . . . , 1.0}.

conducted simulations for the normal, logistic, and Gumbel distributions. They

are discussed in the supplementary material.

From Tables 1–4 and the simulation results in the supplementary material,

we see that for the EM-test the number of λj values has little effect on the

empirical type I error or the power, so we recommend using {λ1, . . . , λJ} =

{0.1, 0.4, 0.7, 1.0} in practice.

4. Data Examples

We compared the two-sample t-test, the MLRT, and the EM-test by analyz-



HOMOGENEITY TEST IN A TWO-SAMPLE PROBLEM 37

ing two data examples. The MLRT and EM-test are calculated as in Section 3.

The p-values of the MLRT and EM-test were based on simulated distributions.

The first example concerns morphine addiction in rats; see Weeks and Collins

(1971); Good (1979); Boos and Brownie (1991), and Fu, Chen and Kalbfleisch

(2009). In an experiment, rats could obtain morphine by pressing a lever. The

frequency of lever presses (self-injection rates) after six days’ treatment with

morphine was recorded as the response variable. The self-injection rates for five

groups of rats corresponding to four different dose levels and one saline control are

presented in Figure 1 of Good (1979). Following Fu, Chen and Kalbfleisch (2009),

we are interested in comparing the self-injection rates of the treatment group (at

dose level 1.0) and the control group. We used the same data transformation as

in Fu, Chen and Kalbfleisch (2009). The p-value of the Kolmogorov–Smirnov (K-

S) test for the control data was 0.525, which shows that the transformed control

data can be assumed to be drawn from a normal distribution. We applied the t-

test, the MLRT, and the EM-test to the transformed data, and the p-values were

respectively 0.0249, 0.0344, and 0.0163. The EM-test has the smallest p-value

and thus the highest power.

The second example is a DNA methylation study that measured the methy-

lation levels of 27,578 CpG sites for 152 women. Cytologically normal cells from

the uterine cervix of the 152 women were used. The study found that 75 women

developed a cervical intraepithelial neoplasia of grade 2 or higher (CIN2+) within

a three year follow-up period (cases), whereas 77 women did not develop any ab-

normal cytology (controls). This dataset is available from the Gene Expression

Ominbus (GEO; www.ncbi.nlm.nih.gov/geo/) with accession number GSE30760.

After data quality checking and cleaning (excluding CpG sites associated with

single-nucleotide polymorphisms and regressing out batch effects), we kept 22,399

CpG sites for our analysis. For each CpG site, we applied the K-S test to the 77

control samples. The proportions of K-S p-values that were greater than 0.05,

0.10, 0.25, and 0.5 were respectively 0.778, 0.689, 0.518, and 0.309. Let dα be

those CpG sites corresponding to K-S p-values greater than α.

With f1 and f2 as normal kernels, we applied the t-test, MLRT, and EM-

test to the data in d0.5, which has M = 6, 920 CpG sites. Table 5 shows the

proportions of p-values that were less than or equal to α and α/M with α =

0.10, 0.05, 0.01 for the t-test, MLRT, and EM-test. The EM-test has the highest

proportion and thus the greatest power. For illustrative purposes, we chose 16

CpG sites for further analysis; the details are given in the supplementary material.
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Table 5. Proportion of p-values less than or equal to α and α/M for the t-test, MLRT,
and EM-test. Here M = 6, 920 is the number of CpG sites in d0.5.

α 0.10 0.05 0.01 0.10/M 0.05/M 0.01/M
t-test 0.103 0.054 0.011 0 0 0

MLRT 0.152 0.104 0.060 0.031 0.031 0.031

EM
(3)
n 0.239 0.176 0.107 0.042 0.042 0.042

Results in row 4 used {λ1, . . . , λJ} = {0.1, 0.4, 0.7, 1.0}.

5. Discussion and Conclusion

Motivated by many problems in medical research, we considered a special

two-sample homogeneity testing problem where one of the two samples has a

mixture structure. The presence of mixture in one of the samples, the unbound-

edness of the likelihood function, and the possibly infinite Fisher information in

the direction of the mixing proportion make the test particularly challenging.

We proposed an EM-test that simultaneously tests for difference in the mean

and variance of the component densities. We also extended the literature of the

EM-test by considering the homogeneity test in mixtures of general location-scale

distributions. For future research, we may consider the one-sample problem of

homogeneity testing, or testing the number of components in a mixture of general

location-scale distributions.

As suggested by the associate editor, we give the guidelines for the use of our

method. In the analysis of two-sample data, the proposed EM-test should always

be considered if there is some possibility of a mixture in one of the two samples;

see the examples in Qin and Liang (2011). The preliminary data analysis and the

EM-test should be used jointly. If the preliminary analysis suggests the presence

of a mixture, the EM-test can be used for confirmation.

Supplementary Materials

The online supplementary material includes the definition of the complete-

data penalized log-likelihood, the monotonicity property of the EM-algorithm,

some additional simulation results, R code for the sample-size calculation, fur-

ther analysis of the second set of data, regularity conditions, and the proofs of

Theorems 1–3.
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Appendix

Notation and regularity conditions

The asymptotic properties of the EM-test rely on regularity conditions on

f(x;µ, σ), p(λ), and pn(σ). We impose mild regularity conditions on f(x;µ, σ)

in which the expectations are taken under the distribution f(x;µ0, σ0).

B1. (Wald’s integrability conditions) (i) E{| log f(x;µ0, σ0)|} < ∞; (ii) for

sufficiently small ρ and sufficiently large r, E[log{1 + f(x;µ, σ, ρ)}] < ∞
for (µ, σ) ∈ Θ and E[log{1 + φ(x; r)}] < ∞, where Θ is the parameter

space of (µ, σ), f(x;µ, σ, ρ) = sup|µ′−µ|2+|σ′−σ|2≤ρ f(x;µ′, σ′), and φ(x; r) =

supµ2+σ2≥r f(x;µ, σ); (iii) f(x;µ, σ)→ 0 in probability as µ2 + σ2 →∞.

B2. (Smoothness) The kernel f(x;µ, σ) has common support and is three

times continuously differentiable with respect to µ and σ.

B3. (Identifiability) For any two mixing distribution functions Ψ1 and Ψ2

with two supporting points such that
∫
f(x;µ, σ) dΨ1(µ, σ) =

∫
f(x;µ, σ)

dΨ2(µ, σ) for all x, we must have Ψ1 = Ψ2.

B4. (Uniform boundedness) There exists a function g with finite expectation

such that ∣∣∣∂(h+l)f(x;µ0, σ0)/∂µ
h∂σl

f(x;µ0, σ0)

∣∣∣3 ≤ g(x), for h+ l ≤ 2,

where h and l are two nonnegative integers. Moreover, there exists a positive

ε such that

sup
|µ−µ0|2+|σ−σ0|2≤ε

∣∣∣∂(h+l)f(x;µ, σ)/∂µh∂σl

f(x;µ0, σ0)

∣∣∣3 ≤ g(x), for h+ l = 3.

B5. (Positive definiteness) The covariance matrix of (U, V ) is positive defi-
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nite, where

U =
∂f(x11;µ0, σ0)/∂µ

f(x11;µ0, σ0)
and V =

∂f(x11;µ0, σ0)/∂σ

f(x11;µ0, σ0)
.

B6. (Tail condition) There exist positive constants v0, v1, and β0 with

β0 > 1 such that f(x; 0, 1) ≤ min{v0, v1|x|−β0}.

B7. (Upper bound function) There exist a nonnegative function s(x;µ, σ)

that satisfies Condition B1 and is continuous in (µ, σ), a positive num-

ber a with 1/β0 < a < 1, a positive number b, and a positive number ε∗

with ε∗ < 1 such that for σ ∈ (0, ε∗σ0), s(x;µ, σ) is uniformly bounded,∫
s(x;µ, σ)dx < 1, and

f(x;µ, σ) ≤

{
σ−1s(x;µ, σ), if |x− µ| ≤ σ1−a,
σbs(x;µ, σ), if |x− µ| > σ1−a.

We list regularity conditions for p(λ) and pn(σ).

C1. p(λ) is a continuous function that is maximized at λ = 1 and goes to

negative infinity as λ→ 0.

C2. supσ>0 max{pn(σ), 0} = o(n) and pn(σ) = o(n) for any σ.

C3. p′n(σ) = op(n
1/2) for all σ > 0, where p′n(σ) is the derivative function

with respect to σ.

C4. pn(σ) ≤ 4(log n2)
2 log(σ), when 0 < σ ≤ 8/(n2M0) and n2 is large.

Here M0 = max{supx f(x;µ0, σ0), 8}.

We allow pn to depend on the data. To ensure that the EM-test is location-

scale invariant, we recommend choosing a pn that satisfies

C5. pn(b1σ; b1X1 + b0, . . . , b1Xn + b0) = pn(σ;X1, ..., Xn).
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