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S.1 Bias and variance terms in Theorem 2

Expression for bias terms

In (25)), the functions f,’s are defined as follows:

fl (ai> 0:7 ’YO) = El2<ai7 0r7 /60)522(ai7 e;ka ﬁO)il\IjilO: (Sl)

f2ai 07, v0) = —02=%(ai, 07, 89)="(a;, 7. Bo) ™

E(Vogr X (T a:, 07, 80)E*(a;, 07, 80) "' Vo X (T s, 07, 8y)|ai, €5)2)
fs(ai, 07,7v,) = U?E(VﬁeTX(T;ai,efaﬁo)EQZ(ai, 5.B0) 'VeX(T;a;,0;,By)lai, 0;)(S.3)
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where

(CLZ, 1760) z‘_lE(R;k(BO)MiaO:)'

and R}, (8,) is as in (S.42).



Estimate of I',,(v,)

We can estimate I',(7y,) by

where

Here, we use )A(U(B) as a shorthand for X;(7};; a;, 5,(,@), B)

Estimate of b, ()

We use estimate b, (7y,) by

where

}\'172' — E’L 1\11 1

}\.2,1' = A2€z [ZVOGTX’L] 1VBXU(/6)]
fsi = 6 [ZVgeT)?ij(B)/Wflvo)?ij(B)]

m; M
fui = —o° (Z(VGXU(/B))TVVi1Rk,iWi1v0Xij</8)>

J=1 k=1

where, for k=1,... . M,andi=1,...,n

R Z VOXZJ VﬁkeTXw ) + Z Vis.0Xij (/6 VBTXZJ )+ Z Vﬁk ZJ VBGTX%J (B)
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S.2 Details on the proof of identifiability

In the proof of identifiability in Section , the assertion that “(A.5) holds only if d] ¢(t) =
ci for all k7 is trivially true when p = 1. Therefore, let p > 1.

Let fu(z) := hTCT®(x). Then we can rewrite (A.5) as
Fu(Xar (1)) = gy (X ()AL (1), for all £ € [0,1]. (55)

Since both fy, and gg(y), are represented in the same spline basis, there exists an interval
(tg, tr) C [0,1] such that both fi and gg() are polynomials on (z, ;) where z;, = X;, (t;)
and Tj, = X, ({1,). Differentiating both sides of (S.5)) with respect to ¢, and invoking , we

have

T T
1 ooy (Xi ) Fr (X () = %57 g0 (Xiy (£)) glay) (X (1)1 g (2)

+ 980 (X, (t))dg;q'(t), for t € (L, tx),

or,
et (X, (D) = gy (X (0)dLq(t)) =dTq/(t),  fort e (th).  (S6)

Now, notice that since p > 1, by F1.2, ?10) is not a constant. Therefore, 1' and 1}

are two polynomial equations for X, (¢), the former with coefficients that are polynomials

q

in ¢, and the latter with coefficients that are polynomials in ¢ and 10 The dependence

on ¢®%9® is nontrivial unless the right hand side of |D is zero, which can only happen if
dj q(t) is a constant. Otherwise, X, (t) cannot simultaneously satisfy both (S.5)) and (S.6).

This establishes the fact that (S.5) (i.e., (A.5)) can hold only if d q(t) = ¢ for all k.



S.3 Likelihood and profiling

Our working assumption is that 6;’s are i.i.d. N(u, ) for a p x 1 unknown vector pu = p,
and a p x p positive definite matrix ¥ = ¥y, which is assumed known. We also assume that
g;;’s are 1.i.d. N(0,02) where o2 is also considered known, though we can also estimate both
¥ and o2 from the data. Define ¥ = (1/02)%. Let H be an M x M positive semi-definite

matrix. Then for any A > 0, we define the penalized negative log generalized hierarchical

likelihood for (©,3) where ® = (04,...,0,,) as

L"(©,8,p) = 11,(0,8, 1) Zé (6:, 8, 1), (S.7)
where
1 [ A
05(0:,8, 1) = 207 (;(Y — X(T;;; 6:,8))* + (6 H)T‘I’_l(ei—u)‘FﬁﬁTﬂﬁ)

1 i i
+5 log |3] + m7 log o2 + m7 log(27)

1 1 i i
= SLI(8:.B.p) + 5 log [S] + T logo? + T log(2m). (S.8)

=
In the second line of the above equation, we dropped the suffix A\ for notational convenience.
The phrase generalized refers to the fact that, though ¥ and 0. are considered known, they
can be any positive definite matrix and positive scalar, respectively, even if the latter are
not the true variances of 8;’s and ¢;;’s, respectively.

Then, obtaining the maximum generalized H-likelihoood estimate (5 . B 1, Byg) 1S equiv-

alent to

min Y L7(0;, 8, ). (S5.9)



The minimization in (S.9) can be broken into two steps:

@(B,p,) = argrréi_an{(Oi,ﬁ,u), i=1,...,n, (S.10)
and
By, i) = argrgingLf(ﬁ,u) (S.11)
=1
where
LE (B, 1) = L' (6:(8, 1), B, ). (S.12)

Finally, ®y = (81(By, fig),---.0.(By, By)). The expression LF(B) in (S.11) (or more
appropriately, (1/02)LY (83, u)) can be termed the penalized negative “profile log-likelihood”

with respect to (8, ).

S.3.1 Likelihood equations and identifiability

The following sets of equations characterize the maximum H-likelihoood estimates under the

given set up. First, since 51-(5, p) minimizes L (0;, 3, ) for any given (3, 1), we have

o~

~ 0
VoL (0:(8, 1), B, p) = 5L (0:(B, ), B, p) = 0. (S.13)

Here and afterwards, we follow the convention

0 0
Vy [ (o, 20) = a—yf(ymzo) = a_yf(y’ 2) lymyo im0 -

and, assuming z(y) to be a differentiable function of y, make use of the chain rule,

I = Va2 + 5L 5(0)

. P dz(y) 0
= 5l ) e + =3, 5 0:2) Ly
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. 0?
Also, we define V,,r := FaoyT

For the rest of this subsection, for notational convenience, we use VgLfI’r, VgLZ-H " and
VL to mean VoL (0:(8, 1), B, 1), VoL (8;(8, 1), B, ) and V, LI (8,(8, ), B, ), re-
spectively, by suppressing the dependence on (3, p), with analogous notations for second
order mixed partial derivatives.

By the Implicit Function Theorem, @(,8, p) is differentiable with respect to 3 and p,

and thus,
D 1P B = -LLHB.8,1).8, 1)
B g i
= vﬁLf’w—aB’é% “)WL{“ = VaL"", (S.14)

where the last equality is due to (S.13)). Similarly,

0
—LF(B —v, LA 1
a“ z( 7/“’) ptg (S 5)

Differentiating (S.13)) with respect to 3, we have

0;
0= vﬁgTL,f{’T + 0 ég7 H) VHBTLf{’T,
so that
84/9\2 5 -~ -1
PP Ve LE OB )0 0) [Vo P @B B0)] - (510
Differentiating (S.14)) one more time with respect to 3, we have
, = —(VgL,"
96,(8,
— VﬁﬁTLfI,T + éI/BB ll,) vOﬁTLfir
—~ —~ T
00:(8, 1) 00:(8, 1)
Hr ) H,r 5
= V,B,GTLI — 8,8 |:V99TLi :| 8,8 )
-1
= Vgr L — Ve L1 [VBGTLZH”} Vosr L7, (S.17)
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where the last two equalities follow by making use of (S.16)). Similar derivations yield

0? r 1-1
B0 LY(B.pu) = VgurL{" —Vggr L™ |Voer Li""| Vg, L™, (S.18)
2 H Hr | o]t H
6u6uT z (,3 M) = VH}LTLZ' T quTLi " VOGTLz' " VG,LLTLi ™ (819)

Notice that, from (S.8)), we also get
Veur L =0, VoL =—

From (5.17)) — (S.19) and ([S.20)), it is clear that

2 2 2

9
spogT i Bo#) = O0r(m), 5on mLi(B,p) = Op(1), 5oL (B 1) = Op(1),

where the Op terms can be made uniform in ¢ with an additional factor of logn.
An important consequence of the above is that the main contribution of subject ¢ to the

information matrix for 3, namely,

n

ZaﬁaﬁT "B w)

(ZWT )(ZMT Bu)) (iaﬂawﬁm)T,

comes from the first term (involving Hessian with respect to 3). Along with the identifiabil-

ity condition @, this establishes the asymptotic nonsingularity of the observed information
matrix with respect to 3, and hence the asymptotic identifiability of 8, even when p is
treated as an unknown parameter. As a further consequence, the discussion here also indi-
cates that we can prove consistency of the estimator of 3 under the condition Z;‘il B =1

even when p is estimated from the data.



S.4 Details on the proof of Theorem

S.4.1 Gradients and Hessians of L{{

Define, for j =1,... ,m;; i =1,...,n,

X;j(0i,8) = XiT;;6:,8),  VoXy(6,8) = VoXi(Ty;6:8)
VeXii(0:,8) = VeXi(Ti;:6:,8),  Xy(B) = Xi(T;;0:(8),8)
VoXi(B) = VoXi(Ty;:0:(8),8),  VaXi(B) = VsXi(T;;:0:(8),8)
X;58) = Xu(Ty;:607,8),  VeXj(8) = VeXi(Ty;6;,5)

VeXi5(B) = VeXi(Ty;0;,8)

etc.



Direct calculations yield,

Vol!(0,,8) = Z Xi;(0;,8))VeXi;(0;,8) + V6, (S.21)
Vsl (6,,8) = Z X;(0:,8))VsXi;(0:,8) + n ' \XHB (S.22)
Veer L' (0:,8) = Z Xi;(65, B))V ggr X5(6:, B)
- Z VoXi;(6i,8)Vgr Xi;(8;,8) + ¥ (S.23)
P
TaarL6,8) = = (Vs = X, (010 X,(6. 5
+ i VXi;(6;, 8)Vyr X;;(0:, 8) (S.24)
j
Vagr LI (0:,8) = Z Xi5(85,B))V 557 X15(6:, B)
+ Z VXii(0:,B)V gr Xij(6;, 8) +n~'AH. (S.25)
P

S.4.2 Expansion of @(,30)

Since g;; = Yi; — X(By), from (S.23), we get

Voor L' ( Z €ijVeor X;;(Bo) + Wi (By) = — P, gor + Wi (By), (S.26)



and so from (|S.35)) we get,

0:(8,) — 0;
= —W(By) VoLl (6], By) + Wi (By) "' P, 097 (8:(By) — 65) — W (By) 71
= W7 (Bo)"pio — Wi (By) U6
+ Wi (By) ™' Py ggr (B:(80) — 0;) — Wi (B) "1,
= W7 (Bo) 'pio — Wi (Bo) U160 + Wi (By) ™' Py ggr Wi (By) ' pio
— W7 (Bo) ' Pyoer Wi (By) ™' 07'6;
W (By) "' P, ggr Wi (Bo) ' P g (B:(By) — 05) — Wi (B0) ' Py ggr W7 (Bo) 1.1

= W7 (Bo) 'pio— Wi (B,) 0 '6; + Wi*(ﬁo)_IPi,BGTWi* (Bo) 'pig + T2y

where we have used (S.21)) in the second step. From the expression for ry; and the bound

for r1,; in (S.36]), we obtain (S.41)).
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S.4.3 Behavior of the gradient of L”

By (S.14), (A.12)), (S:22) and (S.24)), we have

1517 (B) = VL @(8y). 5y

= VaLI(0],80) + Vgor L' (67, B0) (0:(8,) — 07)
4 (6:(8) — 077V 5,000 LI (07, 80)B:(8) ~ 07)) |+ 75,

= —pigt+n'AH
+ (=P, g + & (B0)) X (Wi (Bo) "pie — Wi (Bo) W16} + W, (By) " Py gr Wi (Bo) 'pip +72)
+(pioWi (Bo) ™' Ry (Bo) Wi (Bo) ™' pi0)ki + 73

= —pip+ & (Bo)Wi (By) 'pis

— & (Bo)Wi (Bo) U107 + & (Bo) Wi (Bo) ' P, g Wi (Bo) ' pie — P, ggr Wy (Bo)'pio

+ (PZOWZ‘*(ﬂo)flR;k(ﬁo)W{k(50)711%‘,0)1]4\:11 + T4,

where

Tai = P',ﬁeTWi*(Bo)fl‘IFlH: - Pi,,eeTWi*(ﬁoYlPi,eeTWi*(Bo)ﬂpi,e +n '\H

1

— P, ggrrai + & (Bo)ra,i + 13-

It can be shown that max;<;<, || rs; ||= O((logn)2m~"/2) and from this, A5 and (S.41)) we

can deduce ([S.46]).
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S.4.4 Behavior of the Hessian of LZP

Using calculations similar to those in Sections [5.4.2 and [S.4.3| and using the expansions

Xij(Bo) = X55(Bo) = VerXj;(By)(0:(By) — 67) + O(]l 0:(8,) — 07 |*) (8.27)
VG)A(z‘j(ﬁ()) - ngi*j(BO) = VoeTX;j<ﬂo)(§i(Bo) - 9?) + O(“ az‘(ﬁo) - 9: H2) (8-28)

VeXii(Bo) — VaX5(By) = VerX5(Bo)(0:(8y) — ;) + O] 8,(8,) — 67 [1%),(S-29)

we can isolate the leading order terms in the following quantities

Voor LI1(0:(B),B0),  VaerL(0:(80).B,)  and  Vgar LI (0,(8y), Bo)-

From ([S.27)), (S:28), (S-23) and (A.12)), we have

o L B:(6y).B)

= __ZgzgveeTX (Bo) +—ng (By)Vgr ;j(ﬁo)+mii\1r1
+—ZV9T 0:(8,) — 0,)V g1 X; Zew Vo010 X5;(8,). 0:(8y) — 67)
+—ZV0 (80) (Vagr X 5(80)(6:(8y) — 67))"

R 1
—l—g Z VOOTX:j<ﬁO)(0i(IBO) - ej)veTX ('60) ™ O ( Oin)
% j=1 o

_ %W;(go) +0 ( 105@”) . (S.30)
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Similarly, by (S.27)), (S.29), (S.24) and (A.12), we have

_VBOT LH( (50) /30)

= ——ZgUVﬁGTX (Bo) —I——Zvﬁ {(B0)Vgr X5(By)

i

1 & ~
+_ Z VoT (ﬁo) Of)vﬁoTX;}(ﬂo) - E ij <vﬁoT0Xi*j (50)7 9z‘(ﬂ0) - 9:>
my j=1

+_szﬁ (Bo) (Voo X55(B0)(0:(B,) — 67))"

R 1
S X588 — 07 X(80) + O < Oin>
7 j=1

— ﬂif(ﬁo)‘FO( 1°i”>. (S.31)

)

Finally, by (S.27)), (S.29), (S.25)) and (A.12)), we have

EVBBTLH( i(Bo); Bo)

= _E Z%Vﬁﬁ'f (Bo) + — Z Vs Xi5(Bo)V gr X5(By) +
1 & ~
+_ Z Vor X, (ﬁo) 07)V 557 X5 (Bo) — o Z €i5(V 379X (B0), 0:(By) — 07)
U

—|—— Z Vi X] ﬁo VﬁeTX (Bo) (0 i(ﬁo) - 0:))T

* 0 x logn
ngwxijwo)(emo)—e»vﬂT (ﬂ0)+o( o )

= —Zvﬁ (B0)(V gor ;<ﬁo>+6(max{§, log”}) (8.:32)

S.4.5 Details of the derivation of (23|

Based on the derivations in Section [S.3.1] the following expressions are valid for i = 1,...,n:

d P _ H(p
%L (B) = VLi'(0:8),8), (S.33)
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and using ([S.17)),
5

~ ~ -1 ~
In the following, we use the notations and expressions of gradients and Hessians given in the

Supplementary Material.

Our next step in proving is to obtain a first order expansion for /9\1-(,30) by making

use of (A.7) and (A.8). Expanding the right hand side of (A.7) in Taylor series around 6},

we have
0 = VoL(0;,80) + Vogr LI(6;,8)(6:(8y) — 6]) + 715, (S.35)
where
rLi = | Voar LI (0:(80), Bo) — Voor LY (67, 8y)| (8:(8,) — 6})
and || 0;(8,) — 67 ||<|| 6;(8,) — 6 ||, which implies that
max | 71 [|= O((log n)!/*m || 6:(8y) — 67 |I) = O((logn)*/%). (S.36)

Next, define
Bi(B) = Y VaX;(B)\VarX;(B), &(B) = > VaXj(B)VerX;(B)
j=1 j=1
Wi B) = ) VoX5(B)VerX;;(B)+ T "
Jj=1

Also, by A0-A5 and —, we have

miiB;(g) = =(a,6:.8) + 0 (Viognm ) (5.37)
i * _ =120 px* A —1/2

migi (B) = 2%a;,0;,8)+0 ( log nm ) (S.38)
iI/Vl*(ﬁ) = =2%(4;,0:,8)+ 0 < log nm’1/2> : (S.39)

)
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where the O terms are uniform in .
Further, define
bio = Z€¢jVeij(ﬁ0), Pip = ZEZJVBX (Bo), P67 ngveeT Bo):
Fipor = Z%VﬁeT (Bo): Pipgr = ZgijvﬁﬂTX:j(ﬁO)'
j=1

Then, as is shown in Section , we have the following expansion of /0\1-(,60):

ai(@))_e;k :M/z'*(ﬁo)flpw Wi (Bo)~ " 19*+W*<ﬁ0) zeeTW (Bo)” 1pz‘,0+7”2,z'7 (S.40)

where

1<i<n m3/2

max || ro; |= O ((log”> ) (S.41)

The next step is to obtain an expansion for ddﬁLf (By). Let

B) = VeX;(B)Ver X} +Z V50X 5 (B)Vor X; +Z V5. X55(B)Veer Xi(B).

j=1
(S.42)
Then, from the derivation in Section [S.4.3] we have
L2 (80) = ViV (80) + V2 (B0) + 1, (543
ag ’
where
(ﬁo) —pip + & (Bo) W/ (Bo) ™" Di6; (S.44)
which contributes primarily to the asymptotic variance of 4, and
VB, = &(By)W(By) T YTE;
5 (/BO)W* (50) i eoTW (ﬁo) Pio — Pi,ﬁBTWi*(IB(])_lpiﬂ
+(PioW; (Bo) ™ Rk (Bo) W7 (Bo) ™' pio)its (S.45)
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which contributes primarily to the asymptotic bias of 4, and the remainder terms r; 4 satisfy

max | 14, |= O (max{\/n, (logn)*m~"/?}) . (S.46)

1<i<n

From (IS.BSb and (IS.39D and using 7, we can easily derive that || N,;lvz.“) (Boy) ||I=

O(y/logn/(nm)) and | Ngl\/;@) (8,) |l= O(m™), uniformly in #, while the contribution of

ra; can be neglected asymptotically.

Next, combining (S.34)) with (S.30)), (S.31)) and (S.32)), derived in Section we have

1 &

g B0 = BB - (mi;;‘(ﬁo)) (%W(%))l (mi;;wo))T

45 (m{l logn})
n'\l m

= El2(g, f,ﬁo)+5(max{5, 10g”}>, (S.47)

n m

where the second equality is obtained by using (S.37)—(S.39) and (17).

S.5 Levenberg-Marquardt procedure for model fitting

In this subsection, we provide some detail on the estimation of (@, 3) using the Levenberg-
Mardquardt procedure. We use the notations introduced in Section [3| to denote the current
estimates of (©, 3) at any specific iteration of the Levenberg-Marquardt algorithm. Accord-

ingly, the values of (©,3) are updated by solving the following equations,
(JZGZ@JLOS + )‘9251) (0; —6;) = Jgjogéi — X%y (605 — pp)
[J5edge + AgH + ngdiag(J 5 dge)] (B — B°) = Jhe—AHBS, i=1,....n,
where &; = (&), € = (&:)j, and &;; = Yy; — Xi(ti;; 07, B°) (current residuals) with 6 and

B3¢ denoting the values of the estimates of 8; and (3, respectively, at the current iteration.

16



Here, ng is a sequence of real numbers decreasing to 0 with iterations, used to increase
the stability of the algorithm. Also, J; ¢ and Jge denote the Jacobians of the negative log

H-likelihoood with respect to the parameters. The latter are defined as

0 = i
Jige = [Ji,egl Do Ji,efp} , where Jjpe = <87Xi(tij;ef7ﬁc)) , k=1,....p;
ik j=1
and
8 ms,m
JI@C = [Jﬁi‘ Ll Jﬁ;‘w] N where J'Bli = (a_ﬁle(tlﬁgzcﬂac)) s k= 1, ,M
j=1,i=1

Computation of J; g<’s and J ge, requires evaluating X;(+; 8;, 8) and its partial derivatives with
respect to 0,;’s and 3. Since these are not available in close forms, a 4"* order Runge-Kutta
method is used to evaluate these functions on a fine grid. The details of the implementation

of Runge-Kutta method are similar to those in the Appendix of Paul et al.| (2011)).

S.6 Approximate CV score cV

Here we describe a computationally efficient approximate leave-one-subject-out cross-validation
score that is similar to that proposed in Paul et al.| (2011)).

The leave-one-subject-out estimates B(_i) are computed approximately by a first order
Taylor expansion around the estimate B (using complete data). Then, we get the leave-one-

subject-out prediction of 8; by:

(—i) L > (—i) _
6; = =argmin E (Yij — Xi(tij, 05,8 ) +02(0; — pg) 55 (8; — po)-
2 J:1
The approximate leave-one-subject-out cross-validation score is then defined as :

G 5 SYNTIRN: Y ($.48)

i=1 j=1

17



Here, égii) 's and B(ii)’s, are obtained by neglecting the higher order terms in their expansions
around /0\1 and B, respectively. Below we give a detailed derivation of the approximate CV
score.

First we obtain an approximation for B(_i) by using a Taylor expansion around B in the

equation
n
gz] 01)/6
i=1 j=1

Our approximation is of the form
1 /o L.
[y e.s MH] (g 26,0..3) g;@) O sa)
i=1 j=1 j=1
This approximation ignores the identifiability constraint on 3. In order to obtain the correct
form under the identifiability constraint, we use the reparametrization of B to -y, that is,
B = Cvy + ;1y, where Cis an M x (M — 1) or rank M — 1 satisfying 17,C = 0/_;, and

~ € RM~1 Then we have,

00;;(0,7) 0B 0L;(6:,7)

oy B 87 aﬁ
- T
oyovT 0BIB
so that
_]_ o~ o~
P 820,:(6;, B) o 0li;(0;, B)
(=) _ T z] 79 T 1J\Y1)
% =~ + |C < /\BH> C C ( — .
> i X

Then the approximate leave-one-subject-out estimate of B(_l) becomes

—1 ~ o~
"\ 82 i 01, — 0&] 01'7
o (S5 D )] o (SPAEB) s

i=1 j=1 7j=1

[3 —[3+C
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The leave-one-subject-out estimate égii) of 8; is derived as follows.

égiz) = arg mln Z (Y, — Xi(T35, 0, B(ﬂ)))2 + X0 (0 — )"0 — py)
= 9 iﬂ(@ BH)) + 200351 (0 — pp) |50 =0
90 ig\Y> 0 0 0;

O [N, A(-i) »(—i) A=)

We obtain an approximation to the above equation by expanding around 4/9\1

. ) T
0 (N~ 5 3~ P (5, 5 a0 a5
5 (;em(ez,ﬁ )) * Sao0T <;€@](01,6 )) 6, " -0,

20850 — ) + 205516

(=)

Let 6; = 3 ~ — B, so that B(ii) = B + 0;,. We approximate the above equation again by

expanding around B and ignoring the term with 61'(@1(-_0

0S5 6,6:B) | (62 (S 05(6:.8))

~ ;)

8; + 20035 1(6; —
90 0003" ) 203 (0 — o)

0 (35, 0:5(6:.5) ) o

_l’_
0006"

+2035;1 | (6,

Since

(ZEU 01716 ) +2)\€ (/0\1 _H‘G) = 07

equation ([S.51)) reduces to

= (agaﬂT Z ij z7 > 7
m; T )
(aeaeT (Z 0 > P ) @7 -8

19




so that

) -1
(i) ~ 0? 5 —1
[7h = 0,— | ——= 2 07;, 292 i u i
Z (oo (S5 02) 20 ) (e S0 )

or,

%

o~ o~ -1
~( m 1]70’57/8) aX (Ej) 76) 6X( Z]’0i716) -1
[Z (5” 2600™ 96 o7 ) T

Jj=1

v (T, 008)  0Xu(Ty,0.8) 0X:(1,,8.,8)\] .
[Z (5” 2603" 06 08" O

Jj=1
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S.7 Additional Figures and Tables
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Figure S.1: The “Two-peak” gradient function (left panel) and the corresponding growth

trajectories and observations (dots) under dense case with o. = 0.01 (right panel).
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Table S.1: Simulation with “Two-peak” gradient function g and linear (p = 2) Z(-, 6;)s.
M = 30 cubic B-spline basis functions are used for the fitting. “Ideal” model selection is

used for selection of Ag.

Sampling rate py 0. | Mean(ISE) SD(ISE) | Median(ISE) MAD(ISE)

ISE(g)

sparse 0 0.01 ] 0.000995  0.000801 0.000780 0.000594

2 0.01 | 0.002606  0.001912 0.002202 0.001338

dense 2 0.01| 0.001114 0.001414 0.000745 0.000556

2 0.02 | 0.001584 0.001165 0.001269 0.000813

1000 x ISE(X)

sparse 0 0.01 ] 0.050654  0.033898 0.047118 0.013144

2 0.01] 0.081423 0.701797 0.046949 0.012836

dense 2 0.01] 0.038872 0.701015 0.006609 0.001236

2 0.02 | 0.021748  0.004430 0.021222 0.004431
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Table S.2: Simulation with “Two-peak” baseline gradient function g and linear (p = 2)

Z(-,0;)s. M = 30 cubic B-spline basis functions are used for the fitting. Summary statistics

for ISE(G) := [(ssg(x) — g(z))2dz. CV is used for selection of Ag.

Sampling rate ps 0. | Mean(ISE) SD(ISE) | Median(ISE) MAD(ISE)
sparse 0 0.01| 0.007634  0.006347 0.006167 0.004536
2 0.01] 0.005099 0.004786 | 0.003858 0.002970
dense 2 0.01] 0.001853 0.001836 | 0.001339 0.001217
2 0.02 | 0.003642  0.004631 0.002546 0.002077

Table S.3: Simulation with “Two-peak” baseline gradient function g and constant (p; = 1)

or linear (py, = 2) Z(-,0;)’s. Results are under the fitting procedure (with M = 30 cubic

B-spline basis functions) using p = p;, and the “ideal” model selection criterion for Ag.

True model Sampling rate | Mean(ISE(g)) SD(ISE(q)) | Median(ISE(g)) MAD(ISE(9))
Do =1 sparse 0.000493 0.000197 0.000540 0.000204
dense 0.000209 0.000165 0.000148 0.000137
Dir =2 sparse 0.000701 0.000416 0.000570 0.000310
dense 0.000415 0.000354 0.000306 0.000270
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Table S.4: Simulation with “T'wo-peak” baseline gradient function g and constant (p;, = 1)

or linear (p, = 2) Z(-,0;)’s. Results are under the fitting procedure (with M = 30 cubic

B-spline basis functions) using CV for selection of both Ag and p. In almost all cases, p = 2

is selected.

True model Sampling rate | Mean(ISE(g)) SD(ISE(g)) | Median(ISE(g)) MAD(ISE(g))
Do =1 sparse 0.001902 0.001450 0.001571 0.000614
dense 0.000375 0.000231 0.000398 0.000248
Dir = 2 sparse 0.001400 0.000998 0.001016 0.000539
dense 0.000556 0.000436 0.000417 0.000279
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Figure S.2: Simulation with “Two-peak” gradient function g and linear Z(-, 6;) under the
sparse case with p, = (0,0)7 and 0. = 0.01. Left panel: X-axis: x; Solid line: true g(z);
Dotted line: point-wise mean of g(x) = sgg(x); Dash-dotted line : point-wise 5% and 95%
percentiles of g(z). Right panel: X-axis: mean of X (¢); Solid line: point-wise mean of
e g(X(t)); Dotted line: point-wise mean of eﬂ(t)ﬁ(%(t)); Dash-dotted line : point-wise 5%

and 95% percentiles of e#G(X ()).
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Figure S.3: Simulation with “Two-peak” gradient function g and linear Z(-, 6;) under the
sparse case with p, = (0,2)7 and 0. = 0.01. Left panel: X-axis: x; Solid line: true g(z);
Dotted line: point-wise mean of g(x) = sgg(x); Dash-dotted line : point-wise 5% and 95%
percentiles of g(z). Right panel: X-axis: mean of X (¢); Solid line: point-wise mean of
e g(X(t)); Dotted line: point-wise mean of eﬂ(t)ﬁ(%(t)); Dash-dotted line : point-wise 5%

and 95% percentiles of e#G(X ()).
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Figure S.4: Simulation with “Two-peak” gradient function g and linear Z(-, 6;) under the
dense case with g, = (0,2)” and 0. = 0.02. Left panel: X-axis: x; Solid line: true g(z);
Dotted line: point-wise mean of g(x) = sgg(x); Dash-dotted line : point-wise 5% and 95%
percentiles of g(z). Right panel: X-axis: mean of X (¢); Solid line: point-wise mean of
e g(X(t)); Dotted line: point-wise mean of eﬂ(t)ﬁ(%(t)); Dash-dotted line : point-wise 5%

and 95% percentiles of e#G(X ()).
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Y'(t)

Y'(t)

Figure S.5: Berkeley growth data. Empirical derivatives (divided differences) Y(t) against

height measurements Y (¢) for female group (left panel) and male group (right panel).
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Figure S.6: Berkeley growth data. Fitted individual growth rate )?Z’ (t) under the quadratic

subject-specific effects (p = 3) against time t (left panel) and against heights )?,(t) (right

panels) for the female group (upper panel) and for the male group (lower panel).
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Figure S.7: Berkeley growth data. Observed (left panel) and fitted trajectories (right panel)
under the quadratic subject-specific effects p = 3 for the female group (upper panel) and for

the male group (bottom panel).
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Figure S.8: Residuals of fitted trajectories based on full data for the female group with

p =1,2,3 (upper panel) and for the male group with p = 1,2, 3 (lower panel).
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S.8 Additional model selection results

Following the suggestions from one of the reviewers, we carried out additional numerical
studies to further explore the model selection issue.

Simulated study. We expanded the simulation study under the same settings (p;, =
1,2) as reported in the paper and fit the models for p = 1,2, 3,4, fixing the parameter oy,
to be 0.2 for k£ > 2, and gy, = 0.1. CV scores corresponding to a set of representative
simulation runs are reported in Figures (for pr = 1) and (for p,. = 2). Notably, the
CV curves flatten out for p > py, in all the cases. For the dense setting (right panels), the CV
scores are very close to each other for all values of p > py,., while for the sparse setting (left
panels), there is a slight downward trend in most curves as p increases. The model selection
performance based on the CV scores is summarized in Tables (for ps = 1) and (for
Pir = 2). These results show that there is a tendency for the CV criterion to select larger
models, and larger models are more likely to be selected for sparse case. This observation is
related to the fact that, for sparse case it is harder to distinguish the features of the baseline
dynamics ¢ from the subject-specific time-dependent effects Z(t, 6;), resulting in a certain

degree of “practical lack of model identifiability” and over-fitting.

Table S.5: py, = 1: Percentages of selected p based on minimizing CV scores.

Sampling rate | p=1 p=2 p=3 p=4

sparse 0 16 42 42

dense 0 30 10 60

Another noticeable effect is the presence of a pronounced “elbow” in the CV score curves
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Table S.6: p;,. = 2: Percentages of selected p based on minimizing CV scores.

Sampling rate | p=1 p=2 p=3 p=4

sparse 0 0 24 76

dense 0 35 40 25

at the true p when p;,. = 2 (Figure . This clearly indicates that the CV criterion is rather
sensitive to under-specification of p. It also suggests that the location of such an “elbow”
could provide a more accurate estimate of the dimension of the random effects than that
deduced from CV scores alone. Motivated by this, we quantify the relative changes in the
CV scores and use a threshold 7 > 0 to detect significant changes. Accordingly, using C'V{;,
to denote the CV score for the model with p = k, if the fraction |[C'V{,_1) — CV{i)|/CVise—1)
is less than 7, then we treat the change in the CV scores between p = k — 1 and p = k as
insignificant. The largest k for which a significant change occurs is chosen as the optimal p.
We tried small values of 7 and, as a rule of thumb and for illustrations, use 7 = 0.05. The
corresponding model selection results are reported in Tables (for p;, = 1) and (for
P = 2). For both values of py,., model selection through this approach is very effective in the
dense setting, and quite reasonable in the sparse setting. Comparing with results in Tables
and[S.6] we conclude that this approach is more reliable than the one based purely on the
CV scores. Specifically, both the approaches guard very well against under-specification of
p. However, the approach based on relative changes in the CV scores also tends to disregard

models with p larger than p,,., especially so for relatively dense samples.

33



Table S.7: py,. = 1: Percentages of selected p based on relative change in CV scores (threshold

7 =0.05).

Sampling rate | p=1 p=2 p=3 p=4

sparse 0 79 ) 16

dense 100 0 0 0

Table S.8: py,. = 2: Percentages of selected p based on relative change in CV scores (threshold

7 =0.05).

Figure S.9:

Left panel:

CV scores

Sampling rate | p=1 p=2 p=3 p=4

sparse 0 70 18 12

dense 0 100 0 0

Py = 1 @ CV scores corresponding to p = 1,2, 3,4 for a set of simulation runs.

sparse setting, Right panel: dense setting.
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Figure S.10: p;. = 2 : CV scores corresponding to p = 1,2, 3,4 for a set of simulation runs.

Left panel: sparse setting, Right panel: dense setting.
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For the Berkeley Growth Data, we fitted the heights of both female and male subjects
for p = 4. As is to be expected in such nonlinear models, higher value of p leads to some
degree of instability. To address this, we set gy, = 2, and oy, = 5 for k = 1,2,3. As before,
Y is chosen to be diagonal with diagonal elements (oj )i_,. This specification enables a
straightforward comparison with the p = 3 case. We also keep all the other parameters the
same as in the p = 3 case. Based on the CV score, the model with p = 4 is preferred.
For a closer inspection, we compare the MISEs for each group. For the female group, the
drop in MISE from p = 3 to p = 4 is modest (about 25%), while for the male group, the
drop in MISE is a bit more significant (about 41%). We also compare the residuals for the
two models for each group, as illustrated in Figures (female group) and (male
group). These plots show that even though the overall spread of the residuals is not much
different between p = 3 and p = 4, there is a reduction in the spread towards the right
end point (beyond the age of 15 years) for both groups under p = 4 model, with more
pronounced reduction for the male group. This reduction in errors, though moderate, is
nevertheless reflected in the selection of the model with p = 4 over that with p = 3 by
the CV criterion. However, as a further comparison, we also consider the estimation of the
baseline gradient function g, which is of primary interest to us. In Figure [S.13] we plot the
adjusted baseline gradient function e?MgG(X (¢)) (where fi(t) = Z(t,7ig)) against X (t) (left
panel: female group, right panel: male group). In each plot, the black curve corresponds
to fit for p = 3 and the red curve corresponds to fit for p = 4. It can be seen that the two
curves are nearly overlapping for both groups, indicating that there is very little difference

between the fits of the gradient function corresponding to p = 3 and p = 4. Thus we decided
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to report the result corresponding to p = 3 in the main manuscript for simplicity.

Figure S.11: Female group : comparison of residuals. Left panel: p = 3, Right panel: p = 4.
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Figure S.12: Male group : comparison of residuals. Left panel: p = 3, Right panel: p = 4.
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Figure S.13: Plot of adjusted baseline gradient function against average growth trajectory.

Black curve: p = 3, Red curve: p = 4. Left panel: female group, Right panel: male group.
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