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S.1 Bias and variance terms in Theorem 2

Expression for bias terms

In (25), the functions f`’s are defined as follows:

f1(ai,θ
∗
i ,γ0) = Ξ12(ai,θ

∗
i ,β0)Ξ22(ai,θ

∗
i ,β0)−1Ψ−1θ∗i (S.1)

f2(ai, θ
∗
i ,γ0) = −σ2

εΞ
12(ai,θ

∗
i ,β0)Ξ22(ai,θ

∗
i ,β0)−1

· E(∇θθTX(T ; ai,θ
∗
i ,β0)Ξ22(ai,θ

∗
i ,β0)−1∇θX(T ; ai,θ

∗
i ,β0)|ai, θ∗i )(S.2)

f3(ai,θ
∗
i ,γ0) = σ2

εE(∇βθTX(T ; ai,θ
∗
i ,β0)Ξ22(ai,θ

∗
i ,β0)−1∇θX(T ; ai,θ

∗
i ,β0)|ai,θ∗i )(S.3)

f4(ai,θ
∗
i ,γ0) = −σ2

ε

(
E
(
∇θTX(T ; ai,θ

∗
i ,β0)Ξ22(ai,θ

∗
i ,β0)−1

· Rk(ai,θ
∗
i ,β0)Ξ22(ai,θ

∗
i ,β0)−1∇θX(T ; ai,θ

∗
i ,β0)|ai,θ∗i

))M
k=1

, (S.4)

where

Rk(ai,θ
∗
i ,β0) = m−1

i E(R∗i,k(β0)|ai,θ∗i ).

and R∗i,k(β0) is as in (S.42).
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Estimate of Γn(γ0)

We can estimate Γn(γ0) by

Γ̂n =
1

Nn

n∑
i=1

CT [B̂i − ξ̂iŴ−1
i ξ̂Ti ]C,

where

B̂i :=

mi∑
j=1

∇βX̂ij(β̂)∇βT X̂ij(β̂), ξ̂i =

mi∑
j=1

∇βX̂ij(β̂)∇θT X̂ij(β̂)

Ŵi =

mi∑
j=1

∇θX̂ij(β̂)∇θT X̂ij(β̂) + Ψ̂.

Here, we use X̂ij(β̂) as a shorthand for Xi(Tij; ai, θ̂i(β̂), β̂).

Estimate of bn(γ0)

We use estimate bn(γ0) by

b̂n =
1

Nn

n∑
i=1

4∑
`=1

f̂`,i

where

f̂1,i = ξ̂iŴ
−1
i Ψ̂−1

f̂2,i = −σ̂2
ε ξ̂iŴ

−1
i

[
mi∑
j=1

∇θθT X̂ij(β̂)Ŵ−1
i ∇θX̂ij(β̂)

]

f̂3,i = σ̂2
ε

[
mi∑
j=1

∇βθT X̂ij(β̂)Ŵ−1
i ∇θX̂ij(β̂)

]

f̂4,i = −σ̂2
ε

(
mi∑
j=1

(∇θX̂ij(β̂))T Ŵ−1
i R̂k,iŴ

−1
i ∇θX̂ij(β̂)

)M

k=1

where, for k = 1, . . . ,M , and i = 1, . . . , n,

R̂k,i =

mi∑
j=1

∇θX̂ij(β̂)∇βkθ
T X̂ij(β̂) +

mi∑
j=1

∇βkθX̂ij(β̂)∇θT X̂ij(β̂) +

mi∑
j=1

∇βkX̂ij(β̂)∇θθT X̂ij(β̂).
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S.2 Details on the proof of identifiability

In the proof of identifiability in Section A.1, the assertion that “(A.5) holds only if dTikq(t) =

ck for all k” is trivially true when p = 1. Therefore, let p > 1.

Let fh(x) := hTCTΦ(x). Then we can rewrite (A.5) as

fh(Xik(t)) = gβ(γ)(Xik(t))d
T
ik
q(t), for all t ∈ [0, 1]. (S.5)

Since both fh and gβ(γ)h are represented in the same spline basis, there exists an interval

(tk, tk) ⊂ [0, 1] such that both fh and gβ(γ) are polynomials on (xk, xk) where xk = Xik(tk)

and xk = Xik(tk). Differentiating both sides of (S.5) with respect to t, and invoking (1), we

have

eθ
T
ik
q(t)gβ(γ)(Xik(t))f

′
h(Xik(t)) = eθ

T
ik
q(t)gβ(γ)(Xik(t))g

′
β(γ)(Xik(t))d

T
ik
q(t)

+ gβ(γ)(Xik(t))d
T
ik
q′(t), for t ∈ (tk, tk),

or,

eθ
T
ik
q(t) (f ′h(Xik(t))− g′β(γ)(Xik(t))d

T
ik
q(t)

)
= dTikq

′(t), for t ∈ (tk, tk). (S.6)

Now, notice that since p > 1, by F1.2, eθ
T
ik
q(t) is not a constant. Therefore, (S.5) and (S.6)

are two polynomial equations for Xik(t), the former with coefficients that are polynomials

in t, and the latter with coefficients that are polynomials in t and eθ
T
ik
q(t). The dependence

on eθ
T
ik
q(t) is nontrivial unless the right hand side of (S.6) is zero, which can only happen if

dTikq(t) is a constant. Otherwise, Xik(t) cannot simultaneously satisfy both (S.5) and (S.6).

This establishes the fact that (S.5) (i.e., (A.5)) can hold only if dTikq(t) = ck for all k.
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S.3 Likelihood and profiling

Our working assumption is that θi’s are i.i.d. N(µ,Σ) for a p × 1 unknown vector µ ≡ µθ

and a p× p positive definite matrix Σ ≡ Σθ, which is assumed known. We also assume that

εij’s are i.i.d. N(0, σ2
ε) where σ2

ε is also considered known, though we can also estimate both

Σ and σ2
ε from the data. Define Ψ = (1/σ2

ε)Σ. Let H be an M ×M positive semi-definite

matrix. Then for any λ ≥ 0, we define the penalized negative log generalized hierarchical

likelihood for (Θ,β) where Θ = (θ1, . . . ,θn) as

LH(Θ,β,µ) ≡ `Hn,λ(Θ,β,µ) =
n∑
i=1

`Hi,λ(θi,β,µ), (S.7)

where

`Hi,λ(θi,β,µ) =
1

2σ2
ε

(
mi∑
j=1

(Yij −X(Tij;θi,β))2 + (θi − µ)TΨ−1(θi − µ) +
λ

n
βTHβ

)

+
1

2
log |Σ|+ mi

2
log σ2

ε +
mi

2
log(2π)

=
1

σ2
ε

LHi (θi,β,µ) +
1

2
log |Σ|+ mi

2
log σ2

ε +
mi

2
log(2π), (S.8)

In the second line of the above equation, we dropped the suffix λ for notational convenience.

The phrase generalized refers to the fact that, though Σ and σε are considered known, they

can be any positive definite matrix and positive scalar, respectively, even if the latter are

not the true variances of θi’s and εij’s, respectively.

Then, obtaining the maximum generalized H-likelihoood estimate (θ̂H , β̂H , µ̂H) is equiv-

alent to

min
θ,β,µ

n∑
i=1

LHi (θi,β,µ). (S.9)
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The minimization in (S.9) can be broken into two steps:

θ̂i(β,µ) := arg min
θi

LHi (θi,β,µ), i = 1, . . . , n, (S.10)

and

(β̂H , µ̂H) := arg min
β,µ

n∑
i=1

LPi (β,µ) (S.11)

where

LPi (β,µ) = LHi (θ̂i(β,µ),β,µ). (S.12)

Finally, Θ̂H = (θ̂1(β̂H , µ̂H), . . . , θ̂n(β̂H , µ̂H)). The expression LPi (β) in (S.11) (or more

appropriately, (1/σ2
ε)L

P
i (β,µ)) can be termed the penalized negative “profile log-likelihood”

with respect to (β,µ).

S.3.1 Likelihood equations and identifiability

The following sets of equations characterize the maximum H-likelihoood estimates under the

given set up. First, since θ̂i(β,µ) minimizes LHi (θi,β,µ) for any given (β,µ), we have

∇θL
H
i (θ̂i(β,µ),β,µ) :=

∂

∂θ
LHi (θ̂i(β,µ),β,µ) = 0. (S.13)

Here and afterwards, we follow the convention

∇yf(y0, z0) =
∂

∂y
f(y0, z0) :=

∂

∂y
f(y, z) |y=y0,z=z0

,

and, assuming z(y) to be a differentiable function of y, make use of the chain rule,

d

dy
f(y, z(y)) = ∇yf(y, z(y)) +

dz(y)

dy
∇zf(y, z(y))

:=
∂

∂y
f(y, z) |z=z(y) +

dz(y)

dy

∂

∂z
f(y, z) |z=z(y) .
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Also, we define ∇xyT := ∂2

∂x∂yT
.

For the rest of this subsection, for notational convenience, we use ∇θLH,ri , ∇βLH,ri and

∇µL
H,r
i to mean ∇θLHi (θ̂i(β,µ),β,µ), ∇βLHi (θ̂i(β,µ),β,µ) and ∇µLHi (θ̂i(β,µ),β,µ), re-

spectively, by suppressing the dependence on (β,µ), with analogous notations for second

order mixed partial derivatives.

By the Implicit Function Theorem, θ̂i(β,µ) is differentiable with respect to β and µ,

and thus,

∂

∂β
LPi (β,µ) =

d

dβ
LHi (θ̂i(β,µ),β,µ)

= ∇βLH,ri +
∂θ̂i(β,µ)

∂β
∇θL

H,r
i = ∇βLH,ri , (S.14)

where the last equality is due to (S.13). Similarly,

∂

∂µ
LPi (β,µ) = ∇µLH,ri . (S.15)

Differentiating (S.13) with respect to β, we have

0 = ∇βθTL
H,r
i +

∂θ̂i(β,µ)

∂β
∇θθTL

H,r
i ,

so that

∂θ̂i(β,µ)

∂β
= −∇βθTLHi (θ̂i(β,µ),β,µ)

[
∇θθTLHi (θ̂i(β,µ),β,µ)

]−1

. (S.16)

Differentiating (S.14) one more time with respect to β, we have

∂2

∂β∂βT
LPi (β,µ) =

∂

∂β
(∇βLH,ri )T

= ∇ββTL
H,r
i +

∂θ̂i(β,µ)

∂β
∇θβTL

H,r
i

= ∇ββTL
H,r
i − ∂θ̂i(β,µ)

∂β

[
∇θθTL

H,r
i

](∂θ̂i(β,µ)

∂β

)T

,

= ∇ββTL
H,r
i −∇βθTL

H,r
i

[
∇θθTL

H,r
i

]−1

∇θβTL
H,r
i , (S.17)
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where the last two equalities follow by making use of (S.16). Similar derivations yield

∂2

∂β∂µT
LPi (β,µ) = ∇βµTLH,ri −∇βθTL

H,r
i

[
∇θθTL

H,r
i

]−1

∇θµTLH,ri , (S.18)

∂2

∂µ∂µT
LPi (β,µ) = ∇µµTLH,ri −∇µθTL

H,r
i

[
∇θθTL

H,r
i

]−1

∇θµTLH,ri . (S.19)

Notice that, from (S.8), we also get

∇βµTLH,ri = 0, ∇µµTLH,ri =
1

σ2
ε

Ψ−1, ∇θµTL
H,r
i = − 1

σ2
ε

Ψ−1. (S.20)

From (S.17) – (S.19) and (S.20), it is clear that

∂2

∂β∂βT
LPi (β,µ) = OP (m),

∂2

∂β∂µT
LPi (β,µ) = OP (1),

∂2

∂µ∂µT
LPi (β,µ) = OP (1),

where the OP terms can be made uniform in i with an additional factor of log n.

An important consequence of the above is that the main contribution of subject i to the

information matrix for β, namely,

1

n

n∑
i=1

∂2

∂β∂βT
LPi (β,µ)

−

(
1

n

n∑
i=1

∂2

∂β∂µT
LPi (β,µ)

)(
1

n

n∑
i=1

∂2

∂µ∂µT
LPi (β,µ)

)−1(
1

n

n∑
i=1

∂2

∂β∂µT
LPi (β,µ)

)T

,

comes from the first term (involving Hessian with respect to β). Along with the identifiabil-

ity condition (6), this establishes the asymptotic nonsingularity of the observed information

matrix with respect to β, and hence the asymptotic identifiability of β, even when µ is

treated as an unknown parameter. As a further consequence, the discussion here also indi-

cates that we can prove consistency of the estimator of β under the condition
∑M

j=1 βj = 1

even when µ is estimated from the data.
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S.4 Details on the proof of Theorem 1

S.4.1 Gradients and Hessians of LHi

Define, for j = 1, . . . ,mi; i = 1, . . . , n,

Xij(θi,β) = Xi(Tij;θi,β), ∇θXij(θi,β) = ∇θXi(Tij;θi,β)

∇βXij(θi,β) = ∇βXi(Tij;θi,β), X̂ij(β) = Xi(Tij; θ̂i(β),β)

∇θX̂ij(β) = ∇θXi(Tij; θ̂i(β),β), ∇βX̂ij(β) = ∇βXi(Tij; θ̂i(β),β)

X∗ij(β) = Xi(Tij;θ
∗
i ,β), ∇θX∗ij(β) = ∇θXi(Tij;θ

∗
i ,β)

∇βX∗ij(β) = ∇βXi(Tij;θ
∗
i ,β)

etc.
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Direct calculations yield,

∇θLHi (θi,β) = −
mi∑
j=1

(Yij −Xij(θi,β))∇θXij(θi,β) + Ψ−1θi (S.21)

∇βLHi (θi,β) = −
mi∑
j=1

(Yij −Xij(θi,β))∇βXij(θi,β) + n−1λHβ (S.22)

∇θθTLHi (θi,β) = −
mi∑
j=1

(Yij −Xij(θi,β))∇θθTXij(θi,β)

+

mi∑
j=1

∇θXij(θi,β)∇θTXij(θi,β) + Ψ−1 (S.23)

∇βθTLHi (θi,β) = −
mi∑
j=1

(Yij −Xij(θi,β))∇βθTXij(θi,β)

+

mi∑
j=1

∇βXij(θi,β)∇θTXij(θi,β) (S.24)

∇ββTLHi (θi,β) = −
mi∑
j=1

(Yij −Xij(θi,β))∇ββTXij(θi,β)

+

mi∑
j=1

∇βXij(θi,β)∇βTXij(θi,β) + n−1λH. (S.25)

S.4.2 Expansion of θ̂i(β0)

Since εij = Yij −X∗ij(β0), from (S.23), we get

∇θθTLHi (θ∗i ,β0) = −
mi∑
j=1

εij∇θθTX∗ij(β0) +W ∗
i (β0) = −Pi,θθT +W ∗

i (β0), (S.26)
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and so from (S.35) we get,

θ̂i(β0)− θ∗i

= −W ∗
i (β0)−1∇θLHi (θ∗i ,β0) +W ∗

i (β0)−1Pi,θθT (θ̂i(β0)− θ∗i )−W ∗
i (β0)−1r1,i

= W ∗
i (β0)−1pi,θ −W ∗

i (β0)−1Ψ−1θ∗i

+W ∗
i (β0)−1Pi,θθT (θ̂i(β0)− θ∗i )−W ∗

i (β0)−1r1,i

= W ∗
i (β0)−1pi,θ −W ∗

i (β0)−1Ψ−1θ∗i +W ∗
i (β0)−1Pi,θθTW

∗
i (β0)−1pi,θ

−W ∗
i (β0)−1Pi,θθTW

∗
i (β0)−1Ψ−1θ∗i

+W ∗
i (β0)−1Pi,θθTW

∗
i (β0)−1Pi,θθT (θ̂i(β0)− θ∗i )−W ∗

i (β0)−1Pi,θθTW
∗
i (β0)−1r1,i,

= W ∗
i (β0)−1pi,θ −W ∗

i (β0)−1Ψ−1θ∗i +W ∗
i (β0)−1Pi,θθTW

∗
i (β0)−1pi,θ + r2,i,

where we have used (S.21) in the second step. From the expression for r2,i and the bound

for r1,i in (S.36), we obtain (S.41).
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S.4.3 Behavior of the gradient of LPi

By (S.14), (A.12), (S.22) and (S.24), we have

d

dβ
LPi (β0) = ∇βLHi (θ̂i(β0),β0)

= ∇βLHi (θ∗i ,β0) +∇βθTL
H
i (θ∗i ,β0)(θ̂i(β0)− θ∗i )

+
(

(θ̂i(β0)− θ∗i )T∇βkθθTL
H
i (θ∗i ,β0)(θ̂i(β0)− θ∗i )

)M
k=1

+ r̃3,i

= −pi,β + n−1λH

+ (−Pi,βθT + ξ∗i (β0))× (W ∗i (β0)−1pi,θ −W ∗i (β0)−1Ψ−1θ∗i +W ∗i (β0)−1Pi,θθTW
∗
i (β0)−1pi,θ + r2,i)

+(pTi,θW
∗
i (β0)−1R∗i,k(β0)W ∗i (β0)−1pi,θ)Mk=1 + r3,i

= −pi,β + ξ∗i (β0)W ∗i (β0)−1pi,θ

− ξ∗i (β0)W ∗i (β0)−1Ψ−1θ∗i + ξ∗i (β0)W ∗i (β0)−1Pi,θθTW
∗
i (β0)−1pi,θ − Pi,βθTW

∗
i (β0)−1pi,θ

+ (pTi,θW
∗
i (β0)−1R∗i,k(β0)W ∗i (β0)−1pi,θ)Mk=1 + r4,i,

where

r4,i = Pi,βθTW
∗
i (β0)−1Ψ−1θ∗i − Pi,βθTW ∗

i (β0)−1Pi,θθTW
∗
i (β0)−1pi,θ + n−1λH

−Pi,βθT r2,i + ξ∗i (β0)r2,i + r3,i.

It can be shown that max1≤i≤n ‖ r3,i ‖= Õ((log n)2m−1/2) and from this, A5 and (S.41) we

can deduce (S.46).
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S.4.4 Behavior of the Hessian of LPi

Using calculations similar to those in Sections S.4.2 and S.4.3, and using the expansions

X̂ij(β0)−X∗ij(β0) = ∇θTX∗ij(β0)(θ̂i(β0)− θ∗i ) +O(‖ θ̂i(β0)− θ∗i ‖2) (S.27)

∇θX̂ij(β0)−∇θX∗ij(β0) = ∇θθTX∗ij(β0)(θ̂i(β0)− θ∗i ) +O(‖ θ̂i(β0)− θ∗i ‖2) (S.28)

∇βX̂ij(β0)−∇βX∗ij(β0) = ∇βθTX∗ij(β0)(θ̂i(β0)− θ∗i ) +O(‖ θ̂i(β0)− θ∗i ‖2),(S.29)

we can isolate the leading order terms in the following quantities

∇θθTLHi (θ̂i(β0),β0), ∇βθTLHi (θ̂i(β0),β0) and ∇ββTLHi (θ̂i(β0),β0).

From (S.27), (S.28), (S.23) and (A.12), we have

1

mi

∇θθTLHi (θ̂i(β0),β0)

= − 1

mi

mi∑
j=1

εij∇θθTX∗ij(β0) +
1

mi

mi∑
j=1

∇θX∗ij(β0)∇θTX∗ij(β0) +
1

mi

Ψ−1

+
1

mi

mi∑
j=1

∇θTX∗ij(β0)(θ̂i(β0)− θ∗i )∇θθTX∗ij(β0)− 1

mi

mi∑
j=1

εij〈∇θθT θX∗ij(β0), θ̂i(β0)− θ∗i 〉

+
1

mi

mi∑
j=1

∇θX∗ij(β0)(∇θθTX∗ij(β0)(θ̂i(β0)− θ∗i ))T

+
1

mi

mi∑
j=1

∇θθTX∗ij(β0)(θ̂i(β0)− θ∗i )∇θTX∗ij(β0) + Õ

(
log n

m

)

=
1

mi

W ∗
i (β0) + Õ

(√
log n

m

)
. (S.30)
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Similarly, by (S.27), (S.29), (S.24) and (A.12), we have

1

mi

∇βθTLHi (θ̂i(β0),β0)

= − 1

mi

mi∑
j=1

εij∇βθTX∗ij(β0) +
1

mi

mi∑
j=1

∇βX
∗
ij(β0)∇θTX∗ij(β0)

+
1

mi

mi∑
j=1

∇θTX∗ij(β0)(θ̂i(β0)− θ∗i )∇βθTX∗ij(β0)− 1

mi

mi∑
j=1

εij〈∇βθT θX∗ij(β0), θ̂i(β0)− θ∗i 〉

+
1

mi

mi∑
j=1

∇βX
∗
ij(β0)(∇θθTX∗ij(β0)(θ̂i(β0)− θ∗i ))T

+
1

mi

mi∑
j=1

∇βθTX∗ij(β0)(θ̂i(β0)− θ∗i )∇θTX∗ij(β0) + Õ

(
log n

m

)

=
1

mi

ξ∗i (β0) + Õ

(√
log n

m

)
. (S.31)

Finally, by (S.27), (S.29), (S.25) and (A.12), we have

1

mi

∇ββTLHi (θ̂i(β0),β0)

= − 1

mi

mi∑
j=1

εij∇ββTX∗ij(β0) +
1

mi

mi∑
j=1

∇βX
∗
ij(β0)∇βTX∗ij(β0) +

λ

n
H

+
1

mi

mi∑
j=1

∇θTX∗ij(β0)(θ̂i(β0)− θ∗i )∇ββTX∗ij(β0)− 1

mi

mi∑
j=1

εij〈∇ββT θX∗ij(β0), θ̂i(β0)− θ∗i 〉

+
1

mi

mi∑
j=1

∇βX
∗
ij(β0)(∇βθTX∗ij(β0)(θ̂i(β0)− θ∗i ))T

+
1

mi

mi∑
j=1

∇βθTX∗ij(β0)(θ̂i(β0)− θ∗i )∇βTX∗ij(β0) + Õ

(
log n

m

)

=
1

mi

mi∑
j=1

∇βX
∗
ij(β0)(∇βθTX∗ij(β0) + Õ

(
max{ 1

n
,

√
log n

m
}

)
. (S.32)

S.4.5 Details of the derivation of (23)

Based on the derivations in Section S.3.1, the following expressions are valid for i = 1, . . . , n:

d

dβ
LPi (β) = ∇βLHi (θ̂i(β),β), (S.33)
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and using (S.17),

d2

dβdβT
LPi (β) = ∇ββTLHi (θ̂i(β),β)

−∇βθTLHi (θ̂i(β),β)
[
∇θθTLHi (θ̂i(β),β)

]−1

∇θβTLHi (θ̂i(β),β).(S.34)

In the following, we use the notations and expressions of gradients and Hessians given in the

Supplementary Material.

Our next step in proving (23) is to obtain a first order expansion for θ̂i(β0) by making

use of (A.7) and (A.8). Expanding the right hand side of (A.7) in Taylor series around θ∗i ,

we have

0 = ∇θLHi (θ∗i ,β0) +∇θθTLHi (θ∗i ,β0)(θ̂i(β0)− θ∗i ) + r1,i, (S.35)

where

r1,i =
[
∇θθTLHi (θ̃i(β0),β0)−∇θθTLHi (θ∗i ,β0)

]
(θ̂i(β0)− θ∗i )

and ‖ θ̃i(β0)− θ∗i ‖≤‖ θ̂i(β0)− θ∗i ‖, which implies that

max
1≤i≤n

‖ r1,i ‖= Õ((log n)1/2m ‖ θ̂i(β0)− θ∗i ‖2) = Õ((log n)3/2). (S.36)

Next, define

B∗i (β) =

mi∑
j=1

∇βX∗ij(β)∇βTX∗ij(β), ξ∗i (β) =

mi∑
j=1

∇βX∗ij(β)∇θTX∗ij(β)

W ∗
i (β) =

mi∑
j=1

∇θX∗ij(β)∇θTX∗ij(β) + Ψ−1.

Also, by A0-A5 and (13)–(15), we have

1

mi

B∗i (β) = Ξ11(ai,θ
∗
i ,β) + Õ

(√
log nm−1/2

)
(S.37)

1

mi

ξ∗i (β) = Ξ12(ai,θ
∗
i ,β) + Õ

(√
log nm−1/2

)
(S.38)

1

mi

W ∗
i (β) = Ξ22(ai,θ

∗
i ,β) + Õ

(√
log nm−1/2

)
. (S.39)
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where the Õ terms are uniform in i.

Further, define

pi,θ =

mi∑
j=1

εij∇θX∗ij(β0), pi,β =

mi∑
j=1

εij∇βX∗ij(β0), Pi,θθT =

mi∑
j=1

εij∇θθTX∗ij(β0),

Pi,βθT =

mi∑
j=1

εij∇βθTX∗ij(β0), Pi,ββT =

mi∑
j=1

εij∇ββTX∗ij(β0).

Then, as is shown in Section S.4.2, we have the following expansion of θ̂i(β0):

θ̂i(β0)−θ∗i = W ∗
i (β0)−1pi,θ−W ∗

i (β0)−1Ψ−1θ∗i +W ∗
i (β0)−1Pi,θθTW

∗
i (β0)−1pi,θ+r2,i, (S.40)

where

max
1≤i≤n

‖ r2,i ‖= Õ

(
(log n)2

m3/2

)
. (S.41)

The next step is to obtain an expansion for d
dβ
LPi (β0). Let

R∗i,k(β) =

mi∑
j=1

∇θX∗ij(β)∇βkθ
TX∗ij(β)+

mi∑
j=1

∇βkθX
∗
ij(β)∇θTX∗ij(β)+

mi∑
j=1

∇βkX
∗
ij(β)∇θθTX∗ij(β).

(S.42)

Then, from the derivation in Section S.4.3, we have

d

dβ
LPi (β0) = V

(1)
i (β0) + V

(2)
i (β0) + r4,i (S.43)

where

V
(1)
i (β0) = −pi,β + ξ∗i (β0)W ∗

i (β0)−1pi,θ, (S.44)

which contributes primarily to the asymptotic variance of γ̂, and

V
(2)
i (β0) = ξ∗i (β0)W ∗

i (β0)−1Ψ−1θ∗i

+ ξ∗i (β0)W ∗
i (β0)−1Pi,θθTW

∗
i (β0)−1pi,θ − Pi,βθTW ∗

i (β0)−1pi,θ

+(pTi,θW
∗
i (β0)−1R∗i,k(β0)W ∗

i (β0)−1pi,θ)
M
k=1, (S.45)
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which contributes primarily to the asymptotic bias of γ̂, and the remainder terms ri,4 satisfy

max
1≤i≤n

‖ r4,i ‖= Õ
(
max{λ/n, (log n)2m−1/2}

)
. (S.46)

From (S.38) and (S.39) and using (S.21)–(S.23), we can easily derive that ‖ N−1
n V

(1)
i (β0) ‖=

Õ(
√

log n/(nm)) and ‖ N−1
n V

(2)
i (β0) ‖= Õ(m−1), uniformly in i, while the contribution of

r4,i can be neglected asymptotically.

Next, combining (S.34) with (S.30), (S.31) and (S.32), derived in Section S.4.4, we have

1

mi

d2

dβdβT
LPi (β0) =

1

mi

B∗i (β0)−
(

1

mi

ξ∗i (β0)

)(
1

mi

W ∗
i (β0)

)−1(
1

mi

ξ∗i (β0)

)T
+Õ

(
max

{
1

n
,

√
log n

m

})

= Ξ1|2(ai,θ
∗
i ,β0) + Õ

(
max

{
λ

n
,

√
log n

m

})
, (S.47)

where the second equality is obtained by using (S.37)–(S.39) and (17).

S.5 Levenberg-Marquardt procedure for model fitting

In this subsection, we provide some detail on the estimation of (Θ,β) using the Levenberg-

Mardquardt procedure. We use the notations introduced in Section 3 to denote the current

estimates of (Θ,β) at any specific iteration of the Levenberg-Marquardt algorithm. Accord-

ingly, the values of (Θ,β) are updated by solving the following equations,

(
JTi,θciJi,θ

c
i

+ λθΣ
−1
θ

)
(θi − θci) = JTi,θci ε̃i − λθΣ

−1
θ (θci − µθ)[

JTβcJβc + λβH + ηβdiag(JTβcJβc)
]

(β − βc) = JTβc ε̃− λβHβc, i = 1, . . . , n,

where ε̃i = (ε̃ij)
mi
j=1, ε̃ = (ε̃i)

n
i=1 and ε̃ij = Yij −Xi(tij;θ

c
i ,β

c) (current residuals) with θci and

βc denoting the values of the estimates of θi and β, respectively, at the current iteration.
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Here, ηβ is a sequence of real numbers decreasing to 0 with iterations, used to increase

the stability of the algorithm. Also, Ji,θci and Jβc denote the Jacobians of the negative log

H-likelihoood with respect to the parameters. The latter are defined as

Ji,θci :=
[
Ji,θci1 : · · · : Ji,θcip

]
, where Ji,θcik =

(
∂

∂θcik
X̃i(tij;θ

c
i ,β

c)

)mi
j=1

, k = 1, . . . , p;

and

Jβc :=
[
Jβc1 : · · · : JβcM

]
, where Jβck =

(
∂

∂βk
Xi(tij;θ

c
i ,β

c)

)mi,n
j=1,i=1

, k = 1, ...,M.

Computation of Ji,θc ’s and Jβc , requires evaluating Xi(·;θi,β) and its partial derivatives with

respect to θi’s and β. Since these are not available in close forms, a 4th order Runge-Kutta

method is used to evaluate these functions on a fine grid. The details of the implementation

of Runge-Kutta method are similar to those in the Appendix of Paul et al. (2011).

S.6 Approximate CV score C̃V

Here we describe a computationally efficient approximate leave-one-subject-out cross-validation

score that is similar to that proposed in Paul et al. (2011).

The leave-one-subject-out estimates β̃
(−i)

are computed approximately by a first order

Taylor expansion around the estimate β̂ (using complete data). Then, we get the leave-one-

subject-out prediction of θi by:

θ̃
(−i)
i = arg min

θi

mi∑
j=1

(Yij −Xi(tij,θi, β̃
(−i)

))2 + σ2
ε(θi − µθ)TΣ−1

θ (θi − µθ).

The approximate leave-one-subject-out cross-validation score is then defined as :

C̃V =
n∑
i=1

mi∑
j=1

`ij(θ̃
(−i)
i , β̃

(−i)
). (S.48)
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Here, θ̃
(−i)
i ’s and β̃

(−i)
’s, are obtained by neglecting the higher order terms in their expansions

around θ̂i and β̂, respectively. Below we give a detailed derivation of the approximate CV

score.

First we obtain an approximation for β̃
(−i)

by using a Taylor expansion around β̂ in the

equation
n∑
i=1

mi∑
j=1

`ij(θ̂i, β̂)

∂β
= 0.

Our approximation is of the form

β̃
(−i)

:= β̂ +

[
n∑
i=1

mi∑
j=1

∂2`ij(θ̂i, β̂)

∂β∂βT
+ λβH

]−1( mi∑
j=1

∂`ij(θ̂i, β̂)

∂β

)
. (S.49)

This approximation ignores the identifiability constraint on β. In order to obtain the correct

form under the identifiability constraint, we use the reparametrization of β to γ, that is,

β = Cγ + 1
M

1M , where C is an M × (M − 1) or rank M − 1 satisfying 1TMC = 0M−1, and

γ ∈ RM−1. Then we have,

∂`ij(θ̂i, γ̂)

∂γ
=

∂β

∂γ

∂`ij(θ̂i, γ̂)

∂β

∂2`ij(θ̂i, β̂)

∂γ∂γT
= CT ∂

2`ij(θ̂i, β̂)

∂β∂βT
C

so that

γ̃(−i) = γ̂ +

[
CT

(
n∑
i=1

mi∑
j=1

∂2`ij(θ̂i, β̂)

∂β∂βT
+ λβH

)
C

]−1

CT

(
mi∑
j=1

∂`ij(θ̂i, β̂)

∂β

)
.

Then the approximate leave-one-subject-out estimate of β̃
(−i)

becomes

β̃
(−i)

:= β̂ + C

[
CT

(
n∑
i=1

mil∑
j=1

∂2`ij(θ̂i, β̂)

∂β∂βT
+ λβH

)
C

]−1

CT

(
mi∑
j=1

∂`ij(θ̂i, β̂)

∂β

)
(S.50)
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The leave-one-subject-out estimate θ̃
(−i)
i of θi is derived as follows.

θ̃
(−i)
i := arg min

θ

mi∑
j=1

(Yij −Xi(Tij,θ, β̃
(−i)

))2 + λθ(θ − µθ)TΣ−1
θ (θ − µθ)

⇒ ∂

∂θ

(
mi∑
j=1

`ij(θ, β̃
(−i)

)

)
+ 2λθΣ

−1
θ (θ − µθ)|θ̃(−i)

i
= 0

⇒ ∂

∂θ

(
mi∑
j=1

`ij(θ̃
(−i)
i , β̃

(−i)
)

)
+ 2λθΣ

−1
θ (θ̃

(−i)
i − µθ) = 0

We obtain an approximation to the above equation by expanding around θ̂i:

∂

∂θ

(
mi∑
j=1

`ij(θ̂i, β̃
(−i)

)

)
+

∂2

∂θ∂θT

(
mi∑
j=1

`ij(θ̂i, β̃
(−i)

)

)T

(θ̃
(−i)
i − θ̂i)

+ 2λθΣ
−1
θ (θ̂i − µθ) + 2λθΣ

−1
θ (θ̃

(−i)
i − θ̂i) = 0

Let δi = β̃
(−i) − β̂, so that β̃

(−i)
= β̂ + δi. We approximate the above equation again by

expanding around β̂ and ignoring the term with δi(θ̃
(−i)
i − θ̂i)

∂
(∑mi

j=1 `ij(θ̂i, β̂)
)

∂θ
+

∂2
(∑mi

j=1 `ij(θ̂i, β̂)
)

∂θ∂βT

 δi + 2λθΣ
−1
θ (θ̂i − µθ)

+

∂2
(∑mi

j=1 `ij(θ̂i, β̂)
)

∂θ∂θT
+ 2λθΣ

−1
θ

 (θ̃
(−i)
i − θ̂i) = 0.

(S.51)

Since

∂

∂θ

(
mi∑
j=1

`ij(θ̂i, β̂)

)
+ 2λθΣ

−1
θ (θ̂i − µθ) = 0,

equation (S.51) reduces to

0 =

(
∂2

∂θ∂βT

mi∑
j=1

`ij(θ̂i, β̂)

)
δi

+

(
∂2

∂θ∂θT

(
mi∑
j=1

`ij(θ̂i, β̂)

)
+ 2λθΣ

−1
θ

)T

(θ̃
(−i)
i − θ̂i),
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so that

θ̃
(−i)
i = θ̂i −

(
∂2

∂θ∂θT

(
mi∑
j=1

`ij(θ̂i, β̂)

)
+ 2λθΣ

−1
θ

)−1(
∂2

∂θ∂βT

mi∑
j=1

`ij(θ̂i, β̂)

)
δi,

or,

θ̃
(−i)
i = θ̂i −

[
mi∑
j=1

(
εij
∂2Xi(Tij, θ̂i, β̂)

∂θ∂θT
− ∂Xi(Tij, θ̂i, β̂)

∂θ

∂Xi(Tij, θ̂i, β̂)

∂θT

)
+ λθΣ

−1
θ

]−1

[
mi∑
j=1

(
εij
∂2Xi(Tij, θ̂i, β̂)

∂θ∂βT
− ∂Xi(Tij, θ̂i, β̂)

∂θ

∂Xi(Tij, θ̂i, β̂)

∂βT

)]
· δi.
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S.7 Additional Figures and Tables
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Figure S.1: The “Two-peak” gradient function (left panel) and the corresponding growth

trajectories and observations (dots) under dense case with σε = 0.01 (right panel).
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Table S.1: Simulation with “Two-peak” gradient function g and linear (p = 2) Z(·,θi)s.

M = 30 cubic B-spline basis functions are used for the fitting. “Ideal” model selection is

used for selection of λβ.

Sampling rate µ2 σε Mean(ISE) SD(ISE) Median(ISE) MAD(ISE)

ISE(ĝ)

sparse 0 0.01 0.000995 0.000801 0.000780 0.000594

2 0.01 0.002606 0.001912 0.002202 0.001338

dense 2 0.01 0.001114 0.001414 0.000745 0.000556

2 0.02 0.001584 0.001165 0.001269 0.000813

1000× ISE(X̂)

sparse 0 0.01 0.050654 0.033898 0.047118 0.013144

2 0.01 0.081423 0.701797 0.046949 0.012836

dense 2 0.01 0.038872 0.701015 0.006609 0.001236

2 0.02 0.021748 0.004430 0.021222 0.004431
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Table S.2: Simulation with “Two-peak” baseline gradient function g and linear (p = 2)

Z(·, θi)s. M = 30 cubic B-spline basis functions are used for the fitting. Summary statistics

for ISE(g̃) :=
∫

(sβ ĝ(x)− g(x))2dx. C̃V is used for selection of λβ.

Sampling rate µ2 σε Mean(ISE) SD(ISE) Median(ISE) MAD(ISE)

sparse 0 0.01 0.007634 0.006347 0.006167 0.004536

2 0.01 0.005099 0.004786 0.003858 0.002970

dense 2 0.01 0.001853 0.001836 0.001339 0.001217

2 0.02 0.003642 0.004631 0.002546 0.002077

Table S.3: Simulation with “Two-peak” baseline gradient function g and constant (ptr = 1)

or linear (ptr = 2) Z(·,θi)’s. Results are under the fitting procedure (with M = 30 cubic

B-spline basis functions) using p = ptr and the “ideal” model selection criterion for λβ.

True model Sampling rate Mean(ISE(ĝ)) SD(ISE(ĝ)) Median(ISE(ĝ)) MAD(ISE(ĝ))

ptr = 1 sparse 0.000493 0.000197 0.000540 0.000204

dense 0.000209 0.000165 0.000148 0.000137

ptr = 2 sparse 0.000701 0.000416 0.000570 0.000310

dense 0.000415 0.000354 0.000306 0.000270
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Table S.4: Simulation with “Two-peak” baseline gradient function g and constant (ptr = 1)

or linear (ptr = 2) Z(·,θi)’s. Results are under the fitting procedure (with M = 30 cubic

B-spline basis functions) using C̃V for selection of both λβ and p. In almost all cases, p = 2

is selected.

True model Sampling rate Mean(ISE(ĝ)) SD(ISE(ĝ)) Median(ISE(ĝ)) MAD(ISE(ĝ))

ptr = 1 sparse 0.001902 0.001450 0.001571 0.000614

dense 0.000375 0.000231 0.000398 0.000248

ptr = 2 sparse 0.001400 0.000998 0.001016 0.000539

dense 0.000556 0.000436 0.000417 0.000279
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Figure S.2: Simulation with “Two-peak” gradient function g and linear Z(·,θi) under the

sparse case with µθ = (0, 0)T and σε = 0.01. Left panel: X-axis: x; Solid line: true g(x);

Dotted line: point-wise mean of g̃(x) = sβ ĝ(x); Dash-dotted line : point-wise 5% and 95%

percentiles of g̃(x). Right panel: X-axis: mean of X(t); Solid line: point-wise mean of

eµ(t)g(X(t)); Dotted line: point-wise mean of eµ̂(t)ĝ(X̂(t)); Dash-dotted line : point-wise 5%

and 95% percentiles of eµ̂(t)ĝ(X̂(t)).
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Figure S.3: Simulation with “Two-peak” gradient function g and linear Z(·,θi) under the

sparse case with µθ = (0, 2)T and σε = 0.01. Left panel: X-axis: x; Solid line: true g(x);

Dotted line: point-wise mean of g̃(x) = sβ ĝ(x); Dash-dotted line : point-wise 5% and 95%

percentiles of g̃(x). Right panel: X-axis: mean of X(t); Solid line: point-wise mean of

eµ(t)g(X(t)); Dotted line: point-wise mean of eµ̂(t)ĝ(X̂(t)); Dash-dotted line : point-wise 5%

and 95% percentiles of eµ̂(t)ĝ(X̂(t)).
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Figure S.4: Simulation with “Two-peak” gradient function g and linear Z(·,θi) under the

dense case with µθ = (0, 2)T and σε = 0.02. Left panel: X-axis: x; Solid line: true g(x);

Dotted line: point-wise mean of g̃(x) = sβ ĝ(x); Dash-dotted line : point-wise 5% and 95%

percentiles of g̃(x). Right panel: X-axis: mean of X(t); Solid line: point-wise mean of

eµ(t)g(X(t)); Dotted line: point-wise mean of eµ̂(t)ĝ(X̂(t)); Dash-dotted line : point-wise 5%

and 95% percentiles of eµ̂(t)ĝ(X̂(t)).
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Figure S.5: Berkeley growth data. Empirical derivatives (divided differences) Y ′(t) against

height measurements Y (t) for female group (left panel) and male group (right panel).
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Figure S.6: Berkeley growth data. Fitted individual growth rate X̂ ′i(t) under the quadratic

subject-specific effects (p = 3) against time t (left panel) and against heights X̂i(t) (right

panels) for the female group (upper panel) and for the male group (lower panel).
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Figure S.7: Berkeley growth data. Observed (left panel) and fitted trajectories (right panel)

under the quadratic subject-specific effects p = 3 for the female group (upper panel) and for

the male group (bottom panel).
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Figure S.8: Residuals of fitted trajectories based on full data for the female group with

p = 1, 2, 3 (upper panel) and for the male group with p = 1, 2, 3 (lower panel).
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S.8 Additional model selection results

Following the suggestions from one of the reviewers, we carried out additional numerical

studies to further explore the model selection issue.

Simulated study. We expanded the simulation study under the same settings (ptr =

1, 2) as reported in the paper and fit the models for p = 1, 2, 3, 4, fixing the parameter σθk

to be 0.2 for k ≥ 2, and σθ1 = 0.1. CV scores corresponding to a set of representative

simulation runs are reported in Figures S.9 (for ptr = 1) and S.10 (for ptr = 2). Notably, the

CV curves flatten out for p > ptr in all the cases. For the dense setting (right panels), the CV

scores are very close to each other for all values of p ≥ ptr, while for the sparse setting (left

panels), there is a slight downward trend in most curves as p increases. The model selection

performance based on the CV scores is summarized in Tables S.5 (for ptr = 1) and S.6 (for

ptr = 2). These results show that there is a tendency for the CV criterion to select larger

models, and larger models are more likely to be selected for sparse case. This observation is

related to the fact that, for sparse case it is harder to distinguish the features of the baseline

dynamics g from the subject-specific time-dependent effects Z(t,θi), resulting in a certain

degree of “practical lack of model identifiability” and over-fitting.

Table S.5: ptr = 1: Percentages of selected p based on minimizing CV scores.

Sampling rate p = 1 p = 2 p = 3 p = 4

sparse 0 16 42 42

dense 0 30 10 60

Another noticeable effect is the presence of a pronounced “elbow” in the CV score curves
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Table S.6: ptr = 2: Percentages of selected p based on minimizing CV scores.

Sampling rate p = 1 p = 2 p = 3 p = 4

sparse 0 0 24 76

dense 0 35 40 25

at the true p when ptr = 2 (Figure S.10). This clearly indicates that the CV criterion is rather

sensitive to under-specification of p. It also suggests that the location of such an “elbow”

could provide a more accurate estimate of the dimension of the random effects than that

deduced from CV scores alone. Motivated by this, we quantify the relative changes in the

CV scores and use a threshold τ > 0 to detect significant changes. Accordingly, using CV(k)

to denote the CV score for the model with p = k, if the fraction |CV(k−1) − CV(k)|/CV(k−1)

is less than τ , then we treat the change in the CV scores between p = k − 1 and p = k as

insignificant. The largest k for which a significant change occurs is chosen as the optimal p.

We tried small values of τ and, as a rule of thumb and for illustrations, use τ = 0.05. The

corresponding model selection results are reported in Tables S.7 (for ptr = 1) and S.8 (for

ptr = 2). For both values of ptr, model selection through this approach is very effective in the

dense setting, and quite reasonable in the sparse setting. Comparing with results in Tables

S.5 and S.6, we conclude that this approach is more reliable than the one based purely on the

CV scores. Specifically, both the approaches guard very well against under-specification of

p. However, the approach based on relative changes in the CV scores also tends to disregard

models with p larger than ptr, especially so for relatively dense samples.
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Table S.7: ptr = 1: Percentages of selected p based on relative change in CV scores (threshold

τ = 0.05).

Sampling rate p = 1 p = 2 p = 3 p = 4

sparse 0 79 5 16

dense 100 0 0 0

Table S.8: ptr = 2: Percentages of selected p based on relative change in CV scores (threshold

τ = 0.05).

Sampling rate p = 1 p = 2 p = 3 p = 4

sparse 0 70 18 12

dense 0 100 0 0

Figure S.9: ptr = 1 : CV scores corresponding to p = 1, 2, 3, 4 for a set of simulation runs.

Left panel: sparse setting, Right panel: dense setting.
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Figure S.10: ptr = 2 : CV scores corresponding to p = 1, 2, 3, 4 for a set of simulation runs.

Left panel: sparse setting, Right panel: dense setting.
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For the Berkeley Growth Data, we fitted the heights of both female and male subjects

for p = 4. As is to be expected in such nonlinear models, higher value of p leads to some

degree of instability. To address this, we set σθ4 = 2, and σθk = 5 for k = 1, 2, 3. As before,

Σθ is chosen to be diagonal with diagonal elements (σ2
θk

)4
k=1. This specification enables a

straightforward comparison with the p = 3 case. We also keep all the other parameters the

same as in the p = 3 case. Based on the CV score, the model with p = 4 is preferred.

For a closer inspection, we compare the MISEs for each group. For the female group, the

drop in MISE from p = 3 to p = 4 is modest (about 25%), while for the male group, the

drop in MISE is a bit more significant (about 41%). We also compare the residuals for the

two models for each group, as illustrated in Figures S.11 (female group) and S.12 (male

group). These plots show that even though the overall spread of the residuals is not much

different between p = 3 and p = 4, there is a reduction in the spread towards the right

end point (beyond the age of 15 years) for both groups under p = 4 model, with more

pronounced reduction for the male group. This reduction in errors, though moderate, is

nevertheless reflected in the selection of the model with p = 4 over that with p = 3 by

the CV criterion. However, as a further comparison, we also consider the estimation of the

baseline gradient function g, which is of primary interest to us. In Figure S.13, we plot the

adjusted baseline gradient function eµ̂(t)ĝ(X(t)) (where µ̂(t) = Z(t, µ̂θ)) against X(t) (left

panel: female group, right panel: male group). In each plot, the black curve corresponds

to fit for p = 3 and the red curve corresponds to fit for p = 4. It can be seen that the two

curves are nearly overlapping for both groups, indicating that there is very little difference

between the fits of the gradient function corresponding to p = 3 and p = 4. Thus we decided
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to report the result corresponding to p = 3 in the main manuscript for simplicity.

Figure S.11: Female group : comparison of residuals. Left panel: p = 3, Right panel: p = 4.
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Figure S.12: Male group : comparison of residuals. Left panel: p = 3, Right panel: p = 4.
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Figure S.13: Plot of adjusted baseline gradient function against average growth trajectory.

Black curve: p = 3, Red curve: p = 4. Left panel: female group, Right panel: male group.
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