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S1 Proofs and Auxiliary Results

The proofs of the error-control properties of both the stepup and stepdown

procedures utilize the following, as well as Lemma 1 that follows. Let

W (j, b) =
{

Λ̃(j)(n) ≥ b for some n, Λ̃(j)(n′) > a1 for all n′ < n
}
, (S1.1)

Vθ(t, b) =
⋃

j1,...,jt∈T (θ)

t⋂
`=1

W (j`, b), (S1.2)

p(j)(b) = sup
θ(j)∈H(j)

Pθ(j)(W (j, b)), (S1.3)

Mθ(b) =
∑
j∈T (θ)

1W (j,b). (S1.4)

The union in (S1.2) is over all distinct t-tuples j1, . . . , jt ∈ T (θ). The

event W (j, b) is that the standardized test statistic associated with the jth
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null hypothesis crosses b from below before crossing a1 from above, and

Vθ(t, b) is the event that there are at least t true null hypotheses for which

this occurs. The function p(j)(b) is the “worst-case” (with respect to the

null) probability of W (j, b) happening, and the random variable Mθ(b) is

the number of true null hypotheses for which this occurs. Note that any

test statistic satisfying the assumptions in Section 2.2, in particular (2.12),

satisfies p(j)(bw) ≤ αw for all j, w ∈ [J ]. Note also that the events W (j, ·)

are non-increasing in the sense that, for any j ∈ [J ],

b ≤ b′ implies W (j, b′) ⊆ W (j, b).

It follows from this property that the events Vθ(t, ·) are non-increasing, and

that Mθ(·) is non-increasing with probability 1. It can also be easily verified

that Vθ(·, b) are non-increasing. In what follows we will frequently drop the

θ from Vθ, Mθ, and other quantities when it causes no confusion.

The following lemma is an extension to the sequential domain of Lehmann

and Romano (2005, Lemma 3.1).

Lemma 1. In the testing situation above, fix θ ∈ Θ such that T (θ) is

nonempty, let t = |T (θ)| ∈ [J ], t0 ∈ [t], and let 0 = ζ0 ≤ . . . ≤ ζt0 ≤ 1 and

b′1 ≥ b′2 ≥ . . . ≥ b′t0 be any sequences. With p(j)(b) defined by (S1.3), if the

test statistics {Λ(j)(n)} satisfy p(j)(b′s) ≤ ζs for all j ∈ T (θ), s ∈ [t0], then
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with Vθ(t, b) defined by (S1.2), we have

Pθ

(
t0⋃
s=1

Vθ(s, b
′
s)

)
≤ t

t0∑
s=1

ζs − ζs−1
s

. (S1.5)

Proof of Lemma 1. Omit θ from the notation. With M(b) as in (S1.4),

E(M(b′s)) =
∑
j∈T

P (W (j, b′s)) ≤
∑
j∈T

p(j)(b′s) ≤ tζs. (S1.6)

Define the random variable

τ =


min{s ∈ [t0] : 1V (s,b′s) = 1}, if 1V (s,b′s) = 1 for some s ∈ [t0]

t+ 1, otherwise

,

and let πs = P (τ = s). Then the left-hand side of (S1.5) is

P

(
t0⋃
s=1

{τ = s}

)
=

t0∑
s=1

πs

by disjointness. For any t1 ∈ [t0] we have
∑t1

s=1 τ1{τ=s} = τ1{τ≤t1} ≤M(b′t1)

by definition of V and W . Taking expectations and using (S1.6) gives∑t1
s=1 sπs ≤ tζt1 . Dividing both sides of this last by t1(t1 + 1) (resp. t1) for

t1 = 1, . . . , t0 − 1 (resp. t0 = t1) and summing over t1 gives

t0−1∑
t1=1

1

t1(t1 + 1)

t1∑
s=1

sπs +
1

t0

t0∑
s=1

sπs ≤
t0−1∑
t1=1

tζt1
t1(t1 + 1)

+
tζt0
t0
. (S1.7)

The right-hand side of (S1.7) is easily seen to be the right-hand side of

(S1.5), while the left-hand side of (S1.7) simplifies to
∑t0

s=1 πs after reversing

the order of summation in the first term.
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S2 Proofs of Results for Stepup Procedures in Sec-

tion 3.2

The proofs of both Theorems 3 and 4 utilize the following lemma.

Lemma 2. For the generic sequential stepup procedure in Section 3.2.1,

under θ ∈ Θ, for any s ∈ [J ] we have

{exactly s null hypotheses rejected } ⊆ Vθ(t
∗, bs), (S2.1)

the latter defined as

Vθ(t
∗, bs) =

⋃
t

(Vθ(t, bs) ∩ {t∗ = t}) (S2.2)

where Vθ(t, b) is as in (S1.2) and t∗ is the number of true null hypotheses

rejected.

Proof. Let R(s) denote the event on the left-hand side of (S2.1). On out-

comes in R(s) define the following random variables: Let i∗ be the stage

at which the sth rejection occurs, let j∗ be such that H(j∗) is the sth re-

jected null hypothesis, and recall that t∗ is the number of true hypotheses

rejected. By definition of H(j∗) and by step 2(a) of the procedure we have

j∗ = j(ni∗ , |Ji∗ | − mi∗ + 1), s = ri∗ + mi∗ , and Λ̃(j∗)(ni∗) ≥ bri∗+mi∗ . If a

true hypothesis H(j′), j′ ∈ T , is rejected then it is rejected at some stage

i′ ≤ i∗, and j′ = j(ni′ , `) for some ` ≥ |Ji′ |−mi′+1. Note that ri′+mi′ ≤ s
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because if i′ = i∗ then ri′ + mi′ = ri∗ + mi∗ = s, and otherwise i′ ≤ i∗ − 1

so ri′ +mi′ = ri′+1 ≤ ri∗ ≤ s. Then

Λ̃(j′)(ni′) = Λ̃(j(ni′ ,`))(ni′) ≥ Λ̃(j(ni′ ,|Ji′ |−mi′+1))(ni′) ≥ bri′+mi′
≥ bs,

using (3.23) for the second-to-last inequality. This holds for any rejected

true hypothesis, hence there are distinct j1, . . . , jt∗ ∈ T such that, for each

` ∈ [t∗], H(j`) is rejected and

Λ̃(j`)(n) ≥ bs for some n. (S2.3)

If it were that Λ̃
(j`)
n′ ≤ a1 for some n′ less than the corresponding n in (S2.3),

then H(j`) would not have been rejected but rather accepted, contradicting

our assumption about H(j`). Combining these statements gives that any

outcome in R(s) is in V (t∗, bs).

Proof of Theorem 3. We consider the generic stepup procedure defined in

Section 3.2.1 with step values given by (3.24). Fix θ ∈ Θ such that T (θ) is

nonempty, and omit θ from the notation. We will show that γ1-FDP ≤ α,

the other claim being similar. For s ∈ [J ] let γ(s) = bγ1sc+ 1 and let T (s)

denote the event that at least γ(s) true null hypotheses are rejected, and
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let R(s) be the event on the left-hand side of (S2.1). We claim that

R(s) ∩ T (s) ⊆


V (γ(s) ∨ (s+ |T | − J), bs), if γ(s) ≤ |T |,

∅, otherwise.

(S2.4)

By Lemma 2 we have R(s) ∩ T (s) ⊆ V (t∗, bs) ∩ T (s), and to finish the

proof of (S2.4) we show that, on any outcome in the latter event, defined

analogously to (S2.2), t∗ ≥ γ(s) ∨ (s+ |T | − J) if s is such that γ(s) ≤ |T |

and then use that V (·, b) is non-increasing; the other case of (S2.4) is trivial

by the definition of R(s) and T (s). We recall that this and other inequali-

ties involving the random variable t∗ should be interpreted as holding with

P (·|V (t∗, bs) ∩ T (s))-probability 1, this event assumed without loss of gen-

erality to have positive probability. We know that t∗ ≥ γ(s) by definition

of T (s). On the other hand, t∗ is equal to the number s of null hypothe-

ses rejected minus the number of false null hypotheses rejected, the latter

bounded above by J − |T |, hence t∗ ≥ s+ |T | − J .

With (S2.4) established we have

γ1-FDP =
⋃

1≤s≤J

R(s) ∩ T (s) ⊆
⋃

1≤s≤J, γ(s)≤|T |

V (γ(s) ∨ (s+ |T | − J), bs)

=
⋃

|T |−J+1≤s≤|T |, γ(J+s−|T |)≤|T |

V (γ(J + s− |T |) ∨ s, bJ+s−|T |). (S2.5)

For s in the range of the union in (S2.5), let σ(s) = γ(J + s − |T |) ∨ s,

which is a non-decreasing sequence of consecutive integers taking the values
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1, 2, . . . , s1 for some s1 ≤ |T | by virtue of the restrictions in (S2.5). For

s ∈ [s1] let σ−1(s) = max{s′ : σ(s′) = s}. If σ(s) = σ(s+ 1) then using the

non-increasing property of V (s, ·) we have

V (σ(s), bJ+s−|T |)∪V (σ(s+1), bJ+s+1−|T |) ⊆ V (σ(s+1), bJ+s+1−|T |). (S2.6)

By collapsing terms in (S2.5) according to (S2.6), we have that the union

in (S2.5) is contained in

s1⋃
s=1

V (s, bJ+σ−1(s)−|T |).

Denote S2(|T |, γ1, {δj}) and D2(γ1, {δj}) by S2 and D2, respectively. Ap-

plying Lemma 1 to this last with ζs = αJ+σ−1(s)−|T | and b′s = bJ+σ−1(s)−|T |,

and recalling that s1 ≤ |T |, we have

D2

|T |α
· P (FDP > γ1) ≤

D2

|T |α
· P

(
s1⋃
s=1

V (s, bJ+σ−1(s)−|T |)

)

≤ D2

|T |α
· |T |

(
αJ+σ−1(1)−|T | +

∑
1<s≤s1

αJ+σ−1(s)−|T | − αJ+σ−1(s−1)−|T |

s

)

= δJ+σ−1(1)−|T | +
∑

1<s≤s1

δJ+σ−1(s)−|T | − δJ+σ−1(s−1)−|T |

s
. (S2.7)

We claim that (S2.7) is equal to

S2/|T | = δ1 +
∑

|T |−J+1<s≤|T |, |T |≥bγ1(J−|T |+s)c+1

δJ−|T |+s − δJ−|T |+s−1
s ∨ (bγ1(J − |T |+ s)c+ 1)

,

(S2.8)

which would complete the proof since S2 ≤ D2. Note that the denominator

in (S2.8) is σ(s). If σ−1(1) = |T | − J + 1 then the first term in both (S2.7)
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and (S2.8) is δ1. Otherwise, σ−1(1) = s2 > |T | − J + 1, and the first

J + s2 − |T | summands in (S2.8) are

δ1 +
δ2 − δ1

σ(|T | − J + 2)
+ . . .+

δJ+s2−|T | − δJ+s2−|T |−1
σ(s2)

= δ1 +
δ2 − δ1

1
+ . . .+

δJ+s2−|T | − δJ+s2−|T |−1
1

= δJ+s2−|T |,

which is the first summand in (S2.7) in this case. Proceeding in this way

one may verify the claim term by term, completing the proof.

Proof of Theorem 4. We consider the generic stepup procedure defined in

Section 3.2.1 with step values given by (3.25). We will show that the proce-

dure satisfies k1-FWER1(θ) ≤ α, the other claim being similar. Fix θ ∈ Θ

such that |T (θ)| ≥ k1, since otherwise k1-FWER1(θ) = 0, and omit θ from

the notation. For s ∈ [J ] let T (s) denote the event that at least k1 true null

hypotheses are rejected and let R(s) be the event on the left-hand side of

(S2.1). We claim that

R(s) ∩ T (s) ⊆ V (k1 ∨ (s+ |T | − J), bs) for all s ∈ [J ]. (S2.9)

By Lemma 2 we have R(s) ∩ T (s) ⊆ V (t∗, bs) ∩ T (s), the latter defined

analogously to (S2.2), and to finish the proof of (S2.9) we show that, on

any outcome in the latter event, t∗ ≥ k1 ∨ (s+ |T |−J) and use that V (·, b)

is non-increasing. We recall that this and other inequalities involving the
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random variable t∗ should be interpreted as holding with P (·|V (t∗, bs) ∩

T (s))-probability 1, this event assumed without loss of generality to have

positive probability. We know that t∗ ≥ k1 by definition of T (s). On the

other hand, t∗ is equal to the number s of null hypotheses rejected minus

the number of false null hypotheses rejected, the latter bounded above by

J − |T |, hence t∗ ≥ s+ |T | − J .

With (S2.9) established we have

⋃
k1≤s≤J

R(s) ∩ T (s) ⊆
⋃

k1≤s≤J

V (k1 ∨ (s+ |T | − J), bs) (S2.10)

=

 ⋃
k1≤s≤J−|T |+k1

V (k1, bs)

 ∪
 ⋃
J−|T |+k1<s≤J

V (s+ |T | − J, bs)


⊆ V (k1, bJ−|T |+k1) ∪

 ⋃
J−|T |+k1<s≤J

V (s+ |T | − J, bs)


(S2.11)

=
⋃

J−|T |+k1≤s≤J

V (s+ |T | − J, bs) =
⋃

k1≤s≤|T |

V (s, b|T |−J+s),

(S2.12)

where the inclusion in (S2.11) follows from the facts that bs ≥ bJ−|T |+k1 for

s ≤ J − |T | + k1 and the V (k1, ·) are non-increasing. The k1-FWER1 is

the probability of the event on the left-hand side of (S2.10), and applying

Lemma 1 to the last union in (S2.12) with t0 = |T |, ζ0 = . . . = ζk1−1 = 0,

ζs = α|T |−J+s for k1 ≤ s ≤ |T |, b′1 = . . . = b′k1−1 =∞, and b′s = b|T |−J+s for
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k1 ≤ s ≤ |T |, we have

k1-FWER1 ≤ |T |

α|T |−J+k1
k1

+
∑

k1<s≤|T |

α|T |−J+s − α|T |−J+s−1
s


=

(
α

D3(k1, {δj})

)
S3(k1, |T |, {δj}) ≤ α.
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S3 Proof of Theorem 7

We verify the first parts of (5.35) and (5.36); the other parts are similar.

We have

0 ≤ αw + β̃w = αw +
β1(1− αw)

1− α1

−1 + 1 =
−(1− αw)(1− α1 − β1)

1− α1

+ 1 ≤ 1,

using α1 + β1 ≤ 1 for the last inequality. It is simple algebra to check

that B
(j)
w in (5.34) can be written as BW (αw, β̃w), and A

(j)
1 in (5.34) can be

written as AW (αw, β̃w) for any w ∈ [J ]. Then

p(j)w = Ph(j)(Λ
(j)(n) ≥ B(j)

w some n, Λ(j)(n′) > A
(j)
1 all n′ < n)

= Ph(j)(Λ
(j)(n) ≥ BW (αw, β̃w) some n, Λ(j)(n′) > AW (αw, β̃w) all n′ < n)

= α
(j)
W (αw, β̃w),

by definition of α
(j)
W .
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