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Abstract: The γ-FDP and k-FWER multiple testing error metrics, which are tail

probabilities of the respective error statistics, have become popular recently as al-

ternatives to the FDR and FWER. We propose general and flexible stepup and

stepdown procedures for testing multiple hypotheses about sequential (or stream-

ing) data that simultaneously control both the type I and II versions of γ-FDP, or k-

FWER. The error control holds regardless of the dependence between data streams,

which may be of arbitrary size and shape. All that is needed is a test statistic for

each data stream that controls the conventional type I and II error probabilities,

and no information or assumptions are required about the joint distribution of

the statistics or data streams. The procedures can be used with sequential, group

sequential, truncated, or other sampling schemes. We give recommendations for

the procedures’ implementation including closed-form expressions for the needed

critical values in some commonly-encountered testing situations. The proposed

sequential procedures are compared with each other and with comparable fixed

sample size procedures in the context of strongly positively correlated Gaussian

data streams. For this setting we conclude that both the stepup and stepdown

sequential procedures provide substantial savings over the fixed sample procedures

in terms of expected sample size, and the stepup procedure performs slightly but

consistently better than the stepdown for γ-FDP control, with the relationship

reversed for k-FWER control.

Key words and phrases: False discovery proportion, familywise error, generalized

error rate, high-dimensional statistics, multiple comparisons, multiple testing, se-

quential analysis, sequential hypothesis testing, stepdown procedure, stepup pro-

cedure, Wald approximations.

1. Introduction and Summary

Driven in part by modern applications involving high-dimensional models

or the need for many comparisons in areas such as high-throughput gene and

protein expression data, brain imaging, and astrophysics, there has been much

interest and innovation during recent decades in statistical methodology involving

multiple testing error rates which are less stringent than the classical familywise
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error rate (FWER), the probability of rejecting at least one true null hypothesis.

Hommel and Hoffmann (1988) proposed the k-FWER, the probability of reject-

ing at least k ≥ 1 true null hypotheses, and this was independently proposed

by Lehmann and Romano (2005). Benjamini and Hochberg (1995) proposed

the false discovery rate (FDR), the expectation of the false discovery proportion

(FDP), the latter being the proportion of rejected null hypotheses that are true.

As a generalization of the FDR, Lehmann and Romano (2005) proposed using

the probability that the FDP exceeds a fixed value γ ∈ [0, 1), which has come to

be known as the γ-FDP. Recently, Guo, He and Sarkar (2014) proposed a further

generalization of the γ-FDP. Each of these works supplied procedures to con-

trol the respective generalized error rates under various dependence assumptions

on the data, ranging from independence to positive regression dependency on

subsets (Benjamini and Yekutieli (2001)) to no assumptions at all. Many other

authors have also provided innovative new procedures and theory surrounding

these generalized error rates and we do not attempt to summarize this large and

growing literature here, but instead refer the reader to Guo, He and Sarkar (2014)

and the references therein.

All of the mentioned references take as their starting point a set of valid

p-values corresponding to fixed sample size tests for the list of null hypotheses

of interest. However, in some areas of application the data in a multiple testing

setup does not naturally occur in a fixed sample but rather arrives sequentially

(or in groups) in time, referred to as “streaming” data in some applications. An

obvious example is in biomedical clinical trials with multiple endpoints or arms

(e.g., Jennison and Turnbull (2000, Chap. 15)), but others areas with naturally

sequential data abound including certain high-throughput sequencing technolo-

gies (Salzman, Jiang and Wong (2011); Jiang and Salzman (2012)), multi-channel

changepoint detection (Tartakovsky, Li and Yaralov (2003)), biosurveillance (Mei

(2010)), acceptance sampling with multiple criteria (Baillie (1987)), financial data

(Lai and Xing (2008)), and some agricultural studies (Clements et al. (2014)).

Only recently have general and flexible multiple testing procedures suited for the

particular needs of sequential data been proposed in the literature. Bartroff and

Lai (2010) proposed a sequential version of Holm’s (1979) FWER-controlling

procedure. De and Baron (2012a,b) proposed procedures controlling both the

type I and II FWER under the restriction that all data streams be sampled un-

til accept/reject decisions can be reached for all null hypotheses simultaneously,

and Bartroff and Song (2014b) proposed a procedure lifting this restriction. Like

Holm’s procedure, each of these sequential procedures mentioned so far has guar-
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anteed FWER control under arbitrary dependence of data streams. Bartroff and

Song (2014a) proposed an analogous procedure controlling FDR and its type II

analog, the false nondiscovery rate, on sequential data.

The purpose of this paper is to provide general and flexible procedures for

controlling k-FWER and γ-FDP on sequential data. By “general and flexible”

we mean procedures that can test J ≥ 2 arbitrary null hypotheses H(1), . . . ,H(J)

about J data streams

Data stream 1: X
(1)
1 , X

(1)
2 , . . . ,

Data stream 2: X
(2)
1 , X

(2)
2 , . . . , (1.1)

...

Data stream J : X
(J)
1 , X

(J)
2 , . . . ,

respectively, of arbitrary size, shape, and dependence. In particular, each data

point X
(j)
n may itself be the vector of observations from the nth group, cor-

responding to group sequential sampling. This setup is formalized below. In

particular we define stepdown and stepup procedures that require only arbi-

trary sequential test statistics Λ(j)(n) = Λ(j)(n)(X
(j)
1 , . . . , X

(j)
n ) for each stream

j = 1, . . . , J that control the conventional type I and II error probabilities for

each individual null hypothesis H(j), and combine them to give a sequential

multiple testing procedure as a collection of J sequential stopping and decision

rules for each data stream, that controls k-FWER or γ-FDP at a prescribed

level under arbitrary dependence structure between data streams. In this re-

gard our procedures can be viewed as extensions to the sequential realm of the

procedures of Lehmann and Romano (2005) and Romano and Shaikh (2006a,b)

who accomplished this in the fixed sample setup. Indeed, our approach owes

much to the work of these authors and, in particular, we utilize the same stepup

and stepdown values as they do. Sarkar (2007, 2008) and Guo, He and Sarkar

(2014) have furthered the work of these authors by developing stepup and step-

down fixed sample size procedures that utilize the joint null distribution of the

p-values and, in some cases, dominate previously proposed procedures while con-

trolling generalized error rates. While we expect that these innovations by Sarkar

and his coauthors can be similarly extended to the sequential domain, since our

goal here is to propose procedures that do not require knowledge (or modeling)

of joint distributions, we have not pursued those extensions here.

An additional aspect of our approach is that our procedures may be able to

simultaneously control both the type I and II versions of the generalized error
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metrics at prescribed values, which is a possibility opened up by the sequential

setting considered. As with single hypothesis testing, if the prescribed type II

error rate (or equivalently, power) is not well-motivated, then its strict control

can be dispensed with or used as a surrogate for other operating characteristics

of interest, such as average sample size. For this reason and others discussed

in Section 4, there we provide versions of the procedures that control the type I

generalized error rate but not necessarily the type II version, and these procedures

can be used with arbitrary acceptance rules for the null hypotheses.

Regarding our sequential setup, we remark that in order to sequentially test

J ≥ 2 null hypotheses, one could simply apply J chosen sequential stopping

rules to the data streams, calculate the (appropriately adjusted) p-values upon

stopping, and then apply a fixed-sample procedure to the p-values. However, this

“naive” method will in general be inefficient compared to the procedures proposed

herein since the stopping rules do not explicitly take the multiple testing error

metric into account. Moreover, the naive method will not in general control

both the type I and II multiple testing error rates which, even when this feature

is not a priority of the statistician, means that the relationship between the

naive method’s stopping rule and its power is not well understood, unlike the

proposed procedures. Nonetheless, our approach could be applied by taking the

test statistics Λ(j)(n) to be sequential p-values, making it look more like the

fixed sample size procedures. Instead we have chosen to use arbitrary sequential

test statistics to maintain generality and to make the resulting procedure more

user-friendly, given that other types of test statistics like log-likelihood ratios

(or simple functions thereof) are much more commonly used with sequential

data than sequential p-values. This is perhaps due to the complexity and non-

uniqueness of sequential p-values in all but the simplest cases; see Jennison and

Turnbull (2000, Chaps 8.4 and 9).

The remainder of this paper is organized as follows. After introducing the

notation and setup in Section 2, in Section 3.1 we define a “generic” sequential

stepdown procedure that accepts arbitrary stepdown values (2.4), special cases

of which are given in Sections 3.1.2 and 3.1.3, that control type I and II γ-FDR

and k-FWER, respectively. An analogous development of stepup procedures in

given in Section 3.2. Section 4 gives versions of these procedures with only explicit

rejection rules for use when the type II error rate is not well motivated or there is

a restriction on maximum sample size. In Section 5 we give recommendations for

implementing the procedures by reviewing how to implement sequential single-

hypothesis tests in some commonly-encountered situations, and we give closed-
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form expressions for the needed critical values in Theorem 7. Section 5.2 discusses

how to implement group sequential sampling. Section 6 contains the results of

a numerical study comparing the proposed stepup, stepdown, and comparable

fixed sample size procedures in a setting of strongly positively correlated Gaussian

data streams. In Section 7 we summarize our recommendations. All proofs can

be found in a supplemental document.

2. Setup

2.1. Data streams, hypotheses and error metrics

Assume that there are J ≥ 2 data streams (1.1). In general we make no

assumptions about the dimension of the sequentially-observed data X
(j)
n , which

may themselves be vectors of varying size, nor about the dependence structure

of within-stream data X
(j)
n , X

(j)
m or between-stream data X

(j)
n , X

(j′)
m (j 6= j′). In

particular there can be arbitrary “overlap” between data streams, an extreme

case being that all the data streams are the same, which is equivalent to testing

multiple hypotheses about a single data source. For any positive integer j let

[j] = {1, . . . , j}. For each data stream, indexed by j ∈ [J ], assume that there

is a parameter vector θ(j) ∈ Θ(j) determining that distribution of the stream

X
(j)
1 , X

(j)
2 , . . ., and it is desired to test a null hypothesis H(j) versus the alterna-

tive hypothesis G(j), where H(j) and G(j) are disjoint subsets of the parameter

space Θ(j) containing θ(j). The null H(j) is considered true if θ(j) ∈ H(j), and

false if θ(j) ∈ G(j). The global parameter θ = (θ(1), . . . , θ(J)) is the concatena-

tion of the individual parameters and is contained in the global parameter space

Θ = Θ(1) × · · · ×Θ(J). Let

T (θ) = {j ∈ [J ] : θ(j) ∈ H(j)} (2.1)

denote the indices of the true null hypotheses when θ is the true global parameter,

and

F(θ) = {j ∈ [J ] : θ(j) ∈ G(j)} (2.2)

the indices of the false null hypotheses.

It may appear that the notation (1.1) for the data streams restricts us to

fully-sequential sampling where the streamwise sample sizes may take any value

1, 2, . . . ad infinitum. However, since the observations X
(j)
n themselves may be of

arbitrary size and shape, group sequential (and even variable-stage size) sampling

fits into this framework. To wit, the nth “observation”X
(j)
n in the jth stream may

actually be the nth group X
(j)
n = (X

(j)
n,1, . . . , X

(j)
n,`) of size `. Moreover, the group
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size ` may vary with n and may even be data-dependent, e.g., determined by some

type of adaptive sampling. Similarly, truncated sampling can be implemented

for the jth stream by defining X
(j)
n = ∅ for all n > N

(j)
for some stream-specific

truncation point N
(j)

, or globally for all streams by replacing statements like

“for some n” in what follows with “for some n ≤ N ,” for some global truncation

point N .

The FDP is formally defined as

FDP(θ) =


the number of H(j) rejected, j ∈ T (θ)

the number of H(j) rejected
,

if the denominator
is positive,

0, otherwise.

(2.3)

For example, as mentioned above, Benjamini and Hochberg’s (1995) FDR is

the expectation Eθ(FDP(θ)) of the FDP. Since we will consider procedures that

simultaneously control both the type I and type II versions of the generalized

error rates, we also define the type II analog of FDP, which we call the false

nondiscovery proportion (FNP),

FNP(θ) =


the number of H(j) accepted, j ∈ F(θ)

the number of H(j) accepted
,

if the denominator
is positive,

0, otherwise.

With FDP and FNP nailed down, for γ1, γ2 ∈ [0, 1) we define

γ1-FDP(θ) = Pθ(FDP(θ) > γ1) and γ2-FNP(θ) = Pθ(FNP(θ) > γ2).

Similarly, for k-FWER we will distinguish the type I and II versions by, for

k1, k2 ∈ [J ], defining

k1-FWER1(θ) = Pθ(at least k1 null hypotheses H(j) rejected, j ∈ T (θ)),

k2-FWER2(θ) = Pθ(at least k2 null hypotheses H(j) accepted, j ∈ F(θ)).

We will omit the argument θ from these quantities in what follows when it causes

no confusion.

2.2. Test statistics and critical values

The building blocks of our sequential procedures are J individual sequential

test statistics {Λ(j)(n)}j∈[J ], n≥1, where Λ(j)(n) is the statistic for testing H(j)

vs. G(j) based on the data X
(j)
1 , X

(j)
2 , . . . , X

(j)
n available from the jth stream at

time n. For example, Λ(j)(n) may be a sequential log likelihood ratio statistic for

testing H(j) vs. G(j). Our stepup and stepdown procedures are defined in terms

of given constants
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0 ≤ α1 ≤ . . . ≤ αJ ≤ 1 and 0 ≤ β1 ≤ . . . ≤ βJ ≤ 1, (2.4)

which we refer to as step values, the αj corresponding to type I error control and

the βj to type II. These values are used in a similar way as in fixed sample size

stepdown and stepup procedures, which we review now for comparison. Based

on p-values p(j1) ≤ . . . ≤ p(jJ) with p(j) corresponding to H(j), the stepdown

procedure based on constants αj satisfying (2.4) rejects H(j1), . . . ,H(jd) where

d = max{i ∈ [J ] : p(ji′ ) ≤ αi′ for all i′ ≤ i} (accepting all nulls if the maximum

does not exist), whereas the stepup procedure rejects H(j1), . . . ,H(ju) where u =

max{i ∈ [J ] : p(ji) ≤ αi} (accepting all nulls if the maximum does not exist).

Here d ≤ u so that the stepup procedure rejects at least as many null hypotheses

as the corresponding stepdown procedure using the same step values.

Given step values {αj , βj}j∈[J ], for each test statistic Λ(j)(n) we assume the

existence of critical values {A(j)
w , B

(j)
w }w∈[J ] such that

Pθ(j)(Λ
(j)(n) ≥ B(j)

w some n, Λ(j)(n′) > A
(j)
1 all n′ < n) ≤ αw for all θ(j) ∈ H(j),

(2.5)

Pθ(j)(Λ
(j)(n) ≤ A(j)

w some n, Λ(j)(n′) < B
(j)
1 all n′ < n) ≤ βw for all θ(j) ∈ G(j)

(2.6)

for all w ∈ [J ]. The critical values A
(j)
1 , B

(j)
1 are simply the critical values for

the sequential test that samples until Λ(j)(n) 6∈ (A
(j)
1 , B

(j)
1 ), and this test has

type I and II error probabilities bounded above by α1 and β1, respectively. The

values B
(j)
w , w ∈ [J ], are then such that the similar sequential test with critical

values A
(j)
1 and B

(j)
w has type I error probability αw, which is just a restatement

of (2.5), with an analogous statement holding for critical values A
(j)
w and B

(j)
1 ,

type II error probability βw, and (2.6). The reason that critical values A
(j)
1 and

B
(j)
w are considered in (2.5) for type I error probability control and not, say,

A
(j)
w and B

(j)
w is that the procedures defined below sample during the ith stage

using critical values A
(j)
w and B

(j)
w′ for some fixed values w,w′ ∈ [J ] determined

by the data in the previous stages 1, . . . , i − 1. The probability that, during

the ith stage, Λ(j)(n) ≥ B
(j)
w′ before Λ(j)(n) ≤ A

(j)
w is then be bounded above

by the corresponding statement with A
(j)
w replaced by A

(j)
1 , using the fact that

A
(j)
1 ≤ A

(j)
w by (2.7), and thus this probability related to (2.5) after bounding w′.

Analogous statements apply regarding bounding the type II error probability.

In all commonly-encountered testing situations there are standard sequential

statistics whose critical values can be chosen that satisfy these error bounds, for

any given {αj , βj}j∈[J ] (Bartroff and Song (2014b) give examples). Without loss
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of generality we assume that, for each j ∈ [J ],

A
(j)
1 ≤ A

(j)
2 ≤ . . . ≤ A

(j)
J ≤ B

(j)
J ≤ B

(j)
J−1 ≤ . . . ≤ B

(j)
1 , (2.7)

A
(j)
w = A

(j)
w+1 if and only if βw = βw+1, (2.8)

B
(j)
w = B

(j)
w+1 if and only if αw = αw+1. (2.9)

A simplistic example of how critical values (2.7) are used in our sequential mul-

tiple testing procedure is given in the last two paragraphs of Section 3.1.1.

Our sequential multiple testing procedures involve ranking the test statistics

associated with different data streams, which may be on completely different

scales in general, so for each stream j we introduce a standardizing function

ϕ(j)(·) which is applied to the statistic Λ(j)(n) before ranking. The standardizing

functions ϕ(j) can be any increasing functions such that ϕ(j)(A
(j)
w ) and ϕ(j)(B

(j)
w )

do not depend on j, and we let

aw = ϕ(j)(A(j)
w ) and bw = ϕ(j)(B(j)

w ), j, w ∈ [J ], (2.10)

denote these common values. Given critical values {A(j)
w , B

(j)
w }j,w∈[J ] satisfying

(2.5)-(2.6), one may choose arbitrary values {aw, bw}w∈[J ] satisfying the same

monotonicity conditions as the {A(j)
w , B

(j)
w } according to (2.8)-(2.9) and then de-

fine the standardizing functions ϕ(j)(·) to be increasing, piecewise linear functions

satisfying (2.10). For example, if all the αw are distinct and the βw are distinct

then a simple choice for the {aj , bj} are the integers

a1 = −J, a2 = −J + 1, . . . , aJ = −1, bJ = 1, bJ−1 = 2, . . . , b1 = J.

In any case, the assumptions on the critical values and standardizing functions

imply that the aw must be nondecreasing and the bw nonincreasing. Finally, we

denote Λ̃(j)(n) = ϕ(j)(Λ(j)(n)) and then (2.5)-(2.6) can be written as

Pθ(j)(Λ̃
(j)(n) ≥ bw some n, Λ̃(j)(n′) > a1 all n′ < n) ≤ αw for all θ(j) ∈ H(j),

(2.11)

Pθ(j)(Λ̃
(j)(n) ≤ aw some n, Λ̃(j)(n′) < b1 all n′ < n) ≤ βw for all θ(j) ∈ G(j),

(2.12)

for all j, w ∈ [J ].

3. Procedures Controlling Type I and II Generalized Error Rates

3.1. Stepdown procedures

3.1.1. The generic sequential stepdown procedure

Here we define a generic sequential stepdown procedure, special cases of
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which are used to define the type I and II k-FWER and γ-FDP controlling

sequential procedures. We assume that step values {αj , βj}j∈[J ] satisfying (2.4)

are given and that the test statistics and critical values satisfy the assumptions

in Section 2.2 with respect to these values.

We describe the procedure in terms of stages of sampling, between which

reject/accept decisions are made. Let Ji ⊆ [J ] (i = 1, 2, . . .) denote the index

set of the active data streams, those whose corresponding null hypothesis H(j)

has been neither accepted nor rejected yet, at the beginning of the ith stage of

sampling, and ni denote the cumulative sample size of any active test statistic

up to and including the ith stage. The total number of null hypotheses that have

been rejected (resp. accepted) at the beginning of the ith stage is denoted by

ri (resp. ci). Accordingly, set J1 = [J ], n0 = 0, r1 = c1 = 0. Let | · | denote

set cardinality. Then the ith stage of sampling (i = 1, 2, . . .) of the Generic

Sequential Stepdown Procedure with step values {αj , βj}j∈[J ] proceeds as

follows.

1. Sample the active streams {X(j)
n }j∈Ji, n>ni−1

until n equals

ni = inf
{
n > ni−1 : Λ̃(j)(n) 6∈ (aci+1, bri+1) for some j ∈ Ji

}
. (3.1)

2. Order the active test statistics

Λ̃(j(ni,1))(ni) ≤ Λ̃(j(ni,2))(ni) ≤ . . . ≤ Λ̃(j(ni,|Ji|))(ni),

where j(ni, `) denotes the index of the `th ordered active statistic at the

end of stage i.

3. (a) If the upper boundary in (3.1) has been crossed, Λ̃(j)(ni) ≥ bri+1 for

some j ∈ Ji, then reject the mi ≥ 1 null hypotheses

H(j(ni,|Ji|)), H(j(ni,|Ji|−1)), . . . ,H(j(ni,|Ji|−mi+1)), (3.2)

where

mi = max
{
m ∈ [|Ji|] : Λ̃(j(ni,`))(ni) ≥ bri+|Ji|−`+1

for all ` = |Ji| −m+ 1, . . . , |Ji|
}
,

and set ri+1 = ri +mi. Otherwise set ri+1 = ri.

(b) If the lower boundary in (3.1) was crossed, Λ̃(j)(ni) ≤ aci+1 for some

j ∈ Ji, then accept the m′i ≥ 1 null hypotheses

H(j(ni,1)), H(j(ni,2)), . . . ,H(j(ni,m′i)),

where
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m′i = max
{
m ∈ [|Ji|] : Λ̃(j(ni,`))(ni) ≤ aci+` for all ` = 1, . . . ,m

}
,

and set ci+1 = ci +m′i. Otherwise set ci+1 = ci.

4. Stop if there are no remaining active hypotheses, ri+1+ci+1 = J . Otherwise,

let Ji+1 be the indices of the remaining active hypotheses and continue on

to stage i+ 1.

Thus the procedure samples all active data streams until at least one of the

active null hypotheses can be accepted or rejected, indicated by the stopping

rule (3.1). At that point, stepdown rejection/acceptance rules are used in steps

3a/3b to reject/accept some active null hypotheses. After updating the list of

active hypotheses, the process is repeated until no active hypotheses remain.

Remark 1. (A) The relationships (2.7)-(2.10) ensure that there is never a con-

flict between the rejections in Step (3a) and the acceptances in Step (3b).

(B) Ties in the order statistics Λ̃
(j)
n in Step 2 can be broken arbitrarily (at ran-

dom, say) without affecting any of the error control properties in our Theo-

rems 1 and 2.

(C) If common critical values can be used for all data streams, A
(j)
w = A

(j′)
w = Aw

and B
(j)
w = B

(j′)
w = Bw for all j, j′, w ∈ [J ], then the standardizing functions

can be dispensed with and we take ϕ(j)(x) = x giving aj = Aj and bj = Bj
for all j ∈ [J ].

(D) The critical values A
(j)
w , B

(j)
w may also depend on the current sample size n

of the test statistic Λ(j)(n) being compared with them, with only notational

changes in the definition of the generic procedure and the properties proved

below; for simplicity we omit this from the presentation. Such standard

group sequential stopping boundaries like Pocock, O’Brien-Fleming, power

family, and any others (see Jennison and Turnbull (2000, Chaps 2 and 4))

can be utilized for the individual test statistics in this way.

(E) The stopping time ni of the ith stage, given by (3.1), is determined by the

numbers ci and ri of null hypotheses that have been rejected and accepted,

respectively, during prior stages 1, . . . , i− 1. Therefore this stopping rule is

completely determined before the start of the ith stage and, in particular,

unambiguously defined.

Example 1. To show the mechanics of the procedure we summarize an ex-

ample in Bartroff and Song (2014b, p. 104); details of the test statistics and
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critical values are given there and omitted here. There are J = 3 data streams,

null/alternative hypothesis pairs (H(j), G(j)), and sequential test statistics Λ(j)(n)

with common critical values A
(j)
w = A

(j′)
w = Aw and B

(j)
w = B

(j′)
w = Bw for all

j, j′, w ∈ {1, 2, 3}, which are given in the header of Table 1. In particular, per

Remark C we take aj = Aj , bj = Bj , and Λ̃(j)(n) = Λ(j)(n) in the definition of

the procedure. Table 1 contains three simulated sample paths and the critical

values are given in the table’s header. We focus on how the critical values de-

termine the procedure’s decisions to stop or continue sampling; the values of the

stopped test statistics are given in bold in the table.

On sample path 1, sampling proceeds until time n1 = 7 when H(1) and H(2)

are rejected because this is the first time any of the three test statistics exceed B1

or fall below A1. In particular, H(1) is rejected because Λ(1)(7) = 2.03 ≥ B1 =

1.93 and H(2) is also rejected at this time because Λ(2)(7) = 2.03 ≥ B2 = 1.53,

while one null hypothesis H(1) has already been rejected; the fact that Λ(2)(7)

also exceeds B1 was not necessary for rejecting H(2). Sampling of stream 3 is

continued until time n2 = 10 when H(3) is accepted because its test statistic

falls below A1 = −2.43. Similarly, on sample path 2, after rejecting H(1) at time

n1 = 7, H(2) is then rejected at time n2 = 8 because Λ(2)(8) exceeds B2 = 1.53

and H(1) has already been rejected. H(3) is also accepted at time n2 = 8 for the

same reason as above. On sample path 3, all three null hypotheses are rejected

at time n1 = 7 because Λ(1)(7) = 2.03 ≥ B1, Λ(2)(7) = 2.03 ≥ B2 and H(1) has

already been rejected, and Λ(3)(7) = 1.22 ≥ B3 and H(1) and H(2) have already

been rejected.

3.1.2. A stepdown procedure controlling γ1-FDP and γ2-FNP

The following step values1 were proposed by Romano and Shaikh (2006a).

For v ∈ [J ] and γ ∈ [0, 1), take

j(t, v, γ) = min{J, J + t− v, dt/γe − 1} for t ∈ [bγJc+ 1], (3.3)

t(v, γ) = min

{
bγJc+ 1, v,

⌊
γ(J − v)

1− γ

⌋
+ 1

}
, (3.4)

omitting the third term in the minimum in (3.3) if γ = 0. Given a nondecreasing

sequence 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1, for v ∈ [J ] and γ ∈ [0, 1) define

ε(t, v, γ, {δj}) = δj(t,v,γ) for t ∈ [bγJc+ 1],

1See Remark 3.
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Table 1. Three sample paths of a stepdown procedure for J = 3 hypotheses using critical
values A1 = −2.34, A2 = −1.94, A3 = −1.27, B1 = 1.93, B2 = 1.53, B3 = 0.86. The
values of the stopped sequential statistics are in bold. From Bartroff and Song (2014b,
p. 104).

Data
Stream

n = 1 2 3 4 5 6 7 8 9 10

Sample Path 1

1
X

(1)
n 0 1 1 1 1 1 1

Λ(1)(n) −0.41 0.00 0.41 0.81 1.22 1.62 2.03

2
X

(2)
n 1 0 1 1 1 1 1

Λ(2)(n) 0.41 0.00 0.41 0.81 1.22 1.62 2.03

3
X

(3)
n 0 1 0 0 1 0 0 0 0 0

Λ(3)(n) −0.41 0.00 −0.41 −0.81 −0.41 −0.81 −1.22 −1.62 −2.03 −2.43
Sample Path 2

1
0 1 1 1 1 1 1
−0.41 0.00 0.41 0.81 1.22 1.62 2.03

2
1 0 0 1 1 1 1 1
0.41 0.00 −0.41 0.00 0.41 0.81 1.22 1.62

3
0 1 0 0 0 0 0 0
−0.41 0.00 −0.41 −0.81 −1.22 −1.62 −2.03 −2.43

Sample Path 3

1
1 0 1 1 1 1 1
0.41 0.00 0.41 0.81 1.22 1.62 2.03

2
1 1 1 0 1 1 1
0.41 0.81 1.22 0.81 1.22 1.62 2.03

3
0 1 0 1 1 1 1
−0.41 0.00 −0.41 0.00 0.41 0.81 1.22

S1(v, γ, {δj}) = v

t(v,γ)∑
t=1

εt − εt−1
t

where εt = ε(t, v, γ, {δj}) and ε0 = 0,

D1(γ, {δj}) = max
0≤v≤J

S1(v, γ, {δj}).

These quantities also depend on the total number J of null hypotheses but we

have suppressed this in the notation since J is fixed throughout.

Theorem 1. Fix α, β ∈ (0, 1) and γ1, γ2 ∈ [0, 1). Given any sequences of con-

stants 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1 and 0 ≤ η1 ≤ . . . ≤ ηJ ≤ 1, take

αj =
αδj

D1(γ1, {δj′})
, βj =

βηj
D1(γ2, {ηj′})

, j ∈ [J ]. (3.5)

If the test statistics and critical values satisfy the assumptions in Section 2.2 for

these {αj , βj}j∈[J ], then the sequential stepdown procedure with step values (3.5)
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satisfies

γ1-FDP(θ) ≤ α and γ2-FNP(θ) ≤ β for all θ ∈ Θ

regardless of the dependence between data streams.

Remark 2. A special case of the theorem is

δj =
bγ1jc+ 1

J + bγ1jc+ 1− j
, ηj =

bγ2jc+ 1

J + bγ2jc+ 1− j
, j ∈ [J ]. (3.6)

Of course there are other possibilities, such as δj = ηj = j/J , which give step

values proportional to the ones used in the original FDR-controlling procedure

of Benjamini and Hochberg (1995), although Romano and Shaikh (2006a, p. 44)

found these to be smaller (and thus less desirable) than the step values (3.5)

given by (3.6), for the most part.

Remark 3. The third term in (3.4) is a slight improvement over the correspond-

ing third term in Romano and Shaikh (2006a, Eq. (3.11)), and our proof holds

in their fixed sample size setting, giving a slightly improved upper bound for the

number of true hypotheses.

3.1.3. A stepdown procedure controlling the k1-FWER1 and k2-FWER2

The stepdown procedure in the following theorem utilizes step values pro-

posed by Lehmann and Romano (2005).

Theorem 2. Fix α, β ∈ (0, 1), k1, k2 ∈ [J ], and take

αj =
k1α

J − (j − k1)+
, βj =

k2β

J − (j − k2)+
, j ∈ [J ], (3.7)

where x+ = max{x, 0}. If the test statistics and critical values satisfy the as-

sumptions in Section 2.2 for these {αj , βj}j∈[J ], then the sequential stepdown

procedure with step values (3.7) satisfies

k1-FWER1(θ) ≤ α and k2-FWER2(θ) ≤ β for all θ ∈ Θ (3.8)

regardless of the dependence between data streams.

Remark 4. Lehmann and Romano (2005, Thm. 2.3) exhibit a distribution of

fixed sample size p-values for which the achieved (type I) FWER is exactly the

prescribed value α. By taking X
(j)
1 in (1.1) to be the fixed sample size data and

X
(j)
n = ∅ for n > 1, applying their example to both true and false null hypotheses

shows that there is a distribution for the data such that the inequalities in (3.8)

are equalities. In this sense the bounds (3.8) are sharp.
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3.2. Stepup procedures

In this section we develop stepup procedures analogously to what was done

for stepdown procedures in Section 3.1.

3.2.1. The generic sequential stepup procedure

Here we define a generic sequential stepup procedure, special cases of which

are used to define our type I and II k-FWER and γ-FDP controlling sequen-

tial procedures. We assume that step values {αj , βj}j∈[J ] satisfying (2.4) are

given and that the test statistics and critical values satisfy the assumptions in

Section 2.2 with respect to these values.

We describe the stepup procedure in terms of stages of sampling, between

which reject/accept decisions are made, and we use the notation Ji, ni, ri, and

ci as before, with J1 = [J ], n0 = 0, and r1 = c1 = 0. Then the ith stage of

sampling (i = 1, 2, . . .) of the Generic Sequential Stepup Procedure with

step values {αj , βj}j∈[J ] proceeds as follows.

1. Sample the active data streams {X(j)
n }j∈Ji, n>ni−1

until n equals

ni = inf{n > ni−1 : Λ̃(j(n,`))(n) 6∈ (aci+`, bri+|Ji|−`+1) for some ` ∈ [|Ji|]},
(3.9)

where j(n, `) denotes the index of the `th ordered active standardized statis-

tic at sample size n.

2. (a) If an upper boundary in (3.9) was crossed,

Λ̃(j(ni,`))(ni) ≥ bri+|Ji|−`+1 for some ` ∈ [|Ji|],

then reject the mi ≥ 1 null hypotheses

H(j(ni,|Ji|)), H(j(ni,|Ji|−1)), . . . ,H(j(ni,|Ji|−mi+1)),

where

mi = max
{
m ∈ [|Ji|] : Λ̃(j(ni,|Ji|−m+1))(ni) ≥ bri+m

}
, (3.10)

and set ri+1 = ri +mi. Otherwise set ri+1 = ri.

(b) If a lower boundary in (3.9) was crossed,

Λ̃(j(ni,`))(ni) ≤ aci+` for some ` ∈ [|Ji|],

then accept the m′i ≥ 1 null hypotheses

H(j(ni,m′i)), H(j(ni,m′i−1)), . . . ,H(j(ni,1)),

where
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m′i = max
{
m ∈ [|Ji|] : Λ̃(j(ni,m))(ni) ≤ aci+m

}
,

and set ci+1 = ci +m′i. Otherwise set ci+1 = ci.

3. Stop if there are no remaining active hypotheses, ri+1+ci+1 = J . Otherwise,

let Ji+1 be the indices of the remaining active hypotheses and continue on

to stage i+ 1.

Thus the procedure samples all active data streams until at least one of the

active null hypotheses can be accepted or rejected, indicated by the stopping

rule (3.9). At that point, stepup rejection/acceptance rules are used in steps

2a/2b to reject/accept some active null hypotheses. After updating the list of

active hypotheses, the process is repeated until no active hypotheses remain.

Remark 5. Points analogous to those of Remark 1 apply to the generic sequential

stepup procedure as well.

3.2.2. A stepup procedure controlling γ1-FDP and γ2-FNP

The following step values were proposed by Romano and Shaikh (2006b).

Given a nondecreasing sequence 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1, for γ ∈ [0, 1) and v ∈ [J ]

take

S2(v, γ, {δj}) = vδ1 + v
∑

v−J+1<s≤v, v≥bγ(J−v+s)c+1

δJ−v+s − δJ−v+s−1
s ∨ (bγ(J − v + s)c+ 1)

,

D2(γ, {δj}) = max
v∈[J ]

S2(v, γ, {δj}).

Here x ∨ y = max{x, y}. These quantities also depend on J but we have sup-

pressed this in the notation since J is fixed throughout.

Theorem 3. Fix α, β ∈ (0, 1) and γ1, γ2 ∈ [0, 1). Given any sequences of con-

stants 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1 and 0 ≤ η1 ≤ . . . ≤ ηJ ≤ 1, take

αj =
αδj

D2(γ1, {δj′})
, βj =

βηj
D2(γ2, {ηj′})

, j ∈ [J ]. (3.11)

If the test statistics and critical values satisfy the assumptions in Section 2.2 for

these {αj , βj}j∈[J ], then the sequential stepup procedure with step values (3.11)

satisfies

γ1-FDP(θ) ≤ α and γ2-FNP(θ) ≤ β for all θ ∈ Θ

regardless of the dependence between data streams.

Remark 6. A special case of the theorem is given by (3.6). Of course there are

other possibilities, such as δj = ηj = j/J , which give step values proportional
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to the ones used in the original FDR-controlling procedure of Benjamini and

Hochberg (1995), although Romano and Shaikh (2006b, p. 1,865) found these to

be smaller (and thus less desirable), for the most part, than the step values (3.11)

given by (3.6).

Remark 7. Romano and Shaikh (2006a, Thm. 4.1(ii)) exhibit a joint distri-

bution of p-values under which the procedure using step values (3.12) achieves

γ1-FDP(θ) = α. Since, as mentioned in Remark 4, the fixed-sample setting is a

special case of the sequential setting, their example applies here as well, and the

same argument gives a joint distribution under which γ2-FNP = β. Thus, their

result provides a weak optimality property of the sequential stepup procedure.

3.2.3. A Stepup Procedure Controlling k1-FWER1 and k2-FWER2

The following step values were proposed by Romano and Shaikh (2006b).

Given a nondecreasing sequence 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1, for k, v ∈ [J ] let

S3(v, k, {δj}) =
vδJ−v+k

k
+ v

∑
k<s≤v

δJ−v+s − δJ−v+s−1
s

,

D3(k, {δj}) = max
k≤v≤J

S3(v, k, {δj}).

These quantities also depend on J but we have suppressed this in the notation

since J is fixed throughout.

Theorem 4. Fix α, β ∈ (0, 1) and k1, k2 ∈ [J ]. Given any sequences of constants

0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1 and 0 ≤ η1 ≤ . . . ≤ ηJ ≤ 1, take

αj =
αδj

D3(k1, {δj′})
, βj =

βηj
D3(k2, {ηj′})

, j ∈ [J ]. (3.12)

If the test statistics and critical values satisfy the assumptions in Section 2.2 for

these {αj , βj}j∈[J ], then the sequential stepup procedure with step values (3.12)

satisfies

k1-FWER1(θ) ≤ α and k2-FWER2(θ) ≤ β for all θ ∈ Θ

regardless of the dependence between data streams.

Remark 8. A special case of the theorem is given by the constants

δj =
k1

J − (j − k1)+
, ηj =

k2
J − (j − k2)+

, j ∈ [J ], (3.13)

which are proportional to those proposed by Hommel and Hoffmann (1988) and

Lehmann and Romano (2005), as well as (3.7) in the proposed stepdown proce-

dure. Other possibilities exist, such as δj = ηj = j/J , but Romano and Shaikh
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(2006b, p. 1,859) computed the resulting step values (3.12) for these choices and

found those given by (3.13) to be larger (and hence more desirable) than those

given by j/J for large or small values of j, and smaller for moderate values of j,

but differing by relatively little in this case.

Remark 9. Romano and Shaikh (2006b, Thm. 3.1(ii)) exhibited a joint distri-

bution of p-values under which the procedure using step values (3.12) achieves

k1-FWER1(θ) = α. Since the fixed-sample setting is a special case of the sequen-

tial setting, their example applies here as well, and the same argument gives a

joint distribution under which k2-FWER2(θ) = β. Thus, their result provides a

weak optimality property of the sequential stepup procedure.

4. Versions of the Procedures Controlling only the Type I Generalized

Error Rate

In this section we describe versions of our procedures which only stop early

to reject (rather than accept) null hypotheses and thus which only explicitly

control the corresponding type I generalized error rate, recorded in Theorems 5

and 6. For this reason we refer to them as “rejective” versions of the procedures.

The rejective procedures may be preferable in certain situations such as when

(a) a null hypothesis being true represents the system being “in control” and

therefore continued sampling (rather than stopping) is desirable, (b) there is a

maximum sample size imposed on the data streams preventing achievement of

the error bounds (2.5)-(2.6), or (c) the type II generalized error rate β is not

well-motivated. In any of theses cases, the statistician might prefer to drop the

requirement that the type II generalized error rate be strictly controlled at β

and use one of the rejective procedures which, roughly speaking, are similar but

ignore the lower stopping boundaries A
(j)
w . Even if β is not well motivated but the

statistician prefers early stopping under the null hypotheses, then we encourage

the use of our procedures while treating β as a parameter to be chosen to give a

procedure with other desirable operating characteristics, such as expected total

or streamwise maximum sample size.

The setup for rejective procedures requires a few modifications. Let the data

streams X
(j)
n , test statistics Λ(j)(n), and parameters θ(j) and θ be as in Section 2.

Since only the type I error rate, γ1-FDP or k1-FWER1, will be explicitly con-

trolled we only require specification of null hypotheses H(j) ⊆ Θ(j) and not of

alternative hypotheses G(j). Accordingly we modify the definition of the false

hypotheses (2.2) to be
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F(θ) = {j ∈ [J ] : θ(j) 6∈ H(j)},

and the true hypotheses T (θ) are still given by (2.1). We focus on rejective proce-

dures with a streamwise maximum sample size (or “truncation point”) N . With

only notational changes, what follows could be formulated without a truncation

point or with sample sizes other than 1, . . . , N .

Given a sequence of step values 0 ≤ α1 ≤ . . . ≤ αJ ≤ 1, we assume that the

test statistics Λ(j)(n) have associated critical values B
(j)
1 , . . . , B

(j)
J satisfying

Pθ(j)
(

Λ(j)(n) ≥ B(j)
w for some n ≤ N

)
≤ αw for all θ(j) ∈ H(j), (4.1)

for each w ∈ [J ], as well as (2.7) and (2.9) without loss of generality. We let the

standardizing functions ϕ(j) be any increasing functions such that bw = ϕ(j)(B
(j)
w )

does not depend on j, and Λ̃(j)(n) = ϕ(j)(Λ(j)(n)) denote the standardized statis-

tics.

We give the rejective versions of the generic stepdown and stepup procedures

in Sections 3.1.1 and 3.2.1, respectively, and state their type I generalized error

control properties in Theorems 5 and 6. The proofs are similar to the proofs of

the corresponding theorems in Section 3 and are thus omitted.

4.1. Rejective sequential stepdown procedures

With x∧y = min{x, y} and with the notation as in Section 3.1.1, the ith stage

(i = 1, 2, . . .) of the Generic Rejective Sequential Stepdown Procedure

with step values {αj}j∈[J ] proceeds as follows.

1. Sample the active streams {X(j)
n }j∈Ji, n>ni−1

until n equals

ni = N ∧ inf
{
n > ni−1 : Λ̃(j)(n) ≥ bri+1 for some j ∈ Ji

}
. (4.2)

2. If ni = N and no test statistic has crossed the critical value in (4.2), accept

all active null hypotheses and terminate the procedure. Otherwise, proceed

to Step 3.

3. Order the active test statistics

Λ̃(j(ni,1))(ni) ≤ Λ̃(j(ni,2))(ni) ≤ . . . ≤ Λ̃(j(ni,|Ji|))(ni)

and reject the mi ≥ 1 null hypotheses

H(j(ni,|Ji|)), H(j(ni,|Ji|−1)), . . . ,H(j(ni,|Ji|−mi+1)),

where

mi = max{m ∈ [|Ji|] : Λ̃(j(ni,`))(ni) ≥ bri+|Ji|−`+1
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for all ` = |Ji| −m+ 1, . . . , |Ji|}.

4. If ri + mi = J or ni = N , terminate the procedure. Otherwise, set ri+1 =

ri + mi, let Ji+1 be the indices of the remaining hypotheses, and continue

on to stage i+ 1.

Remark 10. Points analogous to Remark 1, aside from Point A, apply to the

generic rejective sequential stepdown procedure as well.

Theorem 5. Fix α ∈ (0, 1).

1. Fix γ1 ∈ [0, 1). Given any sequence of constants 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1

let αj be given by (3.5). If the test statistics and critical values satisfy the

assumptions for these αj, then the rejective sequential stepdown procedure

with step values (3.5) satisfies γ1-FDP(θ) ≤ α regardless of the dependence

between data streams.

2. Fix k1 ∈ [J ] and let αj be given by (3.7). If the test statistics and criti-

cal values satisfy the assumptions for these αj, then the rejective sequential

stepdown procedure with step values (3.7) satisfies k1-FWER1(θ) ≤ α re-

gardless of the dependence between data streams.

Remark 11. As mentioned in Remark 2, the δj given in (3.6) may be useful

in practice for the procedure in Part 1 of the theorem; the weak optimality

mentioned in Remark 4 applies as well to the rejective procedure in Part 2 of the

theorem.

4.2. Rejective sequential stepup procedures

With the same notation as in Section 3.2.1, the ith stage (i = 1, 2, . . .) of the

Generic Rejective Sequential Stepup Procedure with step values {αj}j∈[J ]
proceeds as follows.

1. Sample the active data streams {X(j)
n }j∈Ji, n>ni−1

until n equals

ni = N ∧ inf
{
n > ni−1 : Λ̃(j(n,`))(n) ≥ bri+|Ji|−`+1 for some ` ∈ [|Ji|]

}
.

(4.3)

2. If ni = N and no test statistic has crossed its corresponding critical value

in (4.3), accept all active null hypotheses and terminate the procedure.

Otherwise, proceed to Step 3.

3. Reject the mi ≥ 1 null hypotheses
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H(j(ni,|Ji|−mi+1)), H(j(ni,|Ji|−mi+2)), . . . H(j(ni,|Ji|)),

where

mi = max
{
m ∈ [|Ji|] : Λ̃(j(ni,|Ji|−m+1))(ni) ≥ bri+m

}
.

4. If ri + mi = J or ni = N , terminate the procedure. Otherwise, set ri+1 =

ri + mi, let Ji+1 be the indices of the remaining hypotheses, and continue

on to stage i+ 1.

Remark 12. Points analogous to Remark 1, aside from Point A, apply to the

generic rejective sequential stepup procedure as well.

Theorem 6. Fix α ∈ (0, 1).

1. Fix γ1 ∈ [0, 1). Given any sequence of constants 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1

let αj be given by (3.11). If the test statistics and critical values satisfy

the assumptions for these αj, then the rejective sequential stepup procedure

with step values (3.11) satisfies γ1-FDP(θ) ≤ α regardless of the dependence

between data streams.

2. Fix k1 ∈ [J ]. Given any sequence of constants 0 ≤ δ1 ≤ . . . ≤ δJ ≤ 1

let αj be given by (3.12). If the test statistics and critical values satisfy the

assumptions for these αj, then the rejective sequential stepup procedure with

step values (3.12) satisfies k1-FWER1(θ) ≤ α regardless of the dependence

between data streams.

Remark 13. As mentioned in Remarks 6 and 8, the δj given in (3.6) and (3.13)

may be useful in practice for the procedures in Parts 1 and 2 of the theorem,

respectively; the weak optimality mentioned in Remarks 7 and 9 applies as well

to the rejective procedures in Parts 1 and 2 of the theorem, respectively.

5. Implementation

5.1. Simple vs. simple hypotheses

In this section we briefly discuss constructing individual test statistics and

critical values satisfying (2.5)-(2.6) (or (4.1) for the rejective versions of the pro-

cedures). More complete discussions, including discussion of testing more general

composite hypotheses and examples, are given in Bartroff and Song (2014a,b).

Here we focus on simple hypotheses and those that can be approximated by sim-

ple hypotheses, and in Theorem 7 we give closed-form expressions for the critical

values A
(j)
w , B

(j)
w , satisfying (2.5)-(2.6) to a very close approximation, that are
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based on the closed-form, widely-used Wald approximations for the sequential

probability ratio test (SPRT). Sequential test statistics and critical values for

other testing situations, including composite hypotheses and nuisance parameter

problems, are covered in the texts Bartroff, Lai and Shih (2013) and Siegmund

(1985).

Focusing on a stream j for which H(j) and G(j) are simple hypotheses, a nat-

ural choice for the test statistic Λ(j)(n) is the log-likelihood ratio because of its

strong optimality property of the resulting (single hypothesis) test, the SPRT; see

Chernoff (1972). In order to express the likelihood ratio test in a simple form,

we now make the additional assumption that each data stream X
(j)
1 , X

(j)
2 , . . .

constitutes independent and identically distributed data. This independence as-

sumption is limited to within each stream so that, for example, elements of

X
(j)
1 , X

(j)
2 , . . . may be correlated with (or even identical to) elements of another

stream X
(j′)
1 , X

(j′)
2 , . . .. Formally we represent the simple null and alternative hy-

potheses H(j) and G(j) by the corresponding distinct density functions h(j) (null)

and g(j) (alternative) with respect to some common σ-finite measure µ(j). The

parameter space Θ(j) corresponding to this data stream is the set of all densities

f with respect to µ(j), and H(j) is considered true if the actual density f (j) satis-

fies f (j) = h(j) µ(j)-a.s., and is false if f (j) = g(j) µ(j)-a.s. The SPRT for testing

H(j) : f (j) = h(j) vs. G(j) : f (j) = g(j) with type I and II error probabilities α

and β, respectively, utilizes the simple log-likelihood ratio test statistic

Λ(j)(n) =

n∑
i=1

log

(
g(j)(X

(j)
i )

h(j)(X
(j)
i )

)
(5.1)

and samples sequentially until Λ(j)(n) 6∈ (A,B), where the critical values A,B

satisfy

Ph(j)(Λ(j)(n) ≥ B some n, Λ(j)(n′) > A all n′ < n) ≤ α, (5.2)

Pg(j)(Λ
(j)(n) ≤ A some n, Λ(j)(n′) < B all n′ < n) ≤ β. (5.3)

The most simple and widely-used method for finding A and B is to use the

closed-form Wald-approximations A = AW (α, β) and B = BW (α, β), where

AW (a, b) = log

(
b

1− a

)
+ ρ, BW (a, b) = log

(
1− b
a

)
− ρ (5.4)

for a, b ∈ (0, 1) such that a + b ≤ 1 and a fixed quantity ρ ≥ 0. See Hoel, Port

and Stone (1971, Sec. 3.3.1) for a derivation of the ρ = 0 case and, based on

Brownian motion approximations, Siegmund (1985, p. 50 and Chap. X) derives

the value ρ = 0.583 which has been used to improve the approximation for
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continuous random variables. Although, in general, the inequalities in (5.2)-(5.3)

only hold approximately when using the Wald approximations A = AW (α, β)

and B = BW (α, β), Hoel, Port and Stone (1971) show that the actual type I and

II error probabilities can only exceed α or β by a small amount in the worst case,

and the difference approaches 0 for small α and β, which is relevant in the present

multiple testing situation where we utilize fractions of the actual prescribed error

rates.

We use the Wald approximations to construct closed-form critical values A
(j)
w ,

B
(j)
w satisfying (2.5)-(2.6) up to Wald’s approximation. Specifically, given step

values {αj , βj}, we show that when using (5.5), the left-hand-sides of (2.5)-(2.6)

are the same quantities one would get using Wald’s approximations with αj , βj
in place of α, β. This generalizes results of Bartroff and Song (2014a,b) which

gave Wald approximations for the specific step values {αj , βj} proposed for the

FWER- and FDR-controlling procedures, respectively, given there.

Theorem 7. Fix {αj , βj}j∈[J ] satisfying (2.4) and α1 + β1 ≤ 1, and ρ ≥ 0.

Suppose that, for a certain data stream j, the associated hypotheses H(j) : f (j) =

h(j) and G(j) : f (j) = g(j) are simple. For a, b ∈ (0, 1) such that a + b ≤ 1 let

α
(j)
W (a, b) and β

(j)
W (a, b) be the values of the probabilities on the left-hand sides of

(5.2) and (5.3), respectively, when Λ(j)(n) is given by (5.1) and A = AW (a, b)

and B = BW (a, b) are given by the Wald approximations (5.4). For w ∈ [J ] let

α̃w =
α1(1− βw)

1− β1
and β̃w =

β1(1− αw)

1− α1
,

and let p
(j)
w and q

(j)
w denote the left-hand-sides of (2.5) and (2.6), respectively,

with A
(j)
w , B

(j)
w given by

A(j)
w = log

(
βw(1− β1)

1− β1 − α1(1− βw)

)
+ ρ, B(j)

w = log

(
1− α1 − β1(1− αw)

αw(1− α1)

)
− ρ.

(5.5)

Then, for all w ∈ [J ],

αw + β̃w ≤ 1, α̃w + βw ≤ 1, (5.6)

p(j)w = α
(j)
W (αw, β̃w), and q(j)w = β

(j)
W (α̃w, βw) (5.7)

and therefore (2.5)-(2.6) hold, up to Wald’s approximation, when using the crit-

ical values (5.5).

We remark that the ρ = 0 case of Theorem 7 holds without the independence

assumption on X
(j)
1 , X

(j)
2 , . . . made in this section, since this original form of

Wald’s approximations does not require this.
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5.2. Group sequential testing

The setup considered here is general enough to admit group sequential sam-

pling as a special case and the popular methods for choosing group sequential

stopping boundaries, such as Pocock’s (1977) test and O’Brien and Fleming’s

(1979) test, can be utilized. See also Jennison and Turnbull (2000, Chaps 2.4

and 2.5) for these tests, whose setup we follow. Pocock’s and O’Brien and Flem-

ing’s tests, in their original forms, utilize a fixed maximum number g of groups

and only allow early stopping to reject the corresponding null hypothesis; if

the null is not rejected at or before the gth group then it is accepted. This

is precisely the form of the rejective procedures defined in Section 4, which

we now consider; the last paragraph in this section discusses group sequential

tests that allow early rejection or acceptance of the null hypothesis. To utilize

Pocock’s test of the null hypothesis H(j) : θ(j) = 0 about the average differ-

ence θ(j) in treatment effects with at most g groups all of size m (although

groups of unequal sizes can be handled with only minor notational burden), let

X
(j)
n = (D

(j)
(n−1)m+1, D

(j)
(n−1)m+2, . . . , D

(j)
nm), n ∈ [g], be the vector of observed

differences D
(j)
i in the nth group. Pocock’s test statistic can be written

Λ(j)(n) =

∣∣∣∣∣ 1√
nmσ2

nm∑
i=1

D
(j)
i

∣∣∣∣∣ for n ∈ [g], (5.8)

where σ2 is the known variance of the D
(j)
i . Given α ∈ (0, 1), the α-level version

of the test stops after group n ∈ [g] and rejects H(j) if Λ(j)(n) ≥ CP (α), accepting

H(j) if no rejection has occurred by the gth group. Here CP (α) is a constant

(the subscript P for Pocock) calculated to make the type I error probability of

this test no greater than α,

Pθ(j)=0(Λ
(j)(n) ≥ CP (α) for some n ∈ [g]) ≤ α for any α ∈ (0, 1). (5.9)

Calculation of CP (α) is well-understood and included in many standard software

packages; see Jennison and Turnbull (2000, Chap. 19).

To utilize the Pocock test as the jth component test in a rejective sequential

stepup or stepdown procedure defined in Section 4, let N = g, Λ(j)(n) be as in

(5.8) for n ∈ [g], and B
(j)
w = CP (αw) for w ∈ [J ] where αw are the given step

values. By these definitions and those of the rejective procedures we see that

H(j) will be rejected at the first stage n ∈ [N ] = [g] where Λ(j)(n) crosses a

certain boundary B
(j)
w , and accepted otherwise. All that remains to check is that

Theorems 5 and 6 are in force is to verify that (4.1) holds, whose left-hand side
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is

Pθ(j)=0(Λ
(j)(n) ≥ CP (αw) for some n ∈ [g])

which, by (5.9), is no greater than αw.

O’Brien and Fleming’s test can be applied similarly but with

Λ(j)(n) =

∣∣∣∣∣ 1√
gmσ2

nm∑
i=1

D
(j)
i

∣∣∣∣∣ for n ∈ [g], (5.10)

which differs from (5.8) by a factor of
√
g/n. This test stops to reject H(j) at

the earliest stage n ∈ [g] such that Λ(j)(n) ≥ COF (α), constants satisfying

Pθ(j)=0(Λ
(j)(n) ≥ COF (α) for some n ∈ [g]) ≤ α for any α ∈ (0, 1). (5.11)

Using this test as a component test in a rejective procedure is similar to that

for Pocock’s test but taking B
(j)
w = COF (αw). As above, (5.11) guarantees that

(4.1) holds, and hence Theorems 5 and 6 are in force.

Neither Pocock’s nor O’Brien and Fleming’s tests stop early to accept the null

hypothesis, but other popular group sequential tests do allow this behavior, such

as power family tests (see Jennison and Turnbull (2000, Chap. 5)). These tests

can be used as component tests in the sequential stepup or stepdown procedures

in Section 3 in a similar way for rejective procedures with the minor notational

burden of including a maximum sample size N , equal to the maximum number

of groups in this group sequential setting. Of course the choice of N , as well as

the group size (e.g., m in the discussion above) may affect the ability to achieve

the needed type I and II error probabilities (2.5) and (2.6), but this issue is

not unique to multiple testing considerations and must be considered in group

sequential testing of a single null hypothesis as well.

6. Numerical Comparisons

6.1. Introduction and setup

Although a comprehensive comparison of the sequential stepup and stepdown

procedures proposed here is beyond the scope of this article, in this section we give

a comparison in the particular setting of inference about the means of strongly

positively correlated Gaussian data streams; Müller, Parmigiani and Rice (2007)

note that this setting is still one of the most widely used in applications involving

multiple testing.

If a fixed sample stepup procedure uses the same (or larger) step values {αj}
as a stepdown procedure, then the stepup procedure is preferred because it will
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Figure 1. Stepdown versus stepup values (solid lines) for testing J = 500 null hypotheses
with α = 0.05. In the left panel, the stepdown and stepup values αj are given by (3.5)
and (3.11), respectively, both with δj given by (3.6) and γ1 = 0.1. In the right panel, the
stepdown and stepup values αj are given by (3.7) and (3.12), respectively, with k1 = 25
and δj given by (3.13) in the latter case. The identity line is dashed.

reject more null hypotheses and hence be more powerful while not exceeding

the prescribed multiple testing error bound α. The same statement holds about

the rejective sequential procedures in Section 4, and an analogous statement

holds about the sequential procedures in Section 3 which control both type I

and II generalized error rates and their step values {αj , βj}, in which case “more

powerful” means less conservative type I and II error control below the prescribed

values α and β. However there is no such simple “dominating” relationship

between the values of the stepup and stepdown procedures proposed above. For

example, Figure 1 contains plots of the stepdown versus stepup values αj defined

in Sections 3.1 and 3.2, respectively, for α = 0.05, J = 500 null hypotheses, and

γ1 = 0.1 for FDP control (left panel) and k1 = 25 for k1-FWER1 control (right

panel). In both panels the solid line is below the dotted identity line indicating

that each stepdown value exceeds its corresponding stepup value.

Thus, to investigate the efficiency and overall performance of the proposed

sequential stepdown and stepup procedures, simulation studies were performed

to estimate their operating characteristics. For this, J streams of Gaussian data

were repeatedly simulated in order to consider a battery of tests of the form

H(j) : θ(j) ≤ 0 vs. G(j) : θ(j) ≥ 1 (6.1)

about the mean θ(j) of the jth data stream. The proposed procedures, with
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their strict error control regardless of dependence, will probably be most use-

ful in settings with strongly positively correlated data streams. For example,

about multiple testing problems which arise in genetic association studies by

comparing many possible statistical models for genetic data, Zheng et al. (2012,

p. 24) remark that typically “all genetic models under consideration are positively

correlated.” And in randomized multi-arm clinical trials, Freidlin et al. (2008,

p. 4,369) note that “individual comparisons are positively correlated due to the

use of the same control arm.” To create such a setting of strongly positively

correlated data streams, the collection (X
(1)
n , . . . , X

(J)
n ) of the nth observations

from the J data streams were simulated as a J-dimensional multivariate normal

distribution with mean θ = (θ(1), . . . , θ(J)) and covariance matrix

σ2


1 0.95 · · · 0.95

0.95 1 · · · 0.95
...

...
. . .

...

0.95 0.95 · · · 1

 . (6.2)

Constant correlation models such as this have recently been popular in the study

of genetic correlation structure (Lee et al. (2011); Hardin, Garcia and Golan

(2013)), and for us (6.2) provides a convenient way of generating a large number of

data streams with strong positive correlation. In the studies that follow we have

chosen σ = 2 to give tests of reasonable length. The collection (X
(1)
n , . . . , X

(J)
n )

of the nth observations was generated using this distribution, with successive

observations (X
(1)
n , . . . , X

(J)
n ), (X

(1)
n+1, . . . , X

(J)
n+1) generated independently. The

test statistics (5.1) were used with θ(j) = 0 vs. θ(j) = 1 as surrogate hypotheses,

reducing to

Λ(j)(n) =
1

σ2

(
n∑
i=1

X
(j)
i −

n

2

)
in this case, and the critical values (5.5) were used with ρ = 0.583 and {αj , βj} as

described below. The results of simulation studies in this setting are reported in

Section 6.2 for γ1-FDP and γ2-FNP control, and Section 6.3 for k1-FWER1 and

k2-FWER2 control. Finally, in Section 6.4, the assumption of known variance is

dropped and Student’s t-tests of composite hypotheses are considered.

6.2. Study of procedures controlling γ1-FDP and γ2-FNP

Table 2 contains some operating characteristics under various settings of

the sequential stepdown and stepup procedures, denoted SeqD and SeqU , using

step values (3.5) and (3.11) (both with δj given by (3.6)), respectively, and which
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control γ1-FDP ≤ α = 0.05 and γ2-FNP ≤ β = 0.2. The operating characteristics

are the expected streamwise average sample size EθN which is the average sample

size over the J streams, N =
∑J

j=1Nj/J , where Nj denotes the sample size

of the jth stream, its standard error SE, and the achieved generalized error

rates γ1-FDP and γ2-FNP. Each operating characteristic estimate is the result

of 10,000 Monte Carlo simulated ensembles of J data streams. The parameter

values γ1 = γ2 = 0.1 were used and three states of nature, in terms of the number

of true null hypotheses H(j), were considered for both of the J = 500 and J =

1,000 scenarios, with the true H(j) are simulated using θ(j) = 0 and the false H(j)

with θ(j) = 1, representing the “worst case” with respect to distinguishability of

the null and alternative hypotheses.

To provide a point of reference for these sequential procedures, the perfor-

mance of comparable fixed sample size stepdown and stepup procedures, denoted

by FixD and FixU , were also estimated. These are the procedures defined in Sec-

tion 2.2 that use the same step values αj as SeqD and SeqU , respectively. Since

these values αj determine the type I generalized error rate γ1-FDP, to obtain

procedures comparable to the sequential ones, the fixed sample sizes for FixD
and FixU were chosen as the values yielding the type II generalized error rate

γ2-FNP most closely matching that of the sequential procedure with the smallest

EθN , the more efficient of SeqD and SeqU , whose row is shaded in each scenario

in the table. The fixed sample size procedures are more conservative than the

sequential procedures since the error probabilities tend to decrease as sample

size increases; in this sense this comparison is conservative. Because the sample

sizes of FixD and FixU are fixed, their SE is left blank. The final column of the

table shows that savings in EθN of each sequential procedure relative to its fixed

sample counterpart.

The sequential procedures in Table 2 show a dramatic savings in average

sample size relative to the fixed sample size procedures of at least 50% in all

cases, and as high as 65%. The sequential procedures also have less conservative

error control than their fixed sample size counterparts, most evident in the type I

generalized error rate γ1-FDP which was not used for “matching” the fixed sam-

ple procedures as the type II version was. This less conservative error control is

perhaps due to the sequential procedures’ smaller average sample size. Nonethe-

less, all the procedures still have quite conservative error control relative to the

prescribed values of α = 0.05 and β = 0.2 even on this highly positively corre-

lated data. Another notable feature of the results in Table 2 is that the sequential

stepup procedures are slightly but consistently more efficient than the stepdown
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Table 2. Expected streamwise average sample size EθN , its standard error SE, achieved
error rates γ1-FDP and γ2-FNP, and savings in EθN of the sequential (denoted SeqD and
SeqU ) and fixed sample size (denoted FixD and FixU ) procedures described in Section 6.2
for testing J null hypotheses about the means of Gaussian data streams. The parameter
values are α = 0.05, β = 0.2, and γ1 = γ2 = 0.1 and each estimate is the result of
10,000 simulated ensembles of J data streams. The shaded row in each scenario is the
procedure with the smallest EθN .

# True H(j) Procedure EθN SE γ1-FDP(θ) γ2-FNP(θ) EθN Savings
J = 500

100

SeqD 63.63 0.60 0.007 0.015 53%
SeqU 54.17 0.67 0.008 0.012 55%
FixD 136 0.002 0.012
FixU 120 0.001 0.012
Fix′

D 129 0.007 0.015
Fix′

U 110 0.008 0.012

250

SeqD 60.66 0.40 0.004 0.026 55%
SeqU 53.39 0.40 0.003 0.016 58%
FixD 135 0.001 0.015
FixU 128 0.001 0.016

400

SeqD 56.98 0.58 0.006 0.039 57%
SeqU 45.97 0.57 0.007 0.022 65%
FixD 134 0.001 0.022
FixU 131 0.001 0.022

J = 1000

250

SeqD 67.26 0.52 0.006 0.008 54%
SeqU 54.93 0.58 0.003 0.009 56%
FixD 147 0.002 0.009
FixU 125 0.001 0.009

500

SeqD 65.54 0.39 0.009 0.021 50%
SeqU 54.06 0.41 0.002 0.027 54%
FixD 130 0.001 0.026
FixU 118 0.001 0.026

750

SeqD 63.16 0.55 0.001 0.026 54%
SeqU 49.72 0.53 0.002 0.023 61%
FixD 136 0.001 0.023
FixU 129 0.001 0.023

procedures in each scenario, in terms of minimizing EθN . In the next section

we will see that the reverse is true in a similar study of procedures controlling

k1-FWER1 and k2-FWER2.

Because of the highly conservative error control of all the procedures in

Table 2, especially the fixed sample size procedures, another type of comparison

that may shed light on how much of the efficiency gained by the sequential
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procedures is due the sequential sampling itself rather than the differing achieved

error rates. Included in the first scenario of Table 2 are two more fixed sample

size procedures (denoted Fix′D and Fix′U ) which match both error rates γ1-FDP

and γ2-FNP of SeqD and SeqU , respectively. These were found by exhaustively

searching over values of the fixed streamwise sample size N and a grid of values

for the nominal γ1-FDP rate α for Fix′D and Fix′U . The procedure Fix′D uses α =

0.092 and N = 129 to match the error rates γ1-FDP = 0.007 and γ2-FNP = 0.015

of SeqD, and Fix′U uses α = 0.112 and N = 110 to match γ1-FDP = 0.008 and

γ2-FNP = 0.012 of SeqU . The increase in nominal α required for this matching

is roughly a factor of 2, and the decrease in sample size is modest, leaving the

sample sizes of Fix′D and Fix′U still substantially larger than their sequential

counterparts even though they do not have proven error control at the α = 0.05

level. This suggests the efficiency gains of the sequential procedures relative to

the fixed sample size procedures are due more to the sequential sampling than

their less conservative error control.

6.3. Study of procedures controlling k1-FWER1 and k2-FWER2

Table 3 contains the results of a study similar to Table 2 but for procedures

controlling k1-FWER1 and k2-FWER2. In Table 3, SeqD and SeqU denote the

stepdown and stepup procedures defined in Sections 3.1.2 and 3.2.2 using step

values (3.7) and (3.12), respectively, with δj given by (3.13) for the latter. The

parameters k1 = k2 = 25 were used for the J = 500 scenario and k1 = k2 = 50

for the J = 1,000 scenario, and the same prescribed error bounds α = 0.05,

β = 0.2 were used. The operating characteristics and simulation settings are

otherwise the same as the previous section. As there, the stepdown and stepup

fixed sample size procedures FixD and FixU are those defined in Section 2.2 that

use the same step values αj as SeqD and SeqU , respectively; the fixed sample

sizes of these procedures was chosen to match their type II generalized error rate

k2-FWER2 as closely as possible to the sequential procedure with the smallest

EθN , whose row is shaded in the table in each scenario.

The sequential procedures in Table 3 show a substantial savings of roughly

50% to 60% in average sample size relative to the fixed sample size procedures,

and less conservative error control than their fixed sample size counterparts,

most evident in the type I generalized error rate k1-FWER1 that was not used

for “matching” the fixed sample procedures as the type II version was. All the

procedures have quite conservative error control relative to the prescribed values

of α = 0.05 and β = 0.2. Unlike Table 2, the sequential stepdown procedures in
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Table 3. Expected streamwise average sample size EθN , its standard error SE, achieved
error rates k1-FWER1 and k2-FWER2, and the savings in EθN of the sequential (de-
noted SeqD and SeqU ) and fixed sample size (denoted FixD and FixU ) procedures de-
scribed in Section 6.3 for testing J null hypotheses about the means of Gaussian data
streams. The parameter values are α = 0.05 and β = 0.2 and each estimate is the result
of 10,000 simulated ensembles of J data streams. The shaded row in each scenario is the
procedure with the smallest EθN .

# True H(j) Procedure EθN SE k1-FWER1(θ) k2-FWER2(θ) EθN Savings
J = 500, k1 = k2 = 25

100

SeqD 38.39 0.48 0.020 0.039 49%
SeqU 44.91 0.59 0.009 0.034 54%
FixD 75 0.023 0.039
FixU 97 0.002 0.040
Fix′

D 77 0.020 0.039
Fix′

U 95 0.009 0.034

250

SeqD 36.81 0.32 0.017 0.047 57%
SeqU 43.32 0.38 0.011 0.041 55%
FixD 86 0.005 0.047
FixU 97 0.001 0.046

400

SeqD 32.12 0.46 0.007 0.067 60%
SeqU 38.17 0.53 0.009 0.065 57%
FixD 80 0.030 0.066
FixU 89 0.001 0.066

J = 1,000, k1 = k2 = 50

250

SeqD 37.45 0.42 0.015 0.033 58%
SeqU 44.07 0.51 0.005 0.042 56%
FixD 89 0.009 0.034
FixU 100 0.002 0.034

500

SeqD 36.73 0.31 0.012 0.050 57%
SeqU 42.46 0.38 0.008 0.044 56%
FixD 86 0.005 0.051
FixU 96 0.001 0.049

750

SeqD 33.27 0.41 0.012 0.065 59%
SeqU 39.93 0.46 0.006 0.040 57%
FixD 82 0.003 0.063
FixU 92 0.001 0.064

Table 3 were more efficient than the stepup procedures in terms of smaller EθN .

Similar to Table 2, the first scenario in Table 3 also includes fixed sample

size procedures Fix′D and Fix′U whose values of streamwise sample size N and

nominal k1-FWER1 bound α were searched over to find values giving attained

k1-FWER1 and k2-FWER2 equal to those of the sequential procedures SeqD and

SeqU , respectively. The procedure Fix′D uses α = 0.048 and N = 77 to match the
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error rates k1-FWER1 = 0.020 and k2-FWER2 = 0.039 of SeqD, and Fix′U uses

α = 0.080 and N = 95 to match k1-FWER1 = 0.009 and k2-FWER2 = 0.034

of SeqU . Whereas Fix′U uses a slightly smaller sample size (and larger α) than

FixU because the latter is more conservative than SeqU in terms of error rates,

Fix′D uses a slightly larger sample size (and smaller α) than FixD because the

latter is actually less conservative than SeqD. In any case, the change in sample

size of these modified fixed sample procedures is slight and the fixed sample sizes

remain substantially larger than their sequential counterparts, indicating that

the increased efficiency is due to the sequential sampling rather than differing

achieved error rates, as in Table 2.

6.4. Composite hypotheses: Student’s t-tests

In this section we consider a setting similar to the Gaussian mean testing

problem (6.1) of the previous sections but drop the assumption of known variance

σ2, making both the null and alternative in (6.1) composite hypotheses. First

we briefly describe a sequential approach to this Student’s t-test problem and

then give the results of a simulation study in a similar setting to Section 6.3 for

k1-FWER1 and k2-FWER2 control.

Suppose that the data X
(j)
1 , X

(j)
2 , . . . from a certain data stream are i.i.d.

Gaussian data with mean µ and variance σ2, both unknown, and it is desired to

test the null hypothesis µ ≤ 0 versus the alternative µ ≥ δ, for some given δ > 0.

Formally, this is a special case of the setup in Section 2 by taking θ(j) = (µ, σ)T ,

Θ(j) = R× (0,∞), H(j) = {(µ, σ)T ∈ Θ(j) : µ ≤ 0}, and G(j) = {(µ, σ)T ∈ Θ(j) :

µ ≥ δ}. Bartroff and Song (2014b, Sec. 3.2) suggest sequential log generalized

likelihood ratio (GLR) statistics for a general class of composite hypotheses when

the data is from an exponential family, including this t-test setting for which the

sequential log GLR statistic is (see Bartroff (2006, p. 106))

Λ(j)(n) =

{
+
√

2nΛH(n), if X
(j)
n ≥ δ/2,

−
√

2nΛG(n), otherwise,
(6.3)

where ΛH(n) =
n

2
log

1 +

(
X

(j)
n

σ̂n

)2
 , ΛG(n) =

n

2
log

1 +

(
X

(j)
n − δ
σ̂n

)2
,

and X
(j)
n and σ̂2n are the usual MLE estimates of µ and σ2, respectively, based

on X
(j)
1 , . . . , X

(j)
n . Bartroff and Song (2014b, Lem. 3.1) also give formulas for

certain upper bounds on the probabilities in (2.5)-(2.6) involving only properties

of the standard normal distribution, allowing critical values {A(j)
w , B

(j)
w }w∈[J ] to
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be computed satisfying (2.5)-(2.6) for given step values {αw, βw}w∈[J ] by either

recursive numerical integration or Monte Carlo simulation of standard normal

variates.

Table 4 contains the results of a study similar to Table 3 but for sequential

and fixed sample size t-tests. In Table 4, SeqD and SeqU denote the stepdown

and stepup procedures defined in Sections 3.1.2 and 3.2.2 using step values (3.7)

and (3.12), respectively, with δj given by (3.13) for the latter. The sequential

procedures use the statistics (6.3) with critical values computed by Monte Carlo

as described in the previous paragraph. The stepdown and stepup fixed sam-

ple size procedures FixD and FixU are those defined in the first paragraph of

Section 2.2 with p-values for sample size n computed in the standard way as

1−Tn−1(X
(j)
n

√
n− 1/σ̂n), where Tn−1(·) denotes the c.d.f. of the Student’s t dis-

tribution with n− 1 degrees of freedom, and which use the same step values αj
as SeqD and SeqU , respectively. As in Section 6.3, the fixed sample sizes of these

procedures was chosen to match their type II generalized error rate k2-FWER2

as closely as possible to the sequential procedure with the smallest EθN , whose

row is shaded in the table in each scenario. To give a view of the procedures’ per-

formance under a different dependency structure for the Gaussian data streams,

they were simulated not as highly correlated but rather nearly independent with

correlation coefficient 0.05 replacing 0.95 in (6.2). The data was simulated using

the same value σ = 2 as above, but not assumed to be known.

Comparing Table 4 with the first half of Table 3, one sees that the additional

task of estimating the unknown variance in the t-test setting, plus the near-

independence of the data streams, only cause a modest increase in sample size of

all the procedures. The relationship between the sequential and fixed sample size

procedures is otherwise remarkably similar to that in Table 3, with the stepdown

procedure SeqD being slightly more efficient than the stepup procedure SeqU
for FWER control, and both being roughly 50-60% more efficient than the fixed

sample size procedures in terms of expected sample size. Also like Table 3, all

procedures are very conservative in terms of error control, with the sequential

procedures tending to be less so (but not uniformly – see FixD in the case of 400

true H(j)) because of their smaller average sample size.

7. Conclusions and Discussion

We have proposed general and flexible multiple testing procedures for con-

trolling generalized error rates on sequential data whose error control holds re-



MULTIPLE TESTS FOR SEQUENTIAL DATA 395

Table 4. Expected streamwise average sample size EθN , its standard error SE, achieved
error rates k1-FWER1 and k2-FWER2, and the savings in EθN of the sequential (de-
noted SeqD and SeqU ) and fixed sample size (denoted FixD and FixU ) procedures de-
scribed in Section 6.4 for testing J null hypotheses about the means of Gaussian data
streams with unknown variances. The parameter values are α = 0.05 and β = 0.2 and
each estimate is the result of 10,000 simulated ensembles of J data streams. The shaded
row in each scenario is the procedure with the smallest EθN .

# True H(j) Procedure EθN SE k1-FWER1(θ) k2-FWER2(θ) EθN Savings
J = 500, k1 = k2 = 25

100

SeqD 40.22 0.09 0.003 0.053 48%
SeqU 47.58 0.11 0.006 0.021 54%
FixD 77 0.003 0.053
FixU 103 0.002 0.053

250

SeqD 38.79 0.04 0.018 0.060 56%
SeqU 44.79 0.05 0.003 0.018 56%
FixD 89 0.006 0.059
FixU 101 0.001 0.060

400

SeqD 33.62 0.09 0.009 0.059 60%
SeqU 37.10 0.11 0.011 0.057 60%
FixD 85 0.037 0.060
FixU 93 0.002 0.059

gardless of dependence between data streams. We have given both stepdown and

stepup procedures for controlling the tail probabilities of FDP and k-FWER, as

well as their type II versions. In the numerical studies of their performance in

Section 6 in the setting of highly positively correlated Gaussian data streams

we found that, in terms of achieving smaller expected sample size, the stepup

procedures performed better for controlling FDP, and the stepdown procedures

performed better for controlling k-FWER. Although this study was limited to the

specific setting of testing hypotheses about the means of Gaussian data streams

with covariance matrix (6.2), these are our working recommendations for what

to use in practice until further study is possible.

The simulation studies also show the procedures to be highly conservative

in the situation considered, in terms of having generalized error rates substan-

tially smaller than the prescribed values α and β. However, it is apparent that

this is not related to the sequential nature of the procedures proposed here be-

cause the fixed sample versions also have this property and even more so. This

is not surprising since the error rates tend to decrease as sample size increases

and efficient sequential procedures will have smaller expected sample sizes than
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their fixed sample counterparts. On the other hand, the results of Lehmann

and Romano (2005) and Romano and Shaikh (2006a) (see Remarks 4, 7, and 9)

show that the error bounds are indeed “sharp” and cannot be improved without

more restrictive assumptions on the joint distribution of the data streams. Less

conservative error control (or equivalently, more efficiency in terms of smaller

expected sample sizes) may be possible by assumptions about (or direct modeling

of) this joint distribution, which was not the focus of this paper but may be a

fruitful area of future work.

Our procedures, as well as those in Bartroff and Song (2014a,b) for FDR/FNR

and type I/II FWER control, are all special cases of the generic sequential pro-

cedures in Sections 3.1.1 and 3.2.1 and all use the same step values as the cor-

responding fixed sample size procedures: the Bartroff and Song (2014a,b) pro-

cedures utilize the same step values as the Benjamini and Hochberg (1995) and

Holm (1979) procedures, respectively, and the procedures in this paper utilize the

step values of Lehmann and Romano (2005) and Romano and Shaikh (2006a,b).

Thus, the theme that emerges from this body of work is that, with the appropri-

ate care, fixed sample size step values can be used with the suitable sequential

test.

Supplementary Materials

Proofs and auxiliary results for this paper appear in an online supplement.
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