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Abstract: The Hochberg (1988) procedure is commonly used in practice to test

multiple hypotheses based on their p-values. It is a conservative step-up shortcut

to the closed procedure (Marcus, Peritz and Gabriel (1976)) based on the Simes

(1986) test. The Simes test is anti-conservative if the test statistics are negatively

dependent in a certain sense. So practitioners are reluctant to use the Hochberg

procedure under this condition and prefer to use the less powerful Holm (1979) pro-

cedure, which requires no dependence assumptions. But the Hochberg procedure

is conservative by construction, so we may conjecture that it will remain so under

certain types of negative dependence. In this paper we show that a slightly mod-

ified version of the Hochberg procedure controls the familywise type I error rate

(FWER) if the p-values follow a multivariate uniform distribution which is a mix-

ture of bivariate components each of which is negative quadrant dependent (NQD)

(Lehmann (1966)) or positive dependent through stochastic ordering (PDS) (Block,

Savits and Shaked (1985)). By negative dependence we will mean this distribution

model, in particular, that its negatively dependent bivariate components are NQD.

Simulations suggest that conservatism of the Hochberg procedure is likely to be

true for more general negatively dependent distributions.

Key words and phrases: Familywise type I error rate, multiple comparisons, multi-

variate uniform distribution, negative/positive quadrant dependence, negative/positive

dependence through stochastic ordering, simes test.

1. Introduction

Consider the problem of testing n ≥ 2 null hypotheses, H1, . . . ,Hn, based

on their observed p-values, p1, . . . , pn. Denote the corresponding random vari-

ables (r.v.’s) by P1, . . . , Pn. We restrict to multiple test procedures which satisfy

the following strong type I FWER control requirement (Hochberg and Tamhane

(1987)):

FWER = Pr (Reject at least one true Hi) ≤ α, (1.1)

for a given α ∈ (0, 1) under any combination of the true and false Hi’s.

The Holm (1979) procedure for this problem is a step-down shortcut to the

closed procedure (Marcus, Peritz and Gabriel (1976)) based on the Bonferroni
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test, that is used as the local α-level test for every nonempty intersection hypoth-

esis H(I) =
⋂

i∈I Hi for I ⊆ {1, . . . , n}. The Simes (1986) test is more powerful

than the Bonferroni test and so its use as a local test in the closed procedure

results in a more powerful multiple test procedure, the Hommel (1988) procedure.

The Hochberg (1988) procedure is a conservative shortcut to the Hommel

procedure, but is uniformly more powerful than the Holm procedure. Its testing

algorithm is as simple as that of the Holm procedure: Denote by p(1,n) ≤ · · · ≤
p(n,n) the ordered p-values, by P(1,n) ≤ · · · ≤ P(n,n) the corresponding r.v.’s, and

by H(1,n), . . . ,H(n,n) the corresponding null hypotheses. At step 1, if p(n,n) ≤ α

then reject all hypotheses and stop testing; otherwise retain H(n,n) and go to

step 2. In general, at step i = 1, . . . , n − 1, if p(n−i+1,n) ≤ α/i then reject

H(n−i+1,n), . . . ,H(1,n) and stop testing; otherwise retain H(n−i+1,n) and go to

step i + 1. At step n, reject H(1,n) if p(1,n) ≤ α/n, else accept H(1,n) and stop

testing. The Hochberg procedure is more commonly used in practice than the

Hommel procedure because of its simplicity even though it is slightly less powerful

(Dunnett and Tamhane (1993)).

The Bonferroni test does not make any assumptions on the joint distribution

of the test statistics. While the Simes test is derived under the independence

assumption. Sarkar (1998) has shown that the Simes test is conservative if the

test statistics associated with the p-values have a multivariate totally positive

of order 2 (MTP2) distribution (Karlin and Rinott (1980)). Hochberg and Rom

(1995) previously proved this result for the bivariate case. The special case

of the bivariate normal distribution was studied by Samuel-Cahn (1996), who

showed that the Simes test is conservative if the correlation coefficient of the

distribution is positive, and anti-conservative if it is negative. Block, Savits

and Wang (2008) extended the latter result to the class of negatively dependent

distributions satisfying the so-called N condition introduced in Block, Savits and

Shaked (1982). They further extended the result to the more general class, known

as negatively dependent through stochastic ordering (NDS) class of distributions.

These results cast doubt on the validity of the Hochberg procedure under

negative dependence. So practitioners prefer to use the less powerful Holm pro-

cedure, which is valid without any dependence assumptions, being based on the

Bonferroni test. However, the Hochberg procedure is conservative by construc-

tion and so we may conjecture that it will remain so under certain types of

negative dependence. Such a finding would make it more widely applicable. The

goal of the present paper is to explore this conjecture.

We can restrict attention to one-sided hypotheses since the Simes test has
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been shown to be valid under either positive or negative dependent test statistics

for two-sided hypotheses by Sarkar (1998) and Block et al. (2013). Under one-

sided null hypotheses Hi : θi ≤ θi0, we have Pr(Pi ≤ pi) ≤ pi (1 ≤ i ≤ n). If

monotone likelihood ratio (MLR) tests are used to test these hypotheses then,

according to the Karlin-Rubin theorem (see Theorem 8.3.17 in Casella and Berger

(2002)), the maximum type I error is achieved at θi = θi0, where Pr(Pi ≤ pi) =

pi (1 ≤ i ≤ n). Thus we may assume that the Pi’s are uniformly distributed

on [0, 1] (denoted by Pi ∼ U [0, 1]) under the respective Hi’s (1 ≤ i ≤ n). The

main result of the paper in Theorem 1 can be shown to be valid under the more

general assumption that Pr(Pi ≤ pi) ≤ pi (1 ≤ i ≤ n).

The Hochberg procedure itself cannot be shown to be conservative under

negative dependence. This is known for n = 2 since the Simes test is anti-

conservative in this case; we show that it is also true for n = 3. Therefore we

need to modify the critical constants of the Hochberg procedure for n = 2 and

3 which makes it slightly conservative. We refer to the resulting procedure as

the modified Hochberg (m-Hochberg) procedure. The main result of the paper is

that the m-Hochberg procedure is conservative under negative dependence.

The outline of the paper is as follows. Section 2 gives the steps leading up

to the m-Hochberg procedure. We begin with the Simes test and the Hommel

procedure which is based on it. The Hochberg procedure is obtained as an exact

stepwise shortcut to a closed procedure that is based on a conservative Simes test

(c-Simes test), presented next. To control the FWER of the Hochberg procedure

under negative dependence a slightly modified conservative Simes test (mc-Simes

test) must be used as a local test of intersection hypotheses in a closed procedure,

the resulting step-up shortcut being the m-Hochberg procedure. Section 3 states

the main result of the paper and the lemmas needed to prove it; the proofs of

the lemmas and the main result are given in Appendix A. Section 4 presents

simulation results that indicate that the Hochberg procedure is conservative un-

der several negatively dependent distributions. Section 5 provides a discussion of

tests of the NQD assumption and some concluding remarks. Besides the proof of

the main result, all the supplementary materials are included in the Appendix.

Appendix B describes three multivariate uniform distributions that can be used

to model the joint distribution of the P -values. Appendix C gives definitions

of some concepts of positive and negative dependence. Appendix D gives three

counterexamples to show why some results cannot be extended to a wider class

of dependent distributions.
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2. Modified Hochberg Procedure

We begin with a generalized Simes test defined by Gou and Tamhane (2014).

It rejects H0 =
⋂n

i=1Hi at level α if

p(n−i+1,n) ≤ cniα for at least one i = 1, . . . , n. (2.1)

Suppose this test is used as an α-level local test of every intersection hypothesis

H(I) =
⋂

i∈I Hi of a closed testing procedure, and that its critical constants

(modulo a common multiplying factor α) are laid out in the form of a lower

triangular matrix, referred to as the critical matrix,
c11
c21 c22
c31 c32 c33
...

...
...

. . .

cn1 cn2 · · · · · · cnn

 .
Liu (1996) showed that if every column of this matrix has equal entries then that

closed procedure has a step-up shortcut with its critical constants given by the

last row of the matrix. (Similarly, if every row has equal entries then the closed

procedure has a step-down shortcut with its critical constants given by the first

column.)

The Simes test uses cji = (j − i+ 1)/j for 1 ≤ i ≤ j ≤ n, which control the

α level exactly under independence. The critical matrix for the Simes test does

not have either constant rows or constant columns and so the closed procedure

based on it does not have a simple step-up or step-down shortcut, that procedure

being the Hommel (1988) procedure.

The c-Simes test uses constant column entries cji = ci = 1/i for 1 ≤ i ≤
j ≤ n. Since 1/i ≤ (j − i + 1)/j, with equalities if and only if i = 1 and i = j,

it is clear that the c-Simes test is conservative compared to the Simes test for

n > 2; for n = 2 the two tests are identical. The Hochberg procedure is the exact

step-up shortcut to the closed procedure based on the c-Simes test. In fact, it

is most easily derived in this way rather than as a conservative shortcut to the

Hommel procedure.

Unfortunately, the c-Simes test does not control the type I error for n = 2

and n = 3 under negative dependence. Since local tests of intersection hypotheses

of all cardinalities n ≥ 1 must be of level α in order that the resulting closed

procedure controls the FWER requirement (1.1), we need to modify the critical

constants c2 and c3 of the c-Simes test. In Lemma 4 we show that these modified
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critical constants are

c2 =
1

2
− α

2
and c3 =

1

3
− α

36
. (2.2)

The other critical constants are the same as those of the c-Simes test, namely,

ci = 1/i. We refer to the resulting test as the mc-Simes test and the exact

step-up shortcut to the closed procedure based on this test as the m-Hochberg

procedure. The m-Hochberg procedure operates in the same way as the Hochberg

procedure, except that it uses the slightly more conservative critical constants c2
and c3 given by (2.2) at steps 2 and 3, respectively. In Section 3 we show that

the mc-Simes test is conservative under negative dependence,

Pr
(
P(n−i+1,n) ≤ ciα for at least one i = 1, . . . , n

)
≤ α, (2.3)

where c2 and c3 are given by (2.2) and all other ci = 1/i. Hence it follows that

the m-Hochberg procedure controls the FWER (1.1).

3. Main Result

Our main result is based on the assumption that the joint multivariate uni-

form distribution of (P1, . . . , Pn) under H0 =
⋂n

i=1Hi is given by the bivariate

mixture model,

f(p1, . . . , pn) =
∑

1≤i<j≤n
wijfij(pi, pj), (3.1)

where fij(pi, pj) is the bivariate p.d.f. of (Pi, Pj), and wij > 0 are the mixing

probabilities that sum to 1. The choice of fij(pi, pj) can be arbitrary.

Theorem 1. The mc-Simes test satisfies (2.3) for α < 2
(
1 +
√

94
)
/31 ≈ 0.69

for all n ≥ 2 under the mixture model (3.1), where each bivariate marginal distri-

bution fij(pi, pj) is either positively dependent through stochastic ordering (PDS)

or negative quadrant dependent (NQD). Hence the m-Hochberg procedure satisfies

(1.1) under the same class of distributions.

Because of (3.1), we only need to consider whether each fij(pi, pj) is pos-

itively dependent or negatively dependent. In practice, some (Pi, Pj) pairs are

positively dependent while others are negatively dependent. In (3.3) we show

that the type I error of the mc-Simes test is a weighted sum of the type I error

probabilities computed under the respective bivariate components of the mixture

distribution. Thus we need to show that each of these bivariate type I error prob-

abilities is ≤ α under either positive dependence or negative dependence. Block,

Savits and Wang (2008) in their Theorem 2 have extended Sarkar’s (1998) result

about the conservatism of the Simes test (and hence also of the mc-Simes test)
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from MTP2 to PDS distributions. This result does not extend to the larger class

of PQD distributions, as shown by a counterexample in Appendix D. Hence from

now on we assume that any positively dependent bivariate component belongs

to the PDS class of distributions. Thus we only need to consider the case of

negatively dependent bivariate components.

For NDS distributions, Block, Savits and Wang (2008) showed that the Simes

test is anti-conservative by using a method of Sarkar (1998). This method re-

quires that the critical constants of the test satisfy that the ratios cn−i+1/i are

non-decreasing in i. This property is satisfied by the Simes critical constants

since cn−i+1 = i/n and so cn−i+1/i is constant = 1/n. As the c-Simes critical

constants, cn−i+1/i = 1/[i(n − i + 1)], are decreasing in i for i ≤ (n + 1)/2 and

increasing in i for i > (n+ 1)/2, we cannot apply Sarkar’s method.

The proof of the main result is achieved through a series of lemmas. From

now on we restrict to generalized Simes tests with a critical matrix having con-

stant column entries ci.

Lemma 1. If the type I error probability of a generalized Simes test is

P [n;Cn|α] ≡ Pr

(
n⋃

i=1

{
P(n−i+1:n) ≤ ciα

})
, (3.2)

where Cn = {c1, . . . , cn}, then under (3.1),

P [n;Cn|α] =
∑

1≤i<j≤n
wijPij [n;Cn|α] , (3.3)

where Pij [n;Cn|α] is the same probability as in (3.2), but calculated under fij.

We have an induction formula for Pij [n;Cn|α].

Lemma 2. Under (3.1), we have

Pij [n;Cn|α] = cnα+

n∑
k=1

α (ck−1 − ck)Pij [n− 1;Cn\ {ck} |α] , (3.4)

where c0 = 1/α and Cn\ {ck} = {c1, . . . , ck−1, ck+1, . . . , cn}.

Lemma 3. If the critical constants are ci = 1/i (1 ≤ i ≤ n) then

P [n− 1;Cn−1|α] ≤ α =⇒ P [n;Cn|α] ≤ α.

Remark 1. This lemma uses the c-Simes test critical constants, ci = 1/i (1 ≤
i ≤ n). In Lemma 4 we show that we need to choose c2 < 1/2 and c3 < 1/3 in

order to control Pij [n;Cn|α] ≤ α under all bivariate NQD distributions. Thus,

for n = 2 and 3, ci = 1/i is not satisfied and Lemma 3 does not apply. In
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Lemma 5 we show that for n = 4, the inequality is satisfied under the NQD

assumption for c4 = 1/4 if α < 0.69. Thus we can then apply Lemma 3 and

conclude that, because the modified values of c2 and c3 are more conservative

than 1/2 and 1/3, respectively, the inequality is satisfied for all n ≥ 2.

Lemma 4. For n = 2, if the distribution of (P1, P2) is NQD then

P [2;C2|α] ≤ 2c2α+ c21α
2. (3.5)

With c1 = 1, the mc-Simes test satisfies (2.3) if c2 is given by (2.2). For n = 3,

if the distribution of (P1, P2, P3) is NQD then

P [3;C3|α] ≤ 3c3α+ c2(3c2 − 4c3)α
2 + c1(c

2
1 − c22 − c1c3)α3. (3.6)

With c1 = 1 and c2 = (1− α)/2, the mc-Simes test satisfies (2.3) if

c3 =

(
1− α

3

)[
1 + (α/4) + α2 − (α3/4)

1− (2α/3) + (α2/3)

]
. (3.7)

For practical application we recommend a slightly more conservative but

simpler lower bound on c3 given by (2.2). This bound is valid when α < (22 −√
367)/9 ≈ 0.31. For α = 0.05, we get c2 = 0.475 from (2.2) and c3 = 0.3322

from (3.7). If we use (2.2) then we get c3 = 0.3319.

Lemma 5. For n = 4, if the distribution of (P1, P2, P3, P4) is NQD and c1 =

1, c2 = 1/2− α/2, c3 = 1/3− α/36 and c4 = 1/4 then

P [4;C4|α] ≤ α− 1

6
α2 +

1

18
α3 +

31

72
α4.

This upper bound is < α if α < 2
(
1 +
√

94
)
/31 ≈ 0.69 and so P [4;C4|α] < α.

4. Simulation Study

We performed simulations of the type I error rate of the c-Simes test under

the three distribution models given in Appendix B, for n = 3, 5 and 7, using

MATLAB. Since the mc-Simes test is more conservative than the c-Simes test, it

controls the type I error if the c-Simes test does. We chose the parameters of the

three distribution models so that they had the same correlations among the Pi’s.

Toward this end, we chose the BU model as the reference model, then chose the

parameters of the other two models to match with the BU model correlations.

Each simulation consisted of 109 replications, which gives four decimal place

accuracy. Simulation results for the equicorrelated normal model are given in

Table 1. Simulation results for the other models are given in Table 2.

4.1. Distribution models

The multivariate uniform distribution models used for simulation are ex-
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plained in Appendix B.

Bernoulli-Uniform (BU) Model: Here we chose πi = 0.5 − δ for i ≤ m and

πi = 0.5 + δ for i > m, where m = bn/2c and δ = 0.1, 0.25, 0.4; thus πi = 0.4 or

0.6, 0.25 or 0.75, and 0.1 or 0.9. We took β to be 0.1, 0.3 and 0.5 (the correlations

given by (B.4) are symmetric around β = 0.5, so we need not consider β > 0.5).

From (B.4) we get ρij = ±ρ = ±12β(1 − β)δ2 (1 ≤ i < j ≤ n), positive if

i, j ≤ m or i, j > m, and negative if i ≤ m and j > m. Thus m(n −m) of the

ρij are < 0 and the remaining
(
n
2

)
−m(n−m) of the ρij are > 0. Table 2 gives

the values of ±ρ for different combinations of β and δ.

Multivariate Normal (MVN) Model: For this model we studied product correla-

tion and equal correlation. The parameters of the product correlation model were

chosen to match the correlations for the BU model. Specifically, Corr(Zi, Zj) =

γij = λiλj where λi ∈ (−1, 1). We set λi = −λ for i ≤ m and λi = +λ for

i > m, where m = bn/2c so that γij = γ = λ2 if i, j ≤ m or i, j > m and

γij = −γ = −λ2 if i ≤ m and j > m. Then we numerically solved for γ from the

equation h(γ) = ρ, where h(·) is defined in (B.1). The γ-values for the product

correlation model are listed in Table 2. For the equal correlation model we chose

γ = −0.1/(n − 1),−0.5/(n − 1) and −0.9/(n − 1), representing small to large

negative correlations, where −1/(n− 1) is the maximum negative correlation for

given n.

Ferguson Model: To match the pairwise correlations ρij = ±ρ given in Table 2

we chose the positive dependence Ferguson distribution with gij(x) = U [0, θ] if

i, j ≤ m or i, j > m and the negative dependence Ferguson distribution with

gij(x) = U [1 − θ, 1] if i ≤ m and j > m. Then we chose θ to solve ρ =

wij(1− θ)(1 + θ − θ2), where wij = 1/
(
n
2

)
. A solution in θ does not exist to this

equation if (1−θ)(1+θ−θ2) > 1/
(
n
2

)
. These cases are marked as N/A in Table 2.

To see whether the type I error control is still maintained if the distribution gij(x)

is other than the uniform distribution, we chose the beta distribution on [0, 1] with

parameters (r, s) (denoted by B(r, s)). We chose (r, s) to match the mean and

correlation of the Ferguson distribution with that obtained using gij(x) = U [0, θ]

if i, j ≤ m or i, j > m if ρ is positive, and gij(x) = U [1 − θ, 1] if i ≤ m and

j > m if ρ is negative. The kth moment of the B(r, s) distribution is given

by E(Xk) = (Γ(r + k)Γ(r + s))/(Γ(r)Γ(r + s+ k)). Using this formula we get

the following expressions for its mean and correlation: E[B(r, s)] = r/(r + s)

and ρ = 1 − (2r(r + 1)(r + 3s+ 2))/((r + s)(r + s+ 1)(r + s+ 2)). Equating

E[B(r, s)] to θ/2 or 1−θ/2, and ρ to (1−θ)(1+θ−θ2) or to −(1−θ)(1+θ−θ2)
we get solutions to the resulting equations. For ρ > 0:



HOCHBERG PROCEDURE UNDER NEGATIVE DEPENDENCE 347

Table 1. Simulated type I error (%) of the c-Simes test for equicorrelated MVN model.

n Corr(Zi, Zj) = γ Corr(Pi, Pj) = ρ Type I Error (%)
−0.0500 −0.0478 4.957

3 −0.2500 −0.2394 4.994
−0.4500 −0.4334 5.000
−0.0250 −0.0239 4.923

5 −0.1250 −0.1194 4.967
−0.2250 −0.2153 4.988
−0.0167 −0.0159 4.909

7 −0.0833 −0.0796 4.949
−0.1500 −0.1434 4.973

r =
3
√

1− θ
2

(
√

1− θ +

√
1− 5θ

9

)
and s =

2− θ
θ

r

and for ρ < 0:

s =
3
√

1− θ
2

(
√

1− θ +

√
1− 5θ

9

)
and r =

2− θ
θ

s.

Here r < s for ρ > 0 and r > s for ρ < 0. In Table 2, (r, s) has r < s. We use

the B(r, s) distribution for g(x) to obtain ρ > 0, and the B(s, r) distribution for

g(x) to obtain ρ < 0, for any given pair (r, s).

4.2. Simulation results

From Tables 1 and 2 we see that the type I error is controlled at the 5% level

in all cases studied. The dependence of the type I error on the correlation is most

clearly seen in Table 1 for the equicorrelated normal model since all correlations

are equal and negative in each case. We see that for each n, as the common

correlation decreases, the type I error increases, approaching 5% for n = 3 with

common correlation γ = −0.45. Even across different values of n, the type I error

generally increases as γ decreases.

5. Discussion

Positive dependence is more common in practice than negative dependence.

For example in clinical trial applications, multiple efficacy endpoints are gener-

ally positively correlated. However, regulatory agencies require them to be not

too highly correlated since otherwise they would be proxies of each other. Thus

some independent efficacy endpoints end up with small negative correlations due

to sampling errors. A situation where efficacy endpoints may be negatively cor-
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Table 2. Simulated type I error (%) of the c-Simes test for BU, MVN and bivariate
mixture models.

BU Model Normal Model Beta Model
Corr.

Type I Error (%)
Parameters Parameter Parameters Product-Corr.

BU
Ferguson Ferguson

n β δ ±γ r s ρ Normal Uniform Beta

0.1 0.1 ±0.0113 0.2279 0.2427 ±0.0108 4.940 4.855 4.954 4.778
0.3 0.1 ±0.0264 0.3843 0.4429 ±0.0252 4.941 4.929 4.951 4.857
0.5 0.1 ±0.0314 0.4293 0.5076 ±0.0300 4.941 4.941 4.951 4.873
0.1 0.25 ±0.0707 0.7297 1.0431 ±0.0675 4.942 4.838 4.950 4.933

3 0.3 0.25 ±0.1647 1.3249 2.9646 ±0.1575 4.944 4.927 4.948 4.953
0.5 0.25 ±0.1960 1.5159 4.0053 ±0.1875 4.944 4.945 4.947 4.954
0.1 0.4 ±0.1807 1.4220 3.4564 ±0.1728 4.944 4.815 4.947 4.954
0.3 0.4 ±0.4191 N/A N/A ±0.4032 4.944 4.929 N/A N/A
0.5 0.4 ±0.4974 N/A N/A ±0.4800 4.942 4.952 N/A N/A

0.1 0.1 ±0.0113 0.4825 0.5887 ±0.0108 4.908 4.742 4.912 4.871
0.3 0.1 ±0.0264 0.8464 1.3116 ±0.0252 4.908 4.887 4.911 4.905
0.5 0.1 ±0.0314 0.9548 1.5994 ±0.0300 4.908 4.908 4.911 4.908
0.1 0.25 ±0.0707 1.7630 5.9142 ±0.0675 4.909 4.728 4.908 4.915

5 0.3 0.25 ±0.1647 N/A N/A ±0.1575 4.910 4.887 N/A N/A
0.5 0.25 ±0.1960 N/A N/A ±0.1875 4.910 4.912 N/A N/A
0.1 0.4 ±0.1807 N/A N/A ±0.1728 4.910 4.719 N/A N/A
0.3 0.4 ±0.4191 N/A N/A ±0.4032 4.903 4.890 N/A N/A
0.5 0.4 ±0.4974 N/A N/A ±0.4800 4.897 4.919 N/A N/A

0.1 0.1 ±0.0113 0.7878 1.1717 ±0.0108 4.898 4.713 4.899 4.895
0.3 0.1 ±0.0264 1.4449 3.5832 ±0.0252 4.899 4.874 4.898 4.900
0.5 0.1 ±0.0314 1.6624 5.0409 ±0.0300 4.899 4.895 4.897 4.900
0.1 0.25 ±0.0707 N/A N/A ±0.0675 4.899 4.702 N/A N/A

7 0.3 0.25 ±0.1647 N/A N/A ±0.1575 4.898 4.874 N/A N/A
0.5 0.25 ±0.1960 N/A N/A ±0.1875 4.897 4.899 N/A N/A
0.1 0.4 ±0.1807 N/A N/A ±0.1728 4.898 4.697 N/A N/A
0.3 0.4 ±0.4191 N/A N/A ±0.4032 4.885 4.876 N/A N/A
0.5 0.4 ±0.4974 N/A N/A ±0.4800 4.878 4.905 N/A N/A

related is when one of the endpoints is a censoring event such as death, which

censors the occurrence of other morbidity outcomes such as number of hospi-

talizations or strokes or heart attacks. Thus increase in the number of deaths

tends to decrease these outcomes. Another example in diabetes the efficacy mea-

sures such as A1c and fasting serum glucose level and body weight are negatively

correlated, i.e., drops in sugar levels are accompanied by gains in body weight;

see http://www.health.com/health/gallery/0,,20545602,00.html. The ef-

ficacy and safety endpoints are often negatively correlated because if a drug is

administered at a higher dose it is more effective, but also has possible adverse

side-effects.

To conclude, we have analytically shown that the mc-Simes test and hence

http://www.health.com/health/gallery/0,,20545602,00.html
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the m-Hochberg procedure continues to be conservative under the class of bivari-

ate mixture models where each bivariate component is either PDS or NQD. We

have verified this result by simulation for other selected distributions for the less

conservative c-Simes test, on which the original Hochberg procedure is based.

Therefore the use of the Hochberg procedure can be advocated for negatively

correlated test statistics for many cases of practical interest. An important in-

teresting topic for future research is to extend the results of this paper to the

class of MVN distributions defined in Appendix B.

Appendix

A. Proof of the Main Result

Proof of Lemma 1

Proof. Let R =
⋃n

i=1

{
P(i:n) ≤ cn−i+1α

}
denote the rejection region of the mc-

Simes test. Then

P [n;Cn|α] =

∫
· · ·
∫
R
f (p1, . . . , pn) dp1 · · · dpn

=

∫
· · ·
∫
R

∑
1≤i<j≤n

wijfij(pi, pj)dp1 · · · dpn

=
∑

1≤i<j≤n
wij

∫
· · ·
∫
R
fij(pi, pj)dp1 · · · dpn

=
∑

1≤i<j≤n
wijPij [n;Cn|α] .

In the following, for the most part we use the critical constants ci = 1/i,

although some results are true for more general critical constants ci’s satisfying

1 = c1 > · · · > cn.

Proof of Lemma 2

Proof. For n = 2, the formula (3.4) is true under independence, as follows. First

from Figure 1, by direct computation we get

P [2;C2|α] = Pr
(
{P(2,2) ≤ c1α} ∪ {P(1,2) ≤ c2α}

)
= Pr (P1 ≤ c1α, P2 ≤ c1α) + 2 Pr (c1α ≤ P1 ≤ 1, P2 ≤ c2α)

= 2c2α(1− c1α) + c21α
2.

Next we check that using (3.4) we get the same expression:

P [2;C2|α] = c2α+

2∑
k=1

α(ck−1 − ck)P [1;C2\{ck}|α]



350 JIANGTAO GOU AND AJIT C. TAMHANE

0 1

1

c2α c1α

c2α

c1α

P2

P1

Figure 1. Rejection region of the generalized Simes test for n = 2.

P3 P1

P2

Figure 2. Rejection region
{
P(3:3) ≤ c1α

}
∪
{
P(2:3) ≤ c2α

}
∪
{
P(1:3) ≤ c3α

}
.

= c2α+ α(c0 − c1) Pr(P1 ≤ c2α) + α(c1 − c2) Pr(P1 ≤ c1α)

= c2α+ (1− c1α)c2α+ (c1 − c2)c1α2

= 2c2α(1− c1α) + c21α
2.

If c1 = 1, c2 = 1/2 then P [2;C2|α] = α, as expected.

For n = 3, the rejection region is shown in Figure 2 and the four slices of

this rejection region obtained by conditioning on P3 are shown in Figure 3.

If (P1, P2, P3) follows the bivariate mixture model (3.1), then Pk for k 6= i, j is

independent of (Pi, Pj) and is U [0, 1]. So by conditioning on Pk, we can evaluate

the type I error probability in terms of fij(pi, pj). For example, if (i, j) = (1, 2)

and k = 3, by conditioning on P3 to each of the four slices of the rejection region

shown in Figure 3, we can write
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c1α ≤ P3 ≤ 1 c2α ≤ P3 ≤ c1α c3α ≤ P3 ≤ c2α 0 ≤ P3 ≤ c3α

Figure 3. Slices of the rejection region in Figure 2 along the P3-axis.

P12 [3;C3|α] = Pr
({
P(3:3) ≤ c1α

}
∪
{
P(2:3) ≤ c2α

}
∪
{
P(1:3) ≤ c3α

})
= (1− c1α) Pr

({
P(2:2) ≤ c2α

}
∪
{
P(1:2) ≤ c3α

})
+ (c1α− c2α) Pr

({
P(2:2) ≤ c1α

}
∪
{
P(1:2) ≤ c3α

})
+ (c2α− c3α) Pr

({
P(2:2) ≤ c1α

}
∪
{
P(1:2) ≤ c2α

})
+ (c3α− 0)× 1. (A.1)

This probability depends on the joint distribution f12 of (P1, P2) since each of the

bivariate probability terms in the above expression involve the order statistics

P(1:2) and P(2:2) of (P1, P2); as such we denote this probability by P12. The

bivariate probability of the slice for 0 ≤ P3 ≤ c3α is 1 because in that slice,

(P1, P2) lies in the unit square. The terms in (A.1) can be rearranged to obtain

P12 [3;C3|α] = c3α+

3∑
k=1

α (ck−1 − ck)P12 [2;C3\ {ck} |α] ,

where c0 = 1/α.

Slicing the rejection region by conditioning on one of the Pi’s for different

ranges of its values, and writing the type I error probability in terms of the

remaining Pj ’s can be applied in higher dimensions. As a further example, for

n = 4 the expression for any bivariate distribution fij can be written as

Pij [4;C4|α] = Pr({P(4:4) ≤ α} ∪ {P(3:4) ≤ c2α} ∪ {P(2:4) ≤ c3α} ∪ {P(1:4) ≤ c4α})
= (1− c1α) Pr({P(3:3) ≤ c2α} ∪ {P(2:3) ≤ c3α} ∪ {P(1:3) ≤ c4α})

+ (c1α− c2α) Pr({P(3:3) ≤ c1α} ∪ {P(2:3) ≤ c3α} ∪ {P(1:3) ≤ c4α})
+ (c2α− c3α) Pr({P(3:3) ≤ c1α} ∪ {P(2:3) ≤ c2α} ∪ {P(1:3) ≤ c4α})
+ (c3α− c4α) Pr({P(3:3) ≤ c1α} ∪ {P(2:3) ≤ c2α} ∪ {P(1:3) ≤ c3α})
+ (c4α− 0)× 1, (A.2)
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which is obtained by conditioning on, say, P`, and where P(1:3) ≤ P(2:3) ≤ P(3:3)

are the order statistics of (Pi, Pj , Pk) for i 6= j 6= k 6= `. Upon further conditioning

on Pk, each of the trivariate probability terms can be written in terms of the order

statistics of (Pi, Pj). We denote the above expression by Pij and rearrange it to

obtain

Pij [4;C4|α] = c4α+

4∑
k=1

α (ck−1 − ck)Pij [3;C4\ {ck} |α] ,

where c0 = 1/α. Generalizing this derivation to any n completes the proof of the

lemma.

Proof of Lemma 3

Proof. Let Cn = {1, 1/2, . . . , 1/n} and Cn−1 = {1, 1/2, . . . , 1/(n− 1)}. Assume

the induction hypothesis. Then we get

Pij [n− 1;Cn\ {1} |α] = Pij

[
n− 1;

{
1

2
,
1

3
, . . . ,

1

n− 1
,

1

n

}∣∣∣∣α]
≤ Pij

[
n− 1;

{
n− 1

n
,
n− 1

2n
, . . . ,

n− 1

n (n− 2)
,

1

n

}∣∣∣∣α]
= Pij

[
n− 1;

{
1,

1

2
, . . . ,

1

n− 2
,

1

n− 1

}∣∣∣∣ (n− 1

n

)
α

]
≤
(
n− 1

n

)
α.

The first inequality holds since 1/i ≤ (n − 1)/[n(i − 1)] for 2 ≤ i ≤ n, the

second equality holds since Pij [n; {dc1, . . . , dcn}|α] = Pij [n; {c1, . . . , cn}|dα] for

any constant d > 0 such that dα ≤ 1. The last inequality holds because of the

induction hypothesis.

For k ≥ 2, Pij [n− 1;Cn\ {ck} |α] ≤ Pij [n− 1;Cn−1|α] ≤ α since the first

k − 1 elements of Cn\ {ck} and Cn−1 are the same and c` < c`−1 for ` = k +

1, . . . , n. We then have

Pij [n;Cn|α] = cnα+

n∑
k=1

α (ck−1 − ck)Pij [n− 1;Cn\ {ck} |α]

=
α

n
+ α(c0 − c1)P [n− 1;Cn\ {c1} |α]

+

n∑
k=2

α

(
1

k − 1
− 1

k

)
Pij

[
n− 1;Cn\

{
1

k

}
|α
]

≤ α

n
+ α (1− α)

(
n− 1

n

)
+

n∑
k=2

α2

(
1

k − 1
− 1

k

)



HOCHBERG PROCEDURE UNDER NEGATIVE DEPENDENCE 353

(since α(c0 − c1) = α(
1

α
− 1) = 1− α)

= α

[
1

n
+ (1− α)

n− 1

n
+

n∑
k=2

α

(
1

k − 1
− 1

k

)]

= α

[
1

n
+

(
n− 1

n

)
− α

(
n− 1

n

)
+ α

(
1− 1

n

)]
= α.

Proof of Lemma 4

Proof. First consider n = 2 with rejection region as shown in Figure 1. The

Bonferroni upper bound on the type I error of the generalized Simes test can be

obtained by adding the probabilities of the three overlapping subregions of this

rejection region:

Pr (Reject H0) = Pr
{{
P(2,2) ≤ c1α} ∪ {P(1,2) ≤ c2α

}}
≤ Pr{P1 ≤ c2α) + Pr(P2 ≤ c2α) + Pr({P1 ≤ c1α} ∩ {P2 ≤ c1α}}
= 2c2α+ Pr{{P1 ≤ c1α} ∩ {P2 ≤ c1α}}
≤ 2c2α+ c21α

2,

where the last step follows from the NQD property of (P1, P2). If we set c1 = 1

and set the above upper bound to α then we get the equation 2c2α + α2 = α,

which gives c2 = (1− α)/2.

Next consider n = 3. Each of the probability terms in (A.1) is a bivariate

probability to which we can apply the upper bound (3.6) to get

Pr (Reject H0) ≤ (1− c1α)
(
2c3α+ c22α

2
)

+ (c1α− c2α)
(
2c3α+ c21α

2
)

+ (c2α− c3α)
(
2c2α+ c21α

2
)

+ c3α

= 3c3α+ α2c2 (3c2 − 4c3) + α3c1
(
c21 − c22 − c1c3

)
. (A.3)

By substituting c1 = 1, c2 = 1/2, and c3 = 1/3, this upper bound is α+1/12α2+

5/12α3 > α, so the c-Simes test cannot be shown to control the type I error for

n = 3 under all NQD distributions.

Putting c1 = 1 and c2 = 1/2−α/2 in the upper bound, setting it equal to α

and solving for c3, we get

c3 =

(
1− α

3

)[
1 + α/4 + α2 − α3/4

1− (2α)/3 + α2/3

]
.

This value of c3, along with c1 = 1, c2 = 1/2 − α/2, controls the type I error of

the mc-Simes test under the NQD assumption. A slightly more conservative but

simpler lower bound is c3 = 1/3− α/36 when α <
(
22−

√
367
)
/9 ≈ 0.31.
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Proof of Lemma 5

Proof. Each of the terms in (A.2) is a trivariate probability to which the upper

bound in (A.3) can be applied. Substituting ci = 1/i we get

Pr (Reject H0) ≤ (1− α)

(
3

4
α+

1

144
α3

)
+
α

2

(
3

4
α+

23

36
α3

)
+
α

6

(
3

4
α+

1

4
α2 +

1

2
α3

)
+
α

12

(
α+

1

12
α2 +

5

12
α3

)
+
α

4

= α− 1

6
α2 +

1

18
α3 +

31

72
α4.

It is easy to check that if α < (2(1 +
√

94))/31 ≈ 0.69 then −1/6α2 + 1/18α3 +

31/72α4 < 0, so Pr (Reject H0) < α.

Proof of Theorem 1

Proof. From (3.3), it is sufficient to show that Pij [n;Cn|α] ≤ α. We have dis-

posed of the case where fij(pi, pj) is a PDS distribution, so it remains to deal

with the case where fij(pi, pj) is an NQD distribution. We have shown that this

inequality holds for n = 2 and 3 if c1 = 1, and c2 and c3 are modified as in (2.2).

In Lemma (5) we have shown that this inequality holds for n = 4 and c4 = 1/4.

Then by applying the induction result of Lemma 3, the inequality holds for all

n. Hence

Pr (Reject H0) =
∑

1≤i<j≤n
wijPij [n;Cn|α] ≤

∑
1≤i<j≤n

wijα = α.

B. Multivariate Uniform Distributions

We say the joint distribution of (P1, . . . , Pn) is multivariate uniform if all

of its marginals are U [0, 1]. In this section we introduce three models which

allow for negative as well as positive dependencies among the Pi’s. The first two

are fully multivariate while the third model is a mixture of bivariate uniform

distributions. The third model allows us to use induction to prove (2.3). For the

first two models we could not obtain analytical proofs, so we used simulations.

B.1. Multivariate normal (MVN) model

Let Z1, . . . , Zn have a multivariate normal distribution with E(Zi) = 0,

Var(Zi) = 1, and Corr(Zi, Zj) = γij (1 ≤ i < j ≤ n). We take Pi = Φ(Zi)

where Φ(·) is the standard normal c.d.f. The Pi’s are marginally U [0, 1] and

Corr(Pi, Pj) = ρij is given by

ρij =
E(PiPj)− E(Pi)E(Pj)√

Var(Pi)Var(Pj)
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Table 3. Correlation∗ between a pair of normal test statistics and their P -values.

γ 0 0.1 0.3 0.5 0.7 0.9 1
ρ = h(γ) 0 0.0955 0.2876 0.4826 0.6829 0.8915 1

∗ For negative correlations the same relationship holds except for change of sign.

=

∫∞
−∞

∫∞
−∞Φ(zi)Φ(zj)φ(zi, zj |γij)dzidzj − (1/2)2

(1/12)

= 12

∫ ∞
−∞

∫ ∞
−∞

Φ(zi)Φ(zj)φ(zi, zj |γij)dzidzj − 3

= h(γij) (say), (B.1)

where φ(·, ·|γ) is the standard bivariate normal p.d.f. with correlation coefficient

γ. It is easy to see that h(γij) is a monotone, anti-symmetric function of γij
with h(−γij) = −h(γij). Specifically, sign(ρij) = sign(γij). Table 3 gives selected

values of γij = γ and ρij = ρ = h(γ).

B.2. Bernoulli-uniform (BU) model

This model is an extension of the model proposed by Samuel-Cahn (1996).

Let X1, . . . , Xn be i.i.d. U [0, β], and Y1, . . . , Yn be i.i.d. U [β, 1] r.v.’s with the

Xi’s and the Yi’s mutually independent and where β ∈ (0, 1) is fixed. Let Z be

a Bernoulli r.v. with success probability β independent of both the Xi’s and the

Yi’s, and

Ui = XiZ + Yi(1− Z), i = 1, . . . , n. (B.2)

Then the Ui ∼ U [0, 1]. Next let the Vi’s be independent Bernoulli r.v.’s, also

independent of the Ui’s, with success probabilities πi (1 ≤ i ≤ n), and let

Pi = UiVi + (1− Ui)(1− Vi), i = 1, . . . , n. (B.3)

Then it is not difficult to show that the Pi’s have a multivariate uniform distri-

bution on [0, 1]n with

Corr(Pi, Pj) = ρij = 3β(1− β)(2πi − 1)(2πj − 1), i, j = 1, . . . , n, i 6= j. (B.4)

Here all ρij are between −3/4 and 3/4. Both bounds are attained when β = 1/2.

The lower bound is attained when (πi, πj) = (1, 0) or (0, 1) and the upper bound

is attained when (πi, πj) = (1, 1) or (0, 0). Furthermore, ρij > 0 if both πi and

πj are > 1/2 or < 1/2 and ρij ≤ 0 otherwise.

B.3. Ferguson distribution

Ferguson (1995) proposed a new bivariate uniform distribution and extended
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Figure 4. Region of support and corresponding p.d.f.’s for Ferguson’s bivariate uniform
distribution model (B.5) with g(x) = U [0, θ] resulting in positive correlation (left panel)
and g(x) = U [1− θ, 1] resulting in negative correlation (right panel).

it to the multivariate setting by using the bivariate mixture model (3.1). Let X

be any continuous r.v. with p.d.f. g(x) on an interval I ⊆ [0, 1], and let the p.d.f.

of (P1, P2) be given by

f(p1, p2) =
1

2
[g(|p1 − p2|) + g(1− |1− (p1 + p2)|)] for p1, p2 ∈ [0, 1]. (B.5)

Then (P1, P2) has a bivariate uniform distribution on the unit square [0, 1]2.

Further, Corr(P1, P2) equals

ρ = 1− 6E(X2) + 4E(X3). (B.6)

A convenient choice for g(x) is U [0, θ] or U [1 − θ, 1], where θ ∈ [0, 1]. The

former choice yields a positive correlation while the latter yields a negative cor-

relation. Using (B.6) it is easy to see that

ρ =

{
(1− θ)(1 + θ − θ2) if g(x) = U [0, θ],

−(1− θ)(1 + θ − θ2) if g(x) = U [1− θ, 1].
(B.7)

The regions of support and the corresponding p.d.f.’s f(p1, p2) are shown in

Figure 4. Note that if θ = 1, which corresponds to X ∼ U [0, 1], then ρ = 0,

while if θ = 0 then ρ = +1 if g(x) = U [0, θ], and ρ = −1 if g(x) = U [1 − θ, 1],

which are point mass distributions on (0, 0) and (1, 1), respectively. We use

the mixture distribution in (3.1) with fij(pi, pj) given by (B.5) where gij(x) =

U [0, θij ] or gij(x) = U [1 − θij , 1]. The resulting mixture distribution (3.1) has

ρij = Corr(Pi, Pj) = wijρij where ρij is given by (B.7) with θ = θij .

C. Concepts of Positive and Negative Dependence

There are many different concepts of positive and negative dependence; see
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Joe (1997) for a review. We will mainly use two concepts here. The first is positive

or negative quadrant dependence (PQD or NQD), introduced by Lehmann (1966).

Definition 1. Random variables X1 and X2 are said to be PQD if they satisfy

the inequality

Pr {(X1 ≤ x1) ∩ (X2 ≤ x2)} ≥ Pr (X1 ≤ x1) Pr (X2 ≤ x2) for all x1, x2.

(C.1)

If the above inequality is reversed then X1 and X2 are said to be NQD.

The second dependence concept is that of positive or negative dependence

through stochastic ordering (PDS or NDS) introduced by Block, Savits and

Shaked (1985).

Definition 2. Let ψ(·, . . . , ·) be a function of n− 1 arguments that is increasing

in each of its arguments. A random vector (X1, · · · , Xn) is said to be PDS if

E [ψ (X1, . . . , Xi−1, Xi+1, . . . , Xn) |Xi = xi]

is increasing in xi for all i = 1, · · · , n. If this expected value is decreasing in xi
for all i = 1, · · · , n, then (X1, · · · , Xn) is said to be NDS .

It can be shown that PDS =⇒ PQD; similarly NDS =⇒ NQD. Thus PDS

and NDS are subsets of PQD and NQD classes of distributions, respectively, and

MTP2 is a subset of the PDS class of distributions.

Of the three distributional models of Appendix B, the MVN and the Ferguson

distributions are PQD if the correlation coefficient for each bivariate component

is positive and NQD if it is negative. However, the bivariate BU model is not

necessarily PQD (if ρ > 0) nor NQD (if ρ < 0). Proofs of these results are given

in Gou and Tamhane (2015).

D. Counterexamples

In this section we give three counterexamples. Counterexample 1 gives an

NQD distribution for which the upper bound (3.5) on the probability of type I

error of the c-Simes test based on the critical constants ci = 1/i for n = 2 is sharp,

so c2 needs to be adjusted downwards as given in (2.2). Counterexample 2 gives

an NQD distribution for which the exact probability of type I error of the c-Simes

test based on the critical constants ci = 1/i for n = 3 exceeds α; so c3 needs to

be adjusted downwards as given in (2.2). Finally Counterexample 3 gives a PQD

distribution for which the exact probability of type I error of the mc-Simes test

exceeds α and so we cannot extend the Block, Savits and Wang (2008)’s result

of the conservatism of the c-Simes test from PDS to PQD distributions.



358 JIANGTAO GOU AND AJIT C. TAMHANE

I

I

V

III

III

IV

IV

II

II

0 1

1

c2α c1α

c2α

c1α

1-c2α1-c1α

1-c2α

1-c1α

Figure 5. The region defined in (D.1).

Counterexample 1

Consider a density function f(x1, x2) for (x1, x2) ∈ [0, 1]2, that is symmetric

about the diagonal x1 + x2 = 1, where

f(x1, x2) =

0
0 ≤ x1 < α, 0 ≤ x2 < α/2 and

0 ≤ x1 < α/2, α/2 ≤ x2 < α (Region I),

1

1− α
0 ≤ x1 < α/2, α ≤ x2 < 1− x1 and

0 ≤ x2 < α/2, α ≤ x1 < 1− x2 (Region II),

4 α/2 ≤ x1, x2 < α (Region III),

1− α (1− α/2)

(1− α) (1− 3α/2)

α/2 ≤ x1 < α,α ≤ x2 < 1− x1 and

α/2 ≤ x2 < α,α ≤ x1 < 1− x2 (Region IV),

1

1− 2α
− 2α (1− α/2)

(1− α) (1− 3α/2)
α ≤ x1, x2 < 1− α, x1 + x2 < 1 (Region V).

(D.1)

Figure 5 shows the different regions on which f(x1, x2) is defined; in this figure

c1 = 1, c2 = 1/2. It is easy to check that both marginals are uniform.

Straightforward but lengthy calculations (given in Gou and Tamhane (2015))

show that this distribution is NQD. Under this distribution Pr (Reject H0) =

α + α2, which is the upper bound (3.5) for c1 = 1, c2 = 1/2. Thus the upper

bound is sharp and is > α.

Counterexample 2

For n = 3, the distribution in (D.1) gives an upper bound, < α, as the
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following calculation shows.

Substituting c1 = 1, c2 = 1/2, and c3 = 1/3 in (A.1), we get

Pr
({
P(2:2) ≤ c2α

}
∪
{
P(1:2) ≤ c3α

})
=

2

3
α,

Pr
({
P(2:2) ≤ c1α

}
∪
{
P(1:2) ≤ c3α

})
=

2

3
α+ α2,

Pr
({
P(2:2) ≤ c1α

}
∪
{
P(1:2) ≤ c2α

})
= α+ α2.

Thus the probability of type I error is

P [3;C3|α] = (1− α)× 2

3
α+

(
α− 1

2
α

)(
2

3
α+ α2

)
+

(
1

2
α− 1

3
α

)(
α+ α2

)
+

(
1

3
α− 0

)
× 1

= α− 1

6
α2 +

2

3
α3,

which is less than α if α < 1/4. Hence the distribution (D.1) is not sufficient to

show that type I error is uncontrolled in the trivariate case.

However, we can modify (D.1) to achieve a sharp upper bound that is > α.

In (A.3), the first term is of O(1) while the other three terms are O(α), and

thus of lower order. Therefore we need to construct a bivariate distribution

which reaches the upper bound for the bivariate probability in the first term,

for c1 = 1/2 and c2 = 1/3. We proceed as before. The regions of definition of

the distribution are those shown in Figure 5, but with c1 = 1/2, c2 = 1/3. The

corresponding density function is

f(x1, x2) =

0
0 ≤ x1 < α/2, 0 ≤ x2 < α/3 and

0 ≤ x1 < α/3, α/3 ≤ x2 < α/2 (Region I),

1

1− α/2
0 ≤ x1 < α/3, α/2 ≤ x2 < 1− x1 and

0 ≤ x2 < α/3, α/2 ≤ x1 < 1− x2 (Region II),

9 α/3 ≤ x1, x2 < α/2 (Region III),

1− α (1− α/3)

(1− α/2) (1− 5α/6)

α/3 ≤ x1 < α/2, α/2 ≤ x2 < 1− x1 and

α/3 ≤ x2 < α/2, α/2 ≤ x1 < 1− x2 (Region IV),

1− 7α/3 + 7α2/4− α3/4

(1− α)(1− 5α/6)(1− α/2)
α/2 ≤ x1, x2 < 1− α/2, x1 + x2 < 1 (Region V).

(D.2)

This distribution can be shown to be NQD. Furthermore, here it can be
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I

II III

III IV

0 1

1

(1/2)α α

(1/2)α

α

Figure 6. The region defined in (D.3).

shown that the exact type I error of the c-Simes test is α + α2/12 + 5α3/108 +

o(α3) > α. The details of the calculations can be obtained from Gou and

Tamhane (2015).

Counterexample 3

Consider a bivariate density function f(x1, x2), regions shown in Figure 6,

given by

f(x1, x2) =



1 0 ≤ x1, x2 ≤ α/2 and α/2 ≤ x1 ≤ 1, 0 ≤ x2 ≤ α/2
and 0 ≤ x1 ≤ α/2, α/2 ≤ x2 ≤ 1 (Region I),

2

α
− 1 α/2 ≤ x1, x2 ≤ α (Region II),

0 α ≤ x1 ≤ 1, α/2 ≤ x2 ≤ α and

α/2 ≤ x1 ≤ α, α ≤ x2 ≤ 1 (Region III),
1− α/2
1− α

α ≤ x1, x2 ≤ 1 (Region IV).

(D.3)

It is easy to check that both marginals are uniform. We show that it is PQD,

that Pr (X1 ≤ x1, X2 ≤ x2) ≥ x1x2 on [0, 1]2. This inequality is obviously true

when (x1, x2) is in Region I or Region II. When (x1, x2) is in Region III, without

loss of generality, we can assume that x1 ∈ [α, 1] and x2 ∈ [α/2, α]. Then we

have

Pr (X1 ≤ x1, X2 ≤ x2) =

(
2

α
− 1

)
· α

2
·
(
x2 −

α

2

)
+ 1 · α

2
· x1 + 1 · α

2
·
(
x2 −

α

2

)
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=
α

2
x1 + x2 −

α

2
.

Since x1 ≤ 1 and x2 ≥ α/2, we have

Pr (X1 ≤ x1, X2 ≤ x2)− x1x2 = − (x1 − 1)
(
x2 −

α

2

)
≥ 0.

When (x1, x2) is in Region IV with x1, x2 ∈ [α, 1], we have

Pr (X1 ≤ x1, X2 ≤ x2)

=
1− α/2
1− α

· (x1 − α) (x2 − α) +

(
2

α
− 1

)
· α

2

4
+ 1 · α

2
·
(
x1 + x2 −

α

2

)
= x1x2 −

α

2
(x1 + x2) +

α

2
+
α2

2
+

α/2

1− α
(x1 − α) (x2 − α)

= x1x2 +
(x1 − 1) (x2 − 1)

2 (1− α)
≥ x1x2

since x1, x2 ≤ 1.

Finally, we have

Pr(Reject H0) = 1 · α
2
·
(

1 + 1− α

2

)
+

(
2

α
− 1

)
· α

2

4

=
3

2
α− α2

2
> α,

when α < 1. If α = 0.05 then this probability is 0.07375. We conclude that a

PQD distribution does not always satisfy Simes inequality.

This counterexample uses c2 = 1/2. If we use the more conservative value

c2 = 1/2−α/2 derived in Lemma 4, the above probability is 3α/2−3α2/2+α3/2−
α4/4, which is slightly smaller (for α = 0.05 this probability equals 0.07131) but

still > α since the leading term in this expression is 3α/2.
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