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S1. Appendix A: Proofs of Lemmas 1-6

Proof. (Lemma 1) Since the second claim follows easily by applying Lemma 1 of Liu
and Wu (2010), we shall here omit the details and only provide the proof for the first
claim, namely ¢ € (—1,1). For this, it suffices to prove that ¢ cannot takes values in
{—1,1}, as autocorrelations are always bounded between +1. However, if ¢ = 1, then

due to the stationarity, one must have X; = X;_1 = --- = Xy, violating the short-range
dependence condition that ©¢ 2 < co. The case for ¢ = —1 can be similarly argued, and
thus ¢ & {—1,1}. O

Proof. (Lemma 2) Let U; = X; — $X;_1,i=2,...,n, and

n—|k|

~ = ~ = = 1 no
; (Ui = Un-1)Uipjk) = Un—1), Un-1= — ;Uz

1
n—1

Yo, =

then V; = ﬁi—(l—@)_(n and ‘:/n_l = [:]n—1 —(1—@)X,,. Note that sample autocovariances
are shift-invariant, we have 4y , = 457 ., [k| < n—1, and thus it suffices to prove the same
result for (ﬁz) For this, let D; = (UZ —ﬁn,l) —(U;— Un,lg, i =2,...,n, be the sequence
of centered differences, then by elementary calculation D; = —(¢ — ¢)(X;-1 — Xp—1)
and
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where
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We shall here provide uniform bounds for Iy, I and Wy, |k| < n — 1, for which we
need the following preparation. Let F; ; = (e;,...,€;), ¢ < j, with the convention that
Fi,j =0 if i > j, and define

Ut = E(Ug | Feoi) = E(Uk | Freei1,k)-

Then for any fixed | € Z, ¥y,;, k = 2,...,n, form a sequence of martingale differences,

and

[ 9%.0]

VANVAN

IEU: | For) — EUL | Fia)ll
IE{G(F1) — G(F) | Fou}ll + lel - |1 E{G(Fi-1) — G(Fy) | Fou}ll
012+ [p|01—-1,2.

Note that E(U;) = (1 — ¢)u, by Doob’s inequality we obtain that
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As a result, we have
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and thus
1 n—|k| ;
T+ (5 — @) —— Xivipl1 — ) (Ui = Un1)| = 0, (n=3/2).
nax k(@ =) ;( it k=1 — H)( 1) p(n7°7)

By a similar argument, one can obtain that

n—|k|
1 — 2@02 2(1+ |(,D|)@02
FE E X; —1— Uy —Up_1)-T, < : : =,
\krlrii}il n—1 =2 ettt =t 2 - (n—1)Y2  (n—1)1/2
and thus
max [T + (¢ — ©)Tn1| = Op(n~/?).
|k|<n—1

Following a similar martingale decomposition argument for I, and Iy, we have

max _[I + (¢ — @)Ll = Op(n~*?)

|k|<n—1
and
My — (¢ — ¢)*Th k3] = Op(n 2
e | — (8= )" ka| = Op(n™),
Lemma 2 follows. O

Proof. (Lemma 3) Let H(F;) = G(F;) — ¢G(Fi—1), then U; = H(F;) and its functional
dependence measure satisfies

Ov kg = I1H(Fi) = H(F)llg < Orq + [0l0k—1,4-
Since 6y, = O(k°) for some § > 3/2 as assumed, we have 05 , = O(k~°) and

> 0 1/2
Ovkg =D 0viq=O0(K""), Wypq= (Z 9%) = O(K'/>79).
i=k

i=k

As a result,

Avkg = Zmin(‘I’U,k,q,eU,i,q)
=0
_ O[kl/Q—ékl—l/(Q(s) =+ k{l—l/(25)}(1—5)] _ O[k_{l—l/(Q(S)}(l—é)].

Since ||Uplla < (1 + |¢])|| X0l|4, by Lemma 6 of Xiao and Wu (2012) we obtain that

| 1/2
lim pr {kmaxl Yok — E(ur)| < e ( Ogn) =1. (S1.1)
<n—

n—00 n—1

Without loss of generality, assume that 4 = E(Xp) = 0. Then

n—|k| n—|k|
) k| - 1 _
’YU,k: e ﬁ ; UZU1+|]§‘ + < - m U'g,fl - m ; (Ul +Ui+\k\)Un717 (812)
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and by Lemma 1 of Liu and Wu (2010), there exists a constant ¢y < oo such that

n—|k|
N -1
max (|[Yux— —— E UiUipry|| < con™ .
|k|<n—1 n—1 4 ]
i—

1

Therefore, we have max || <n—1 |[E(3ux) — {1 — [k|/(n — 1)}y = O(n ') and

, [loglogn 1/2

Note that (loglogn)/? = o{(logn)*/?} and (£ +1)/2 > 1, by (S1.1) and (S1.3),

k c(E+1) (1 1/2
lim pr{ max |pyr— _ L puk| < q(fA ) (logn 1
e [kl<n—1]" n—1 7 29u,0 n—1

Since 0 = (1 + ¢*)v0 — 271 and € > (£ +1)/2 > 1, Lemma 3 follows by (S1.3). O

1 1

lim pr{ max |E(fur)l- |z
n—o00 |k|<n—1 YU,0 YU,0

Proof. (Lemma 4) Let v, = c,{(logn)/n}'/? and P kn = 11— [kl/(n = D}ouk, [kl <
n — 1. Note that A\, — v, (¢ —1)/2 = v, (¢ + 1)/2 > v, by Lemma 3 we have

lim pr{ max |puk — PUknl < (W + I)Vn/2} =1,

n—00 In<|k|<n—1

and thus

Jim prd Y0 ok = Pk Ljpu sz, g <vnwn2) =0 ¢ =1
In<|k|<n—1

On the other hand, since |pg;;, .| < [pu k| for all |k[ <n —1, we can obtain that

~ o
> (puk - POk )L o 1200, 108 5[5 0m (1) /2}

In<|k|<n—1
207,
< ma; UL — P Z UREn 0 Z o
< ln<\k|<Xn—1 |pU K PU,k,n| n( — 1) P |PU,k7n

In<|k|<n—1 ln<|k|<n—1

Therefore, by using the fact that

Z poU,k,n]l{|ﬁu,k|Z)\n} < Z |plcif,k,n :Op Z |pU,k| )

In<|k|<n—1 In<|k|<n—1 |k|>1,

we have

D hurlpuzag = O Auklsuazag +0p | D lovkl |- (S1.4)
|k|<n—1 [k|<ln [k|>1n
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We shall now deal with the sum for |k| < I,,. For this, by Lemma 3, we have

dim pr | > puarlgpuaizag = Y Avklpualzan, poaror | =1,
IkI<L. IkI<L.

and
lim pr 2 : [)Uk]l{\ﬁu k|<An, pu,k#0} — E purly A ° 2 0 =1
n—00 ’ ; n PU, K pu k| <An, 1%k, | <2An; pUKF }

[k|<ln [k|<ln

Therefore, by using the fact that

E D . < E
pU’k]]-{lpU,k‘</\n» |p?/7k,n|<2)‘n’ pUJ«;éO} - >\TL ]]-{lpo[j,k,n‘<2)‘nv PU,k#O}7
[k|<ln [k|<ln

we have
D pukl(iuaizag = D AUkLipiz0y +O0p (A D0 Ly con puiro)
|k|<ly, |k|<ly, |k|<ly, '

Hence, in combination with (S1.4), we have

Yo ualipeazag = D AukLipuaror +O0p [ Y lpual
Ik <1 k1<l =
i Z 1{\p°u,k,n|<2xn,pu,k¢o} ) (S1.5)
k[ <L,

and (i) follows by the fact that 3, o, ]l{lﬂr‘}k <22, pus0} < 2[,, + 1. We shall now

prove (ii), for which we need the following preparation. Let
Pj-=E(- | F;) = E(-| Fj-1), JEZ,

be the projection operator, and define (j ; = P;U. Then ||(x ;|| < Or—j2 + |©|0k—j-12,
and (j,; and (j ;- are orthogonal in the sense that E((x ik ;) = 0 if j # j'. Therefore,
we have

lcov(Us, Ui)l = |E (D Gid D Giniul

jer  jez
< Y Gl 151
JEZ
oo
< > B2+ 1910,-1.2) Oss .2 + 191054 ky1.2)

J=1
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because 0,2 = 0 if s < 0. Hence, if the functional dependence measure have a sparse
structure, namely there exists a positive integer M < oo such that 655 = 0 for all
|s| > M, then by the above inequality cov(U;, Uiy x|) = 0 if |k[ > M, and thus

,}LH;O pr Z ]l{|;0?;,k,n|<2)\m pUKFA0} Z ]]-{‘p?],kynl<2)‘ni pus#0} | = L. (51.6)
|k|<ln |k|<M

Note that for any fixed M < oo, the minimum absolute value of nonzero autocorrelations
with lag |k| < M satisfies

= mi : 0} >0,
e “i‘nsul}/[ﬂPU,H puk # 0}

and thus

gtleLn = lg‘nglfj/[{\POUkM puk 7 0}
> {1-M/(n—1)}tepr > epr/2

for all large n. Since A, — 0 as n — oo, we have 3, ,, > 2, for all large n, and thus

lim pr Z L1os o <2 puaro} =0 | =1 (S1.7)
k<M
Then (ii) follows by (S1.5), (51.6) and (S1.7). O

Proof. (Lemma 5) Recall that

n—|k| (n—1)—|k|
1 1
Tnks=——7 2 (Xic1 = W) (Xipp—1 —p) = —— ; (X — ) (Xigjp — 1),
then by the proof of (51.1), we have
% [Pos — B(T)] = Oy 2(10g) /). 519
<n—

Similarly, we can obtain that

s [T+ Do) = B + Tas)] = Opfn ™2 (log )23,

and thus by Lemma 2,

ax |y . — A = 0. (n~V?2).
nax 9y, = okl = Op(n="7)

Recall the definition of v, and p{;, ,, from the proof of Lemma 4, then by Lemma 3 and
the assumption that vy > 0, we have

lim pr{ max |py = PUral < (W + 1)1/n/2} =1. (51.9)

n—o00 |k|<n—1
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Hence, by the proof of Lemma 4, we can obtain that

Z ﬁvakl{\ﬁ‘y‘klzkn} = Z ﬁV,kl{Pu,k¢0}
k| <m—1 |KI<ln

+O0p | D lpval +2n D Lf 108, nl<2hn, puso} | -

k>l |k|<ln

and thus

Z &V,kl{\ﬁv‘uzxn} = Z V9 kL {yw k#0}
|k|l<n—1 [k|<ln

+0p | Y okl +Aa D Lo o 1<22n, pus0}

k[>Ln k| <ln

Since nt/2),, — oo as n — oo, it suffices to prove that

> A alpszoy = O Aukliy oy = Op(n™ 2 +1,/n).
I<t, K<L,

For this, by Lemma 2 and (S1.8), we have

D A alaroy = D ki = (@ =¢) Y (o +Tag) + Oplln/n).

‘klgln |k|§ln ‘klgln
Note that
1 n—|k|
D Tusa = = > > (X = W{Uipy — (1= @)t}
[k|<ln |k|<l, =2
1 n—1ln—1
= 3 DS (X = w{Uj1 — (1= @) gsji<i,ys
i=1 j=1

then by the m-dependence approximation as in the proof of Lemma A.2 of Zhang and
Wu (2012) we obtain that

D Tuka = ECag)} = 0p{(la/n)"/?}.

[k<ln

A similar argument can be made on the sum of I';, 1. 2, and as a result,

(@—9) Z (Tne1 + Tog2) = Op(n_1/2 + n_ll’rll/Q) = Op(n_1/2 + ln/n),
|k|<ln

Lemma 5 follows. O

S7



S8 TING ZHANG

Proof. (Lemma 6) Let s(co) = > 721, .20} be the number of nonzero functional
dependence measures, then s(oc) = 0o and s(00) < oo correspond to cases (i) and (ii)

respectively. If ¢ > 7, then V; = V; and thus by Lemma 5,

Z %,kl{lﬁvuzxn} - Z Yok Ly w0}
|k|<n—1 ' k| <l

—|—Op n71/2 + ln/n + Z |'7U,k| + /\nln]]-{s(oo):oo}
[k|>1n

On the other hand, if ¢ < 7,, then VZ = X,;,—X,, = U;—X,,. Since sample autocovariances
are shift-invariant, we have by Lemma 4,

D Wkl man} = Do WkLGusror + Op | D0 1kl 4 AnlnTa(e0)=o0)
|k|<n—1 ! |k|<ln |k|>1n
We shall here derive a stochastic error bound for the term -, <, Jukl{yy 0. For
this, without loss of generality, assume that the mean y = E(Xy) = 0. Then by (S1.2)
and the proof of Lemma 5, we have

n—|k|
N 1
Z YUk {yy 20y = - Z Z UiUi-‘rlkl]]'{"/U’k;éO}+Op(ln/n)
[k|<ln |k|<l, =2
1 n—|k|
T oa-1 Z Z Wk L{yy 20} Jrop{(ln/n)l/z + 1, /n}
k|<l, =2
_ _ Ik 1/2
= D (1= ) Op{lla/m) ),
|k|<ln

and (i) follows. On the other hand, if there exists an M < oo such that 052 = 0 for all
k> M as in case (ii), then by the proof of Lemma 4 we have

lim pr Z Yk Ly 0y = Z YUk Ly o0y | =1

n—oo
[k|<ln |k|<M
Note that
. k _
> Akl = D <1 - n_|1> T+ Opfn 2,
|k|<M |k|<M
(ii) follows. O

S2. Appendix B: Additional Details on Simulation

In our Monte Carlo simulations, we consider the linear process

0
Model I : Xz = E AEp€;i—k+1 — Q1€ + Qg€;—1 +az€;j_2 + - ;
k=1
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and its nonlinear generalization

o0
Model I : X; = a16¢\6i| + E Ak€i—f+1 = a1€i|67;| + ag2€;—1 +as€i—o + -+,
k=2

whose long-run variances are given by

agx = (Z ak> var 60

and
oo

gx = <Z ak> var(eg) + 2a; (Z ak> cov(eg, €ol€o|) + a?var(e|eo))

k=2

for Models I and T respectively. When generating the above processes and computing
their long-run variances, we use the approximation that Z b Ak€i—kt1 A Z ko Ak€i—kt1
and >, ar = >, _o ai. For the P01 and PP12H estimates, we use the trapezoidal lag-
window, and the associated bandwidth is selected by the empirical rule described in
Appendix A of Paparoditis and Politis (2012). Note that the PP12T and PP12H esti-
mates require the selection of a threshold, and Paparoditis and Politis (2012) in their
Section 3.2 suggested a choice of 21/%x 0{(log,qn)/n}!/? where ¢» > 1 corresponds to
effective thresholding; see for example conditions in their Theorem 1. For the PP12T
estimate, we follow the rule-of-thumb choice of Paparoditis and Politis (2012) and use
1 = 1.5. For the PP12H estimate, we use 9 = 1 due to its superior performance for
sparse linear processes as observed by Paparoditis and Politis (2012).
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