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Abstract: Statistical inference of time series data routinely relies on the estimation

of long-run variances, defined as the sum of autocovariances of all orders. The cur-

rent paper considers a new class of long-run variance estimators that first soaks up

the dependence by a decision-based prewhitening filter, then regularizes autocorre-

lations of the resulting residual process by thresholding, and finally recolors back

to obtain an estimator of the original process. Under mild regularity conditions, we

prove that the proposed estimator (i) consistently estimates the long-run variance;

(ii) achieves the parametric convergence rate when the underlying process has a

sparse dependence structure as in finite-order moving average models; and (iii) en-

joys the dependence-oracle property in the sense that it automatically reduces to

the sample variance if the data are actually independent. Monte Carlo simulations

were conducted to examine its finite-sample performance and make comparisons

with existing estimators.
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1. Introduction

An important problem in time series analysis is to provide appropriate cor-

rections to standard errors for data with serial correlation. In this case, the

marginal variance should be replaced by the long-run variance, which involves

autocovariances of all orders and serves as a key quantity in statistical inference

with dependent data; see for example Ibragimov and Linnik (1971), Peligrad

(1996), Maxwell and Woodroofe (2000), Wu (2005), and Bradley (2007), among

others. Unlike the case of independent data where one can simply estimate the

variance constant by its sample version, directly plugging sample autocovari-

ances into the definition does not yield a consistent estimator for the long-run

variance (Bratley, Fox and Schrage, 1987; Anderson, 1994). Therefore, a more

sophisticated estimation procedure is needed for dependent data. The problem

has attracted considerable attention in the literature, and popular candidates
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include the batch means estimator that achieves consistency by splitting the

data into overlapping or nonoverlapping batches, and the lag-window estima-

tor that achieves consistency by banding or tapering sample autocovariances.

Their asymptotic properties have been studied by Song and Schmeiser (1995),

Bühlmann (2002), Lahiri (2003), Jones et al. (2006), and Flegal and Jones (2010)

for batch means estimators, and by Rosenblatt (1985), Newey and West (1987),

Andrews (1991), Liu and Wu (2010), and Politis (2011) for lag-window esti-

mators; see also the references therein. Other contributions can be found in

Fishman (1971), Crane and Iglehart (1975), Schruben (1983), Goldsman, Meke-

ton and Schruben (1990), Law and Kelton (2000), Aktaran-Kalaycı, Goldsman

and Wilson (2007), Alexopoulos et al. (2007), Wu (2009), Xiao and Wu (2011),

and Meterelliyoz, Alexopoulos and Goldsman (2012), among others. Neverthe-

less, due to direct or indirect estimation of a large number of autocovariances,

existing methods usually do not achieve the parametric convergence rate. For

example, given a sample of size n, the optimal rate of convergence of the overlap-

ping batch means (OBM) estimator is n1/3, as given in Flegal and Jones (2010).

Recently, Paparoditis and Politis (2012) considered another type of estimator

by plugging thresholded sample autocovariances into the definition, and proved

that the resulting estimator consistently estimates the spectral density and thus

the long-run variance (by setting the frequency to zero). In particular, by seeking

the connection between eigenvalues of an autocovariance matrix and the associ-

ated spectral density, they provided a stochastic error bound for their thresholded

estimator based on a result of Xiao and Wu (2012) concerning thresholded auto-

covariance matrix estimation. As commented by Xiao and Wu (2012), compared

with the conventional banded estimator, the thresholded estimator is desirable

in that it can lead to better performance when there are a lot of zeros or very

weak autocovariances. They also commented that, due to technical difficulties,

their theoretical result was not able to reflect this advantage. Since Paparoditis

and Politis (2012) relied on the result of Xiao and Wu (2012), the same difficulty

arose. Due to the nonlinear nature of thresholding, studying the asymptotic

properties of thresholding-based estimators can be nontrivial; see also Bickel and

Levina (2008) for the case with independent data. The current paper aims to

serve as the first step in solving this open problem by focusing on the relatively

simpler quantity, the long-run variance, defined as the sum of autocovariances of

all orders. In particular, we prove that the proposed thresholding-based long-run

variance estimator (i) achieves the parametric convergence rate when the under-

lying process has a sparse dependence structure as in finite-order moving average
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models; and (ii) enjoys the dependence-oracle property in the sense that it au-

tomatically reduces to the sample variance when applied to independent data.

For the general case where the underlying process does not necessarily have a

sparse dependence structure, our stochastic error bound also improves over the

one implied by Paparoditis and Politis (2012) in a polynomial of n for long-run

variance estimation.

Another aspect of thresholding-based estimators that the current paper aims

to improve is their performance under moderate to pronounced dependence

strength. Although the technique of thresholding is intuitively desirable for situ-

ations with a lot of zero or very weak autocorrelations, as advocated by Xiao and

Wu (2012), it may not perform well under pronounced autocorrelations, espe-

cially when the sample size is small. In particular, Paparoditis and Politis (2012)

examined the finite-sample performance of their thresholded estimator for first-

order autoregressive models via Monte Carlo simulations, and found that the

performance can deteriorate quickly as one increases the autoregression coeffi-

cient, namely the dependence strength. Therefore, the standard class of plug-in

thresholded long-run variance estimators may be too restrictive, and we consider

a new class of thresholding-based estimators that first soaks up the dependence

by prewhitening the observed time series; then regularizes autocorrelations of

the resulting residual process by thresholding; and finally recolors back to obtain

an estimator of the original process. Our simulation results in Section 4 show

that the proposed estimator can bring significant improvements over the plug-

in method of Paparoditis and Politis (2012), especially when the dependence

strength is stronger than the m-dependence structure as in finite-order moving-

average models. Although prewhitening (Press and Tukey, 1956) has its practical

value of potentially reducing the dependence strength and flattening the spectral

density function, it can cause additional difficulties in establishing asymptotic

properties of the resulting estimator; see for example Andrews and Monahan

(1992), but with a focus on lag-window estimators that are linear as functions

of sample autocovariances. We shall here focus on thresholded estimators that

are nonlinear functions of sample autocovariances. Note that prewhitening is

not necessary and in fact not preferred if the observed sequence is already a

white noise series, we propose to incorporate an additional decision rule into the

prewhitening step to further improve its performance.

The remainder of the paper is organized as follows. Section 2 introduces

the proposed thresholding-integrated prewhitening-sandwitched (TIPS) estima-

tor for the long-run variance. Its asymptotic properties are studied in Section
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3 with proofs provided in Section 6. Monte Carlo simulations are reported in

Section 4; they examine the finite-sample performance of the proposed estimator

and make comparisons with existing estimators.

2. Long-Run Variance Estimation by TIPS

Let (Xi)i∈Z be a stationary process with mean µX = E(X0) and autoco-

variances γX,k = cov(X0, Xk), k ∈ Z, then its long-run variance or time-average

variance constant is defined as

gX =
∑
k∈Z

γX,k, (2.1)

which is typically unknown in practice and needs to be estimated fromX1, . . . , Xn.

We shall in the following suppress the subscript X for quantities related to

the process (Xi), and use g and γk to denote gX and γX,k, respectively. Let

X̄n = n−1
∑n

i=1Xi denote the sample mean, the major goal of the current paper

is to propose and study a new class of long-run variance estimators, which can

be obtained as follows. First, one estimates a first-order autoregressive model for

(Xi) as

(Xi − X̄n) = ϕ̃(Xi−1 − X̄n) + Ṽi, i = 2, . . . , n, (2.2)

where ϕ̃ is the parameter estimator which could be obtained by solving least

squares, and (Ṽi) denotes the resulting residual process or the transformed pro-

cess. The autoregressive model (2.2) is not meant to represent the belief in the

underlying data generating mechanism, but is used as a tool to soak up the tem-

poral dependence in the original process (Xi) so that the residual process (Ṽi)

can be closer to a white noise sequence. If (Xi) is already a white noise sequence,

then the prewhitening (2.2) is not necessary and may introduce additional ran-

domness into the final estimator by passing the randomness of ϕ̃; see for example

Sul, Phillips and Choi (2005). To alleviate the problem, we propose to use the

thresholding-integrated prewhitening

V̂i = (Xi − X̄n)− ϕ̂(Xi−1 − X̄n), ϕ̂ = ϕ̃1{ϕ̃≥τn},

where τn is an appropriate threshold of significance. Second, one computes the

sample autocovariances of the residual process (V̂i) as

γ̂V̂ ,k =
1

n− 1

n−|k|∑
i=2

(V̂i − ¯̂
Vn−1)(V̂i+|k| −

¯̂
Vn−1),

¯̂
Vn−1 =

1

n− 1

n∑
i=2

V̂i, (2.3)

and forms the plug-in thresholded long-run variance estimator of (V̂i) as
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ĝV̂ =
∑
|k|<n−1

γ̂V̂ ,k1{|ρ̂V̂ ,k|≥λn}, ρ̂V̂ ,k =
γ̂V̂ ,k
γ̂V̂ ,0

. (2.4)

Since V̂1 = X1 − X̄n is also calculable if ϕ̂ = 0, a counterpart of (2.3) should

be used in this case to make use of this additional residual. We also note that

the plug-in thresholded estimator (2.4) has a different form from the one studied

by Paparoditis and Politis (2012) in their asymptotic theory; see their equation

(5). However, if one plugs the data-driven threshold suggested in Section 3.2 of

Paparoditis and Politis (2012) into their estimator, then it becomes equivalent

to the form given in (2.4). We shall here focus directly on the form (2.4) when

developing our asymptotic theory for the proposed estimator. Given ĝV̂ from

the residual process (V̂i), the third step is to recolor back to obtain the long-run

variance estimator of the original process (Xi) as

ĝX =
ĝV̂

(1− ϕ̂)2
. (2.5)

Since the technique of thresholding is used in obtaining both ϕ̂ (before prewhiten-

ing) and ĝV̂ (after prewhitening), we call ĝX the thresholding-integrated prewhite-

ning-sandwitched (TIPS) estimator. In the current paper, we choose to focus on

first-order autoregressive models as the prewhitening filter because (i) autore-

gressive models have been found in the literature to yield reasonable approxi-

mations to a variety of time series processes; and (ii) first-order autoregressive

models have the advantage of practical parsimony and computational simplicity

and have been used by Andrews and Monahan (1992) and Rho and Shao (2013),

among others, for prewhitening in their numerical work. If one has prior knowl-

edge about the underlying data generating mechanism, a different prewhitening

filter can be used to further improve the performance.

3. Asymptotic Theory

To study the asymptotic properties of the proposed estimator, we need to

impose appropriate regularity conditions on the process (Xi). We shall here

follow the framework of Wu (2005) and assume that

Xi = G(Fi), Fi = (. . . , εi−1, εi), (3.1)

where εj , j ∈ Z, are iid random variables, and G is a measurable function such

that Xi is well defined. We interpret Fi and Xi as the input and output, and

G as the transform that represents the underlying physical mechanism. The

representation (3.1) covers a huge class of processes, including linear processes,
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bilinear processes, Volterra processes, and many other nonlinear processes; see

for example Wiener (1958), Tong (1990), and Wu (2011).

For a random variable X, we write X ∈ Lq, q > 0, if ‖X‖q = {E(|X|q)}1/q <
∞, and take ‖ · ‖ = ‖ · ‖2. Let ε?0 be identically distributed as ε0 and independent

of (εj)j∈Z. Then F?i = (F−1, ε
?
0, ε1, . . . , εi) represents the coupled shift process,

and we define the functional dependence measure

θk,q = ‖G(Fk)−G(F?k )‖q. (3.2)

The quantity θk,q measures the dependence of Xk on the innovation ε0, and in

particular, if Xk = G(Fk) does not depend on ε0, then θk,q = 0. The functional

dependence measure (3.2) is easy to work with and is directly related to the

underlying data generating mechanism. Let

Θm,q =

∞∑
k=m

θk,q, m ≥ 0.

Throughout, we assume that γ0 = var(X0) > 0 and the short-range dependence

condition Θ0,q < ∞ holds for some q ≥ 2. In this case, the long-run variance

g < ∞. Let the parameter estimator ϕ̃ in (2.2) be taken as the least squares

estimator and cq = 6(q + 4) exp(q/4){(1 + |γ1/γ0|)/(γ0 − |γ1|)}‖X0‖4Θ0,4.

Theorem 1. Assume X0 ∈ Lq for some q > 4, and θk,q = O(k−δ) for some

δ > 3/2. If the thresholds λn = ψcq{(log n)/n}1/2 for some ψ > 1, τn → 0 and

n1/2τn →∞, then (i)

ĝX − g = Op

[{
(log n)

n

}(δ−1)/(2δ−1)]
;

(ii) if in addition θk,2 = O(φk) for some 0 < φ < 1, then

ĝX − g = Op{n−1/2(log n)3/2};

and (iii) if in addition there exists an M <∞ such that θk,2 = 0 for all k > M ,

then

ĝX − g = Op(n
−1/2).

Recently, Paparoditis and Politis (2012) considered an estimator of the spec-

tral density, and thus the long-run variance, by directly plugging thresholded

sample autocovariances into the definition. We denote it by g̃PP12. By setting

the frequency to zero, the stochastic error bound provided in their Theorem 1

becomes

g̃PP12 − g = Op

[{
(log n)

n

}(δ−1)/(2δ)]
.
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Compared with their result, the stochastic error bound established in Theorem

1 (i) for the proposed TIPS estimator is generally better in a polynomial of

n, and up to a scale of (log n)1/2 attains the rate conjectured in Remark 2 of

Paparoditis and Politis (2012). In addition, we examine the stochastic error

bound and the suggested convergence rate of the proposed TIPS estimator under

different dependence strengths. In particular, Theorem 1 (ii) suggests that the

convergence rate of the proposed TIPS estimator can be close to the parametric

n1/2 (up to a polynomial of log n) if the dependence strength follows a geometric

decay as in finite-order autoregressive models. On the other hand, Theorem

1 (iii) indicates that the proposed TIPS estimator enjoys the parametric n1/2-

convergence rate if the underlying process has a sparse dependence structure as

in finite-order moving-average models.

For independent data, the long-run variance equals the marginal variance and

thus can be estimated by the sample variance γ̂X,0, arguably the best estimator

under the setting, with a well-known parametric convergence rate. However, if

one treats the data as dependent, a more sophisticated estimation procedure is

needed and at a cost of a convergence rate that is usually inferior. For exam-

ple, Flegal and Jones (2010) considered the class of batch means estimators and

gave the corresponding optimal rate of convergence as n1/3. Distinguishing be-

tween dependent and independent data can itself be a nontrivial task, and has

been widely studied in the literature; see for example Box and Pierce (1970),

Robinson (1991), Hong (1996), Escanciano and Lobato (2009), Shao (2011) and

Xiao and Wu (2014) among others. Therefore, it would be desirable to have

an estimator that consistently estimates the long-run variance for both depen-

dent and independent data, and that reduces to the sample variance when the

data are independent. We show that our proposed TIPS estimator enjoys both

properties and thus solves the inconvenient dilemma for handling dependent and

independent data.

Theorem 2. Assume that (Xi) are iid random variables with Xi ∈ Lq for some

q > 4. With the thresholds λn = ψcq{(log n)/n}1/2 for some ψ > 1, τn → 0 and

n1/2τn →∞, we have limn→∞ pr(ĝX = γ̂X,0) = 1.

The proposed TIPS estimator thus enjoys the dependence-oracle property

in the sense that it automatically reduces to the sample variance if the data are

independent.
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4. Monte Carlo Simulations

4.1. Simulation setting

We report here on some simulation studies to examine the finite-sample per-

formance of the proposed TIPS estimator, and make comparisons with existing

estimators. Let εk, k ∈ Z, be iid random variables with E(|ε0|q) < ∞ for some

q ≥ 2. We considered the linear process

Model I : Xi =

∞∑
k=1

akεi−k+1 = a1εi + a2εi−1 + a3εi−2 + · · · ;

and its nonlinear generalization

Model II : Xi = a1εi|εi|+
∞∑
k=2

akεi−k+1 = a1εi|εi|+ a2εi−1 + a3εi−2 + · · · ,

and we allowed different choices of the coefficient sequence (ak) to include pro-

cesses with different dependence strengths. We shall here briefly mention the con-

nection between the coefficient sequence (ak) in Models I and II and the functional

dependence measure θk,q defined in Section 3. For this, let ε?0 be identically dis-

tributed as ε0 and independent of (εk)k∈Z, then ‖|ε0|−|ε?0|‖q ≤ ‖ε0−ε?0‖q ≤ 2‖ε0‖q,
and thus by (3.2),

θk,q ≤ |ak+1| · ‖ε0 − ε?0‖q, k > 0,

holds for both Models I and II. Therefore, the conditions in Theorem 1 (i)–(iii)

will be satisfied if (i) ak = O(k−δ) for some δ > 3/2 follows a polynomial decay1;

(ii) ak = O(φk) for some 0 < φ < 1 follows a geometric decay; and (iii) there

exists an M < ∞ such that ak = 0 for all k > M respectively. To include

processes with different strengths of dependence, we considered the following

decay types of (ak).

(a) Polynomial: ak = k−δ, where δ ∈ {2, 3, 5};

(b) Exponential: ak = φk, where φ ∈ {±0.3,±0.6};

(c) Finite: Xi = εi + 0.4εi−1 + 0.3εi−2 and Xi = εi|εi|+ 0.4εi−1 + 0.3εi−2;

(d) Finite with season: Xi = εi + 0.5εi−s and Xi = εi|εi| + 0.5εi−s, where

s ∈ {6, 12}.

For each configuration, given a realization X1, . . . , Xn, we considered seven types

of long-run variance estimates: the proposed TIPS estimate; the plug-in thresh-

1This also implies that Θm,q = O{m−(δ−1)} for some δ − 1 > 1/2, which is the condition required
by Paparoditis and Politis (2012).
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olded and hybrid estimates of Paparoditis and Politis (2012), denoted by PP12T

and PP12H, respectively; the flat-top lag-window estimate of Politis (2001), de-

noted by P01; the prewhitened lag-window estimate of Andrews and Monahan

(1992), denoted by AM92; the overlapping batch means (OBM) estimate; and the

nonoverlapping batch means (NBM) estimates. For the innovation sequence (εk),

we considered both standard normal innovations and Rademacher innovations.

4.2. Threshold and tuning parameter selection

We here discuss the choice of thresholds and tuning parameters for the long-

run variance estimators considered. For the proposed TIPS estimator, by The-

orem 1, one should choose λn = ψcq{(log n)/n}1/2 for some ψ > 1, where the

constant cq appears due to its appearance in the maximal deviation of sam-

ple autocovariances from their expected values; see for example Xiao and Wu

(2012). Politis (2003) considered the problem of bandwidth selection for lag-

window estimators, and their procedure depends on finding the smallest positive

integer such that the sample autocorrelations are bounded in absolute value by

2{(log10 n)/n}1/2 for a consecutive Kn = o(log n) lags. As commented in their

Remark 2.3, the choice of 2{(log10 n)/n}1/2 roughly corresponds to the construc-

tion of 95% simultaneous confidence interval for autocorrelations, which moti-

vated us to consider using 2{(log10 n)/n}1/2 as an estimate of cq{(log n)/n}1/2

for finite-sample problems; see also Paparoditis and Politis (2012). The latter

paper considered the class of plug-in thresholded estimators, and suggested the

use of ψ = 1.5 in the thresholding rule, which also seems to be a reasonable

choice for the proposed TIPS estimator, and is thus recommended. For an ap-

propriate threshold of significance τn for the least squares estimator ϕ̃ used for

prewhitening, we considered the choices τn = ςn−1/2 for ς ∈ {1.96, 2.58}. These

correspond to hypothesis tests with 95% and 99% nominal levels, and the result-

ing estimates are denoted by TIPS.95 and TIPS.99, respectively. For the AM92

estimator, we used the data-driven bandwidth selector of Andrews and Monahan

(1992); while the empirical bandwidth choice rule of Politis (2003) was used for

the P01, PP12T, and PP12H estimators, following the suggestion of Paparodi-

tis and Politis (2012). For the OBM and NBM estimators, we used the plug-in

version of the optimal batch size given by Song and Schmeiser (1995).

4.3. Simulation results and summary of findings

For the sample size n ∈ {250, 500}, the results are summarized in Tables 1–

3, containing standardized mean squared errors for the estimates under different
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configurations. For each configuration, given a realization X1, . . . , Xn, we com-

puted the standardized squared error {(ĝ− g)/g}2 for each considered candidate

estimate, and the averages based on 1000 realizations are reported in Tables 1–3.

More details on the simulation procedure can be found in the Supplementary

Material. Table 1 concerns linear processes with standard normal innovations,

from which we observe the following. First, if the underlying process exhibits rel-

atively strong dependence, for example the case with a polynomial decay with a

relatively slow decay rate δ = 2, then the proposed TIPS estimate can bring sig-

nificant advantages over the class of plug-in thresholded estimates of Paparoditis

and Politis (2012), as the integrated prewhitening of the proposed TIPS estimate

takes into effect in soaking up the dependence. As expected, if we reduce the

dependence strength, then the advantage can become less noticeable, and even-

tually disappear. Second, the proposed TIPS estimate can largely outperform

the tapering-based estimate of Andrews and Monahan (1992) and Politis (2001)

for situations where the autocovariances have an unordered sparse structure as

in the two seasonal models considered; see also simulation results of Bickel and

Levina (2008) and Xiao and Wu (2012) for similar findings in the context of

covariance matrix estimation. In addition, the proposed TIPS estimate seems

to outperform the batch means estimates for most of the cases considered, and

the difference between TIPS.95 and TIPS.99 caused by choosing different τn in

prewhitening seems to be subtle. If we increase the sample size, the performance

of all the considered estimates improves, while the same pattern remains for their

comparisons. We considered the situation for nonlinear processes in Table 2 and

processes with non-Gaussian innovations in Table 3, and the above observations

seem to hold there as well

5. Conclusion and Discussion

We consider a new class of long-run variance estimators, named as the TIPS,

that first soaks up the dependence by a thresholding-integrated prewhitening fil-

ter, then regularizes autocorrelations of the resulting residual process by thresh-

olding, and finally recolors back to obtain an estimator of the original process.

Simulation results suggest that the proposed TIPS estimator can improve on the

class of plug-in thresholded estimator of Paparoditis and Politis (2012) for pro-

cesses with a relatively strong dependence strength, while it manages to deliver

a similar performance for situations where direct thresholding as in Paparoditis

and Politis (2012) is expectedly the most suitable. For the asymptotic theory,
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Table 1. Standardized mean squared errors of different long-run variance estimates for
Model I with standard normal innovations, under different dependence strengths. The
results are based on 1,000 realizations for each configuration.

Method
n Decay Type TIPS.95 TIPS.99 PP12H PP12T P01 AM92 OBM NBM

250 Polynomial (rate 2) 0.116 0.125 0.173 0.287 0.176 0.119 0.116 0.119
Polynomial (rate 3) 0.058 0.077 0.086 0.094 0.087 0.033 0.069 0.074
Polynomial (rate 5) 0.017 0.014 0.014 0.012 0.014 0.025 0.052 0.059
Exponential (base 0.3) 0.041 0.044 0.055 0.131 0.058 0.042 0.072 0.079
Exponential (base 0.6) 0.070 0.070 0.115 0.135 0.125 0.073 0.105 0.109
Exponential (base −0.3) 0.017 0.019 0.135 0.393 0.122 0.016 0.073 0.099
Exponential (base −0.6) 0.011 0.011 0.679 1.265 0.129 0.013 0.222 0.325
Finite (no season) 0.062 0.062 0.051 0.073 0.061 0.059 0.075 0.080
Finite (season 6) 0.032 0.028 0.201 0.025 0.209 0.213 0.117 0.118
Finite (season 12) 0.038 0.034 0.209 0.031 0.210 0.211 0.247 0.239

500 Polynomial (rate 2) 0.104 0.104 0.129 0.183 0.126 0.109 0.086 0.090
Polynomial (rate 3) 0.031 0.045 0.067 0.089 0.067 0.021 0.038 0.043
Polynomial (rate 5) 0.011 0.010 0.010 0.009 0.011 0.013 0.033 0.037
Exponential (base 0.3) 0.018 0.018 0.030 0.035 0.033 0.018 0.047 0.054
Exponential (base 0.6) 0.036 0.036 0.057 0.076 0.060 0.037 0.061 0.066
Exponential (base −0.3) 0.009 0.009 0.083 0.109 0.073 0.009 0.050 0.064
Exponential (base −0.6) 0.006 0.006 0.394 0.820 0.061 0.007 0.120 0.159
Finite (no season) 0.037 0.037 0.018 0.035 0.024 0.026 0.048 0.053
Finite (season 6) 0.013 0.010 0.197 0.009 0.200 0.206 0.077 0.080
Finite (season 12) 0.015 0.012 0.202 0.010 0.202 0.206 0.206 0.210

we utilized the functional dependence measure of Wu (2005), and our conditions

are comparable to those required by Xiao and Wu (2012) and Paparoditis and

Politis (2012). With a more dedicated focus on long-run variance estimation,

the current stochastic error bound is superior to that of Paparoditis and Politis

(2012) by a polynomial of n and, up to a scale of (log n)1/2, attains the rate

conjectured in Remark 2 of their paper. As mentioned in Xiao and Wu (2012),

compared with the conventional banded estimator, the thresholded estimator

is desirable in that it can lead to better performance when there are sparse or

very weak autocovariances. However, due to technical difficulties caused by the

nonlinear nature of thresholding, they also commented that it was unfortunate

that their theoretical result was not able to reflect this advantage. The same

difficulty was observed by Paparoditis and Politis (2012) who relied on the result

of Xiao and Wu (2012). The current paper aims to fill this gap in the setting

of long-run variance estimation by proving that the proposed thresholding-based

estimator (i) achieves the parametric convergence rate when the underlying pro-

cess has a sparse dependence structure as in finite-order moving average models;
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Table 2. Standardized mean squared errors of different long-run variance estimates for
Model II with standard normal innovations, under different dependence strengths. The
results are based on 1,000 realizations for each configuration.

Method
n Decay Type TIPS.95 TIPS.99 PP12H PP12T P01 AM92 OBM NBM

250 Polynomial (rate 2) 0.124 0.149 0.175 0.201 0.177 0.096 0.105 0.108
Polynomial (rate 3) 0.063 0.064 0.065 0.061 0.067 0.054 0.090 0.090
Polynomial (rate 5) 0.042 0.039 0.038 0.037 0.037 0.055 0.074 0.086
Exponential (base 0.3) 0.069 0.090 0.103 0.123 0.106 0.054 0.084 0.085
Exponential (base 0.6) 0.093 0.093 0.129 0.198 0.138 0.103 0.103 0.108
Exponential (base −0.3) 0.094 0.128 0.192 0.195 0.185 0.064 0.105 0.119
Exponential (base −0.6) 0.067 0.067 0.257 0.383 0.152 0.060 0.121 0.142
Finite (no season) 0.060 0.072 0.099 0.174 0.102 0.055 0.087 0.093
Finite (season 6) 0.117 0.115 0.129 0.114 0.137 0.138 0.119 0.124
Finite (season 12) 0.121 0.120 0.135 0.119 0.135 0.140 0.185 0.178

500 Polynomial (rate 2) 0.089 0.104 0.140 0.192 0.140 0.082 0.074 0.076
Polynomial (rate 3) 0.039 0.043 0.045 0.046 0.045 0.028 0.043 0.048
Polynomial (rate 5) 0.023 0.021 0.022 0.021 0.022 0.028 0.052 0.057
Exponential (base 0.3) 0.030 0.037 0.054 0.104 0.054 0.028 0.050 0.054
Exponential (base 0.6) 0.077 0.077 0.072 0.121 0.067 0.091 0.063 0.069
Exponential (base −0.3) 0.037 0.050 0.095 0.149 0.094 0.032 0.056 0.065
Exponential (base −0.6) 0.046 0.046 0.151 0.200 0.070 0.038 0.071 0.084
Finite (no season) 0.033 0.034 0.044 0.099 0.047 0.036 0.054 0.061
Finite (season 6) 0.050 0.049 0.117 0.048 0.118 0.122 0.068 0.070
Finite (season 12) 0.056 0.054 0.120 0.053 0.121 0.124 0.138 0.137

and (ii) enjoys the dependence-oracle property in that it automatically reduces

to the sample variance when applied to independent data. This is convenient,

as determining the existence of serial correlation can itself be a highly nontrivial

problem; see for example Box and Pierce (1970), Robinson (1991), Hong (1996),

Escanciano and Lobato (2009), Shao (2011), Xiao and Wu (2014), and references

therein.

Although first-order autoregressive filters have been popular choices in prac-

tice for prewhitening due to their practical parsimony and simplicity (Andrews

and Monahan, 1992; Rho and Shao, 2013), our results can be generalized to allow

higher-order autoregressive prewhitening filters. In this case, instead of using the

first-order filter as in (2.2), one filters (Xi) by the autoregressive model

(Xi − X̄n) =

p∑
r=1

ϕ̂r(Xi−r − X̄n) + V̂i, i = p+ 1, . . . , n. (5.1)

In respect to this, the factor (1−ϕ̂)2 in (2.5) should be replaced by (1−
∑p

r=1 ϕ̂r)
2

in the recoloring step. Corollary 1 provides the asymptotic property of the re-

sulting prewhitened long-run variance estimator under the following additional
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Table 3. Standardized mean squared errors of different long-run variance estimates for
Model I with Rademacher innovations, under different dependence strengths. The results
are based on 1,000 realizations for each configuration.

Method
n Decay Type TIPS.95 TIPS.99 PP12H PP12T P01 AM92 OBM NBM

250 Polynomial (rate 2) 0.118 0.127 0.180 0.292 0.181 0.120 0.119 0.122
Polynomial (rate 3) 0.056 0.074 0.083 0.090 0.083 0.028 0.056 0.063
Polynomial (rate 5) 0.011 0.009 0.007 0.006 0.007 0.018 0.052 0.061
Exponential (base 0.3) 0.031 0.034 0.049 0.125 0.055 0.031 0.071 0.074
Exponential (base 0.6) 0.067 0.067 0.110 0.133 0.127 0.069 0.098 0.104
Exponential (base −0.3) 0.009 0.013 0.131 0.391 0.119 0.009 0.070 0.095
Exponential (base −0.6) 0.004 0.004 0.715 1.231 0.129 0.007 0.175 0.270
Finite (no season) 0.051 0.051 0.044 0.067 0.057 0.047 0.073 0.078
Finite (season 6) 0.026 0.022 0.196 0.018 0.203 0.212 0.112 0.108
Finite (season 12) 0.033 0.028 0.205 0.024 0.206 0.212 0.250 0.244

500 Polynomial (rate 2) 0.103 0.103 0.131 0.180 0.128 0.109 0.082 0.088
Polynomial (rate 3) 0.026 0.042 0.066 0.088 0.067 0.017 0.039 0.042
Polynomial (rate 5) 0.008 0.007 0.006 0.005 0.006 0.009 0.028 0.032
Exponential (base 0.3) 0.016 0.016 0.029 0.037 0.032 0.016 0.043 0.047
Exponential (base 0.6) 0.033 0.033 0.064 0.076 0.068 0.035 0.066 0.071
Exponential (base −0.3) 0.004 0.004 0.087 0.112 0.077 0.005 0.039 0.055
Exponential (base −0.6) 0.002 0.002 0.425 0.797 0.061 0.003 0.132 0.187
Finite (no season) 0.031 0.031 0.014 0.032 0.020 0.023 0.046 0.053
Finite (season 6) 0.010 0.007 0.194 0.005 0.198 0.204 0.072 0.076
Finite (season 12) 0.010 0.008 0.201 0.005 0.201 0.202 0.207 0.209

assumption.

(PW) ϕ̂r−ϕr = Op(n
−1/2) for some ϕr ∈ R, r = 1, . . . , p, satisfying 1−

∑p
r=1 ϕr 6=

0.

Corollary 1. The results of Theorem 1 continue to hold for finite-order autore-

gressive prewhitening filters under the additional assumption (PW).

Assumption (PW) states that estimators from the autoregressive filter (5.1)

have the usual parametric n1/2-convergence rate, and is adopted from Andrews

and Monahan (1992); see Assumption D of their paper. Note that 1−
∑p

r=1 ϕr 6=
0 is implied by the assumption that all roots of the polynomial Υ(B) = 1 −∑p

r=1 ϕrB
r lie outside of the unit circle, which is typically required for the au-

toregressive process to be stationary. When one has prior knowledge of the un-

derlying data generating mechanism, a different prewhitening filter can be used

for potential performance improvement, which however is beyond the scope of

the current paper. We leave this as a possible future research topic.
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6. Useful Lemmas and Proofs of Main Results

Recall that Ṽi = (Xi − X̄n)− ϕ̃(Xi−1 − X̄n), i = 2, . . . , n, from (2.2), where

ϕ̃ =

{
n∑
i=2

(Xi−1 − X̄n)2

}−1{ n∑
i=2

(Xi−1 − X̄n)(Xi − X̄n)

}
is the least squares estimator. The following lemma states that there exists a

ϕ ∈ (−1, 1) such that ϕ̃ − ϕ = Op(n
−1/2) regardless of whether the first-order

autoregressive model (2.2) used for prewhitening represents the true underly-

ing data generating mechanism. Recall from Section 3 that γ0 = var(X0) > 0

is assumed throughout the paper. Proofs of Lemmas 1–6 are provided in the

Supplementary Material.

Lemma 1. Assume Θ0,2 < ∞. Let ϕ = γ1/γ0 be the first-order autocorrelation

of (Xi), then ϕ ∈ (−1, 1) and ϕ̃− ϕ = Op(n
−1/2).

Let Ui = Xi − ϕXi−1, i = 2, . . . , n, and

γ̂U,k =
1

n− 1

n−|k|∑
i=2

(Ui − Ūn−1)(Ui+|k| − Ūn−1), Ūn−1 =
1

n− 1

n∑
i=2

Ui.

The following lemma states that sample autocovariances of (Ṽi) can be well ap-

proximated by those of (Ui) in a uniform manner, and the leading term of the

approximation error will depend on

Γn,k,1 =
1

n− 1

n−|k|∑
i=2

(Xi−1 − µ){Ui+|k| − (1− ϕ)µ};

Γn,k,2 =
1

n− 1

n−|k|∑
i=2

(Xi+|k|−1 − µ){Ui − (1− ϕ)µ};

Γn,k,3 =
1

n− 1

n−|k|∑
i=2

(Xi−1 − µ)(Xi+|k|−1 − µ).

Lemma 2. Assume Θ0,2 <∞. Then

max
|k|<n−1

|γ̂Ṽ ,k − γ̂U,k + (ϕ̃− ϕ)(Γn,k,1 + Γn,k,2)− (ϕ̃− ϕ)2Γn,k,3| = Op(n
−3/2).

Let ρ̂U,k = γ̂U,k/γ̂U,0 be sample autocorrelations of (Ui), whose popula-

tion counterpart is denoted by ρU,k = cor(U0, Uk). Recall that cq = 6(q +

4) exp(q/4){(1 + |γ1/γ0|)/(γ0 − |γ1|)}‖X0‖4Θ0,4. Let c?q = 6(q + 4) exp(q/4)(1 +

|γ1/γ0|)2‖X0‖4Θ0,4, the following lemma provides a uniform bound for ρ̂U,k,

|k| < n− 1, and is useful in proving Lemma 4.
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Lemma 3. Assume X0 ∈ Lq for some q > 4, and θk,q = O(k−δ) for some

δ > 3/2. Then for any ξ > 1,

lim
n→∞

pr

{
max
|k|<n−1

∣∣∣∣ρ̂U,k − (1− |k|
n− 1

)
ρU,k

∣∣∣∣ ≤ cqξ( log n

n

)1/2
}

= 1.

The following lemma states that the sum of thresholded sample autocorre-

lations of the generally unobservable process (Ui) can be well approximated by

a truncated sum that only involves estimators for nonzero autocorrelations.

Lemma 4. Assume X0 ∈ Lq for some q > 4, and θk,q = O(k−δ) for some

δ > 3/2. If the threshold λn = ψcq{(log n)/n}1/2 for some ψ > 1, then (i) for

any sequence ln →∞ and ln/n→ 0,∑
|k|<n−1

ρ̂U,k1{|ρ̂U,k|≥λn} =
∑
|k|≤ln

ρ̂U,k1{ρU,k 6=0} +Op

∑
|k|>ln

|ρU,k|+ λnln

 ;

and (ii) if in addition there exists an M < ∞ such that θk,2 = 0 for all k > M ,

then the bound in (i) can be improved to∑
|k|<n−1

ρ̂U,k1{|ρ̂U,k|≥λn} =
∑
|k|≤ln

ρ̂U,k1{ρU,k 6=0} +Op

∑
|k|>ln

|ρU,k|

 .

Let γU,k = cov(U0, Uk), k ∈ Z, denote sample autocovariances of the process

(Ui). The following lemma concerns the sum of thresholded autocovariances of

(Ṽi), and is useful in proving Lemma 6.

Lemma 5. Assume X0 ∈ Lq for some q > 4, and θk,q = O(k−δ) for some

δ > 3/2. If the threshold λn = ψcq{(log n)/n}1/2 for some ψ > 1, then (i) for

any sequence ln →∞ and ln/n→ 0,∑
|k|<n−1

γ̂Ṽ ,k1{|ρ̂Ṽ ,k|≥λn} =
∑
|k|≤ln

γ̂U,k1{γU,k 6=0} +Op

∑
|k|>ln

|γU,k|+ λnln

 ;

and (ii) if in addition there exists an M < ∞ such that θk,2 = 0 for all k > M ,

then the bound in (i) can be improved to∑
|k|<n−1

γ̂Ṽ ,k1{|ρ̂Ṽ ,k|≥λn} =
∑
|k|≤ln

γ̂U,k1{γU,k 6=0} +Op

∑
|k|>ln

|γU,k|+ n−1/2 +
ln
n

 .

The following lemma states that the residual process (V̂i) can be used to

estimate

gU =
∑
k∈Z

γU,k,
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the long-run variance of the generally unobserved process (Ui). An explicit

stochastic error bound is given, which is useful in proving Theorem 1.

Lemma 6. Assume X0 ∈ Lq for some q > 4, and θk,q = O(k−δ) for some

δ > 3/2. If the threshold λn = ψcq{(log n)/n}1/2 for some ψ > 1, then (i) for

any sequence ln →∞ and ln/n→ 0,

ĝV̂ = gU +Op

(
ln
n

)1/2 + n−1
∑
|k|≤ln

|kγU,k|+
∑
|k|>ln

|γU,k|+ λnln

 ;

and (ii) if in addition there exists an M < ∞ such that θk,2 = 0 for all k > M ,

then the bound in (i) can be improved to

ĝV̂ = gU +Op

n−1/2 + n−1
∑
|k|≤ln

|kγU,k|+
∑
|k|>ln

|γU,k|

 .

Proof. (Theorem 1) Since θk,2 ≤ θk,q = O(k−δ) for some δ > 3/2 under the stated

conditions, we have |γk| ≤
∑∞

i=0 θiθi+|k| = O(|k|1−2δ) and
∑∞

k=0 |kγk| <∞. Then

by Lemma 6 (i),

ĝV̂ − gU = Op

{(
ln
n

)1/2

+ n−1 + l2(1−δ)
n + λnln

}
holds for any sequence ln →∞ and ln/n→ 0. By choosing ln = (n/ log n)1/(4δ−2)

in the above error bound, we obtain that

ĝV̂ − gU = Op

[{
(log n)

n

}(δ−1)/(2δ−1)]
.

By Lemma 1, the parameter estimator ϕ̃ = ϕ + Op(n
−1/2), and thus under the

stated conditions on τn we have ϕ̂ = ϕ+Op(n
−1/2). Therefore,

ĝ =
gU

(1− ϕ)2
+Op

[
n−1/2 +

{
(log n)

n

}(δ−1)/(2δ−1)]
.

As Ui = Xi − ϕXi−1,

γU,k = cov(Xi − ϕXi−1, Xi+k − ϕXi+k−1) = (1 + ϕ2)γk − ϕ(γk−1 + γk+1),

and thus

gU =
∑
k∈Z

γU,k = (1− ϕ)2g.

Since (δ − 1)/(2δ − 1) < 1/2, (i) follows. If θk,2 = O(φk) for some 0 < φ < 1, as

in (ii), then |γk| ≤
∑∞

i=0 θiθi+|k| = O(φ|k|) and by Lemma 6 (i),
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ĝV̂ − gU = Op

{(
ln
n

)1/2

+ n−1 + φln + λnln

}
.

By letting ln = (log log n − log n)/(2 log φ), (ii) follows by a similar argument.

On the other hand, if there exists an M < ∞ such that θk,2 = 0 for all k > M ,

then
∑
|k|>ln |γU,k| = 0 for all sufficiently large ln, and (iii) follows by choosing

any ln →∞ in Lemma 6 (ii).

Proof. (Theorem 2) If the underlying process (Xi) does follow a stationary first-

order autoregressive model

(Xi − µ) = ϕ(Xi−1 − µ) + εi,

where ϕ ∈ (−1, 1) is the autoregressive coefficient and (εi) are iid random vari-

ables, then by Lemma 1 the parameter estimator ϕ̃ = ϕ + Op(n
−1/2). In this

case, Ui = εi + (1 − ϕ)µ and thus ρU,k = 0 if k 6= 0. With νn from the proof of

Lemma 4, by Lemma 3 we have

lim
n→∞

pr

{
max

0<|k|<n−1
|ρ̂U,k| ≤

(ψ + 1)νn
2

}
= 1,

and thus

lim
n→∞

pr

∑
|k|<n

γ̂U,k1{|ρ̂U,k|≥λn} = γ̂U,0

 = 1. (6.1)

As Ṽi = (Xi − X̄n)− ϕ̃(Xi−1 − X̄n), by the proof of Lemma 5 we have

lim
n→∞

pr

∑
|k|<n

γ̂Ṽ ,k1{|ρ̂Ṽ ,k|≥λn} = γ̂Ṽ ,0

 = 1.

If ϕ 6= 0, then by Lemma 1 and the condition that τn → 0, we have ϕ̃ ≥ τn
and thus V̂i = Ṽi with probability tending to one as n → ∞. As a result, the

proposed TIPS estimator has the property that

lim
n→∞

pr

{
ĝX =

γ̂Ṽ ,0
(1− ϕ̃)2

}
= 1.

If ϕ = 0, then by Lemma 1 and the condition that n1/2τn →∞, we have ϕ̃ < τn
and thus V̂i = Xi − X̄n = Ui − X̄n with probability tending to one as n → ∞.

Hence, by (6.1) and the construction of ĝX , we have

lim
n→∞

pr{ĝX = γ̂X,0} = 1,

entailing the dependence-oracle property.

Proof. (Corollary 1) The proof follows similarly to that of Theorem 1, and we

shall here only outline the key differences. With a little abuse of notation, let
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Ui = Xi −
p∑
r=1

ϕrXi−r, i = p+ 1, . . . , n,

γ̂U,k =
1

n− p

n−|k|∑
i=p+1

(Ui − Ūn−p)(Ui+|k| − Ūn−p), Ūn−p =
1

n− p

n∑
i=p+1

Ui.

Similarly, define

Ûi = Xi −
p∑
r=1

ϕ̂rXi−r, i = p+ 1, . . . , n,

γ̂Û ,k =
1

n− p

n−|k|∑
i=p+1

(Ûi − ¯̂
Un−p)(Ûi+|k| −

¯̂
Un−p),

¯̂
Un−p =

1

n− p

n∑
i=p+1

Ûi.

Then by (5.1) we have V̂i = Ûi − (1 −
∑p

r=1 ϕ̂r)X̄n, i = p + 1, . . . , n, and thus

γ̂V̂ ,k = γ̂Û ,k, |k| < n− p. Let

D̂i = (Ûi − ¯̂
Un−p)− (Ui − Ūn−p) = −

p∑
r=1

(ϕ̂r − ϕr)

Xi−r −
1

n− p

n∑
j=p+1

Xj−r


denote the centered difference, i = p+ 1, . . . , n, then as p <∞ is fixed, the proof

of Theorem 1 continues to follow.

Supplementary Materials

The Supplementary Material contains proofs of Lemmas 1–6, and additional

details on the simulation procedure.
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