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Abstract: The constrained partial linear model is fit using a single cone projection,

without back-fitting. The cone formulation not only provides efficient computa-

tion, but also allows for derivation of convergence rates and inference methods.

Conditions for simultaneous root-n convergence of the parameters and optimal

convergence for the regression function are given. Hypothesis tests involving the

nonlinear regression function, while controlling for the effects of the linear term, use

a test statistic whose null distribution is that of a mixture-of-betas random vari-

ables, under the normal errors assumption. Inference involving the linear term uses

approximate t and F distributions; simulations show these perform well compared

to competitors.
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1. Introduction

Consider the regression model

Y = f(T ) +X>β + ε, (1.1)

where the random variable T takes values in [0, 1], X = (X1, . . . , Xp)
> are para-

metrically modeled covariates, β ∈ IRp is an unknown parameter vector, and ε

is a mean-zero random error independent of (X, T ). We observe independent

realizations (yi, ti,xi), i = 1, . . . , n. The function f is to be estimated with

shape-constrained regression splines, and the principle of least-squares is used to

estimate f and β simultaneously with a cone projection. Interest is in conver-

gence rates for estimates of β and f , and in inference for each component while

controlling for the effect of the other.

For unconstrained spline estimation without the linear term, optimal rates

of convergence were given by Stone (1980, 1982). If q is the order of the spline

and K = n1/(2q+1) is the number of knots then, under mild conditions, the

convergence rate n−q/(2q+1) is attained for the estimate f̃(x0), x0 ∈ [0, 1]. The
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global rate of convergence is
∑n

i=1[f̃(xi) − f(xi)]
2/n = Op(n

−2q/(2q+1)). For

the partial linear model, optimal rates for both parametric and non-parametric

components can be obtained if the predictors are independent; see for example

Heckman (1986). For correlated X and T , and smoothing spline estimation of

f , Rice (1986) showed that the estimator for f must be under-smoothed so that

the bias of β̂ gets smaller at a faster rate than its standard error. Similarly,

Speckman (1988) showed that the kernel regression estimator must be under-

smoothed to attain the root-n convergence of the parametric term, and similar

results for the local polynomial partial linear model were attained by Opsomer

and Ruppert (1999). For piece-wise polynomial estimation of f , Chen (1988) gave

mild conditions under which the parametric and non-parametric terms might

simultaneously have optimal convergence rates.

Huang (2002) considered the partial linear isotonic regression model without

smoothing, and showed that root-n convergence of the linear term is attained if f

is strictly increasing. The estimator is attained through “back-fitting,” iterating

between estimating f and β until a convergence criterion is attained. Smooth

monotone partially linear estimation was considered by Hazelton and Turlach

(2011), with a Bayesian approach. The partial linear model with constrained

penalized splines was considered by Meyer (2012) and Pya and Wood (2015); the

latter provided fitting and inference routines in the R package scam.

In the next section, we show that f and β can be estimated simultane-

ously with a single cone projection without back-fitting. The fitting routine is

considerably faster, but more importantly, the cone formulation allows for the

derivation of conditions for which the estimate β̂ has root-n convergence. We

show in Section 3 that if f is strictly increasing for the monotonicity shape, or

strictly convex for the convex shape, then root-n convergence for β̂ is attained

with the number of knots necessary for the optimal convergence rate for f̂ , under

mild assumptions. In Section 4, we formulate a test for f ; for example con-

stant versus increasing, or linear versus convex, while controlling for the effects

of the linearly-modeled covariates. This test is exact under the normal errors

assumption, and is demonstrated in an analysis of uncounted votes in the 2000

U.S. presidential election. In Section 5 the convergence results for β are used

for inference; simulations show that the proposed test performs well compared

to competitors. The methods in this paper, as well as the election data, are

available in the R package ConSpline.
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Figure 1. Spline basis functions, with the knots indicated by the dotted vertical lines.

2. Spline Estimation

We assume that f is smooth and has a shape, such as increasing or convex,

and estimate f using polynomial splines of the appropriate degree for the shape

assumption. For example, we use quadratic splines for monotonicity, because

a quadratic spline function has piece-wise linear first derivatives, and hence is

increasing if and only if it is increasing at the knots. The second derivative of

cubic splines is piece-wise linear, so the spline function is convex if and only if the

second derivative is non-negative at the knots. Combinations of monotonicity and

convexity also use cubic splines; for details see Meyer (2008). The most popular

formulation for spline basis functions is the B-splines of de Boor (2001); other

formulations include M -splines, I-splines, and C-splines; see Ramsay (1988) and

Meyer (2008). The I-splines and C-splines are specifically formulated for shape

constraints and are shown in Figure 1.

The I-spline basis functions are piece-wise quadratic, and at each of the knots

ξ1, . . . , ξK , there is exactly one basis function with non-zero slope. Each basis

function is non-decreasing, so that a linear combination of I-spline basis functions

is increasing if and only if the coefficients are positive. Any quadratic spline

function is a linear combination of these basis functions, plus a constant. The

C-spline basis functions are convex and piece-wise cubic, and at each knot, there

is exactly one basis function with non-zero second derivative. Hence, a linear

combination of C-spline basis functions is convex if and only if the coefficients

are positive. Any cubic spline function is a linear combination of these basis

functions, plus a constant, plus a multiple of the identity function.

Basis vectors z1, . . . ,zm in IRn can be defined, where zji is the jth basis

function evaluated at ti, i = 1, . . . , n and j = 1, . . . ,m. If Z is an n×m matrix

with columns z1, . . . ,zm, and the rows ofW are x1, . . . ,xn, then we can estimate
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µ, where µi = E(yi), as Zα+W0β0 +Wβ, with the shape constraints holding

if and only if α ≥ 0. For the monotone assumption, m = K, Z contains the I-

spline basis vectors, and W0 = 1 = (1, . . . , 1)>. For convex constraints, m = K,

Z contains the C-spline basis vectors, and W0 = [1|t], where t = (t1, . . . , tn)>.

For increasing and convex constraints, m = K+ 1, Z contains the C-spline basis

vectors and t, and W0 = 1. In each case, the number of columns of W , W0, and

Z sum to K + q − 2 + p, where q is the order of the splines (q = 3 for I-splines

and q = 4 for C-splines). For any shape assumption, we assume the columns of

Z, W0, and W together form a linearly independent set.

The set

C = {µ ∈ IRn : µ = Zα+W0β0 +Wβ, where α ≥ 0} ,

is a closed convex cone, where a set C is a “cone” if for any µ ∈ C, positive

multiples of µ are also in C. The least-squares estimator for µ is the projection

of y onto C. For a comprehensive treatment of cones and cone projection, see

Rockafellar (1970) or Silvapulle and Sen (2005).

Let V be the linear space spanned by the columns of W0, and W ; this is the

largest linear space contained in the cone. Define Ω = C ∩ V⊥, where V⊥ is the

linear space orthogonal to V. Then Ω is a cone that does not contain a linear

space of dimension larger than zero, and hence has a set of edges that are unique

up to positive multiplicative constants. An “edge” is defined as a vector in the

cone that is not a linear combination with positive coefficients of other non-zero

vectors in the cone. The proof of the following is in the appendix.

Theorem 1. The edges and generators of Ω are the columns δ1, . . . , δm of ∆ =

(I − PV)Z, where PV is the projection matrix for V,

Ω =

θ ∈ IRn : θ =

m∑
j=1

αjδj , where αj ≥ 0, j = 1, . . . ,m

 .

There are 2m faces of Ω, indexed by subsets J ⊆ {1, . . . ,m}, where

FJ =

θ ∈ IRn : θ =
∑
j∈J

αjδj , where αj > 0, j ∈ J

 .

The faces partition the cone Ω, so that the projection of y onto Ω lands on one of

the faces. The set of y ∈ IRn that land on FJ is itself a convex cone CJ . Because

Ω and V are orthogonal, the projection of y onto C is the sum of the projections

of y onto Ω and V.



CONSTRAINED SPLINE 281

The cone projection algorithm of Meyer (2013) (available as the function

coneB in the R package coneproj) determines a subset of the edges, say the

columns of ∆J , so that the projection θ̂ of y onto Ω coincides with the pro-

jection of y onto the linear space spanned by the subset of those edges, θ̂ =

∆J(∆>J ∆J)−1∆>J y. Then µ̂ = θ̂ + v̂, where v̂ is the projection of y onto

V. Let the columns of ZJ be the subset of columns of Z indexed by J , let

Z+ = [ZJ |W0], and let PJ be the projection matrix for the column space of Z+.

Let Pw be the projection matrix for the space spanned by the columns of W and

let α̂>+ = [α̂>, β̂>0 ], where α̂, β̂0 and β̂ are the least-squares estimators obtained

through the cone projection.

Lemma 1. For y ∈ CJ , the least-squares estimate of the parameter vector β is

given by

β̂ = [W>(I − PJ)W ]−1W>(I − PJ)y, (2.1)

where PJ is the projection matrix for the linear space spanned by the columns of

ZJ and W0. Further, α̂+ = (Z>+(I − Pw)Z+)−1Z>+(I − Px)y.

Proof : Defining U = [Z+|W ] and using the formula for the inverse of block

matrices, we have

(U>U)−1 =

[
Z>+Z+ Z>+W

W>Z+ W>W

]−1

=


(Z>+(I − Pw)Z+)−1

−(Z>+(I − Pw)Z+)−1

Z>+W (W>W )−1

−(W>(I − PJ)W )−1

W>Z+(Z>+Z+)−1
(W>(I − PJ)W )−1

 ,
[
α̂+

β̂

]
= (U>U)−1U>y

=


(Z>+(I − Pw)Z+)−1Z>+y

−(Z>+(I − Px)Z+)−1Z>+W (W>W )−1W>y

−(W>(I − PJ)W )−1W>Z+(Z>+Z+)−1Z>+y

+(W>(I − PJ)W )−1W>y


=

[
(Z>+(I − Pw)Z+)−1Z>+(I − Pw)y

(W>(I − PJ)W )−1W>(I − PJ)y.

]
.

If cov(ε) = σ2A for A known and positive definite, the transformation to



282 MARY C. MEYER

the uncorrelated case is straightforward. For A = LL> with lower-triangular L,

we can write ỹ = Z̃α + W̃0β0 + W̃β + ε̃, where ỹ = L−1y, Z̃ = L−1Z, etc.,

and cov(ε̃) = σ2I, the identity matrix. The parameters are estimated as above

using the transformed model, and the inference of Sections 4 and 5 take place

in the transformed model as well. Therefore, without loss of generality, we take

cov(ε) = σ2I.

3. Rates of Convergence

In this section we use Kn for the number of knots, and Jn for the set of

edge indices used in the cone projection, to emphasize that these are increasing

with n. The derivation of the convergence rate for the unconstrained estimator of

µ = E(y) follows the ideas of Huang (2001) and earlier papers referenced therein,

and is outlined here. The first four assumptions are standard.

(A1) Let G be a continuous cdf with support [0, 1], such that the density g is

bounded away from zero and infinity, and assume that for any c ∈ [0, 1],

the proportion of ti, i = 1, . . . , n, such that ti ≤ c, converges to G(c) as n

increases.

(A2) Assume f ∈ Cq[0, 1].

For monotone f we use quadratic splines (q = 3) and for convex f , cubic splines

are used (q = 4).

(A3) Suppose the number Kn of knots grows with n, and there is an M > 0 such

that KnM
−1 ≤ ξj+1 − ξj ≤ K−1n M .

(A4) The errors εi have common variance σ2 and bounded fourth moments.

(A5) For the monotone assumption we have f ′(t) ≥ ε > 0 on [0, 1], and for

the convex assumption, f ′′(t) ≥ ε > 0 on [0, 1]. For the increasing and

convex assumption, constraints hold strictly if f ′′(t) ≥ ε > 0 on [0, 1] and

f ′(0) ≥ ε > 0.

Lemma 2. (Theorem 6.25 of Schumaker (2007)) For a function f satisfying

(A2), there is a function f0 in the linear space of spline functions with Kn knots

satisfying (A3), and constants Cr > 0 not depending on Kn, such that for r =

0, 1, . . . , q − 1,

sup
t∈[0,1]

|f (r)0 (t)− f (r)(t)| ≤ CrK−(q−r)n .
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Define µ̄ to be the projection of µ onto the linear space spanned by the

columns of [Z|W0|W ] and define θ ∈ IRn so that θi = f(ti). If θ0 ∈ IRn is such

that θ0i = f0(ti), and µ0i = θ0i + x>i β, then

1

n

n∑
i=1

(µ̄i − µi)2 ≤
1

n

n∑
i=1

(µ0i − µi)2 =
1

n

n∑
i=1

(θ0i − θi)2 = O(K−2qn ) (3.1)

by Lemma 2 with r = 0. Let µ̃ be the projection of y onto the linear space

spanned by the columns of [Z|W0|W ]. If PL is the projection matrix for this

space, then
n∑
i=1

(µ̃i − µ̄i)2 =

n∑
i=1

(PLε)
2
i = Op(Kn)

because the dimension of the linear space is on the order of Kn. For, if u1, . . . ,uk
forms an orthonormal basis for the linear space of spline functions, then PLε =∑k

j=1 ajuj , where aj = u>j ε. Then
∑n

i=1(PLε)
2
i =

∑k
j=1 a

2
j , and because the

errors have finite fourth moments, each term in the sum is bounded in probability.

Therefore, we have the global convergence rate

1

n

n∑
i=1

(µ̃i − µi)2 = Op(K
−2q
n +Knn

−1),

which is minimized when Kn = O(n1/(2q+1)).

Theorem 2. The constrained estimator attains the same rate as the uncon-

strained estimator:

1

n

n∑
i=1

(µ̂i − µi)2 = Op(n
−2q/(2q+1)).

Proof: Using (A4) and Lemma 2, we find a µ0 ∈ C that is close to µ. For the

monotone case, there is a quadratic spline function f0 such that supt∈[0,1] |f ′0(t)−
f ′(t)| ≤ C1n

−2/7. For large enough n, C1n
−2/7 < ε, so f0 is increasing. Let θ0 be

the vector corresponding to f0, hence µ0 = θ0 +Wβ ∈ C. For the convex case,

there is a cubic spline function f0 such that supt∈[0,1] |f ′′0 (t)− f ′′(t)| ≤ C2n
−2/9.

For large enough n, C2n
−2/9 < ε, so f0 is convex. Using the notation ‖a‖2 = a>a,

we have

‖µ̃− µ0‖2 − ‖µ̂− µ0‖2 = ‖µ̃− µ̂‖2 + 2(µ̃− µ̂)>(µ̂− µ0)

= ‖µ̃− µ̂‖2 − 2(y − µ̃)>(µ̂− µ0) + 2(y − µ̂)>(µ̂− µ0).

The second term in the last expression is zero by orthogonality of the projec-

tion with anything in the space. Because µ0 ∈ C, the third term is positive by
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the Karush-Kuhn-Tucker conditions (see Silvapulle and Sen (2005), Proposition

3.12.3). Therefore, ‖µ̂− µ0‖2 ≤ ‖µ̃− µ0‖2. Then

‖µ̂−µ‖ ≤ ‖µ̂−µ0‖+ ‖µ0−µ‖ ≤ ‖µ̃−µ0‖+ ‖µ0−µ‖ ≤ ‖µ̃−µ‖+ 2‖µ0−µ‖,

which is sufficiently small, and hence the constrained estimator attains the same

rate as the unconstrained estimator.

Next, we consider conditions under which β̂ can attain a root-n convergence

rate, using methods similar to those in Chen (1988). Take hj(t) = E(Xj |T = t),

j = 1, . . . , p, and Σt = cov(X|T = t), with X = (X1, . . . , Xp)
>. Assump-

tion (A5) ensures that the matrix W>(I − PJn
)W is non-singular for Jn =

{1, . . . ,m}, and hence for any subset Jn – see the proof of Lemma 2 of Chen

(1988).

(A5) There exist positive definite matrices Σ0 and Σ1 such that both Σt − Σ0

and Σ1 − Σt are positive definite, for all t ∈ [0, 1].

(A6) The functions hj(t) have q continuous derivatives.

The following corollary to Theorem 2 is proved in the Appendix.

Corollary 1. The components do not converge more slowly than µ̂,

1

n

n∑
i=1

(θ̂i−θi)2 = Op(n
−2q/(2q+1)) and

1

n

n∑
i=1

[(Wβ̂)i−(Wβ)i]
2 = Op(n

−2q/(2q+1)).

Take ηj = Xj − hj(T ), and let ηj ∈ IRn be such that ηji = xji − hj(ti), and

hj ∈ IRn where the ith element of hj is hj(ti). If

σj` = cov(Xj − hj(T ), X` − h`(T ))

then by the law of large numbers, η>j η`/n
p→ σj`. Define the matrix Σ with

elements σj`.

Theorem 3. Under (A1)-(A6), W>(I − PJn
)W /n

p→ Σ.

Proof: The j, `th element of W>(I −PJn
)W is [(I −PJn

)xj ]
>[(I −PJn

)x`], by

the idempotence of projection matrices, and (I − PJn
)xj = (I − PJn

)(hj + ηj).

The term (I − PJn
)hj is the residual of the spline fit to hj and, by (A6), this

is sufficiently small if the space spanned by the cone edges indexed by Jn is

sufficiently “rich.” In particular, the knots indexed by Jn must satisfy (A3). The

following lemma is proved in the Appendix:

Lemma 3. Let An be the event that j, j + 1 /∈ Jn for some j = 1, . . . ,Kn − 1.

Then limn→∞ P (An) = 0.
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If Jn contains indices for at least every other knot, then assumption (A3)

holds for the sequence of knots indexed by Jn. That is, we have bounded mesh

ratio for the knots “used” in the constrained case. Then ‖(I − PJn
)hj‖2 =

Op(n
1/(2q+1)). Using a>b ≤ ‖a‖‖b‖, we have [(I−PJn

)hj ]
>[(I−PJn

)h`] = op(n)

and η>j (I−PJn
)h` = op(n) by Chebyshev’s inequality. Finally, η>j (I−PJn

)η` =

η>j η` + op(n), and the j, `th element of W>(I − PJn
)W is η>j η` + op(n).

Theorem 4. Under (A1)-(A6), we have
√
n(β̂ − β) =

√
n[W>(I − PJn

)W ]−1W>(I − PJn
)ε+ op(1).

Proof: From (2.1), we have

β̂ − β = [W>(I − PJn
)W ]−1W>(I − PJn

)(θ + ε)

= [W>(I−PJn
)W ]−1W>(I−PJn

)θ+[W>(I−PJn
)W ]−1W>(I−PJn

)ε,

so interest is in showing that the first term in the last expression is negligible

compared to the second term. The jth element of W>(I − PJn
)θ is x>j (I −

PJn
)θ = (hj + ηj)

>(I − PJn
)θ. Recalling ‖(I − PJn

)θ‖2 = Op(n
1/(2q+1)), we

have η>j (I−PJn
)θ = op(n

1/2) and h>j (I−PJn
)θ = [(I−PJn

)hj ]
>[(I−PJn

)θ] =

op(n
1/2).

4. Inference for the Nonlinear Term

Assuming normal errors, an exact test for H0 : µ ∈ V versus H1 : µ ∈ C
is available. For example, we can test constant versus increasing f , or linear

versus convex f , while controlling for covariates. If SSR0 is the sum of squared

residuals under H0 and SSR1 is the sum of squared residuals under H1, then

large values of

B01 =
SSR0 − SSR1

SSR0

support the alternative hypothesis. A standard result in cone projection is that

the null distribution of B01 is that of a mixture of Beta random variables. Specif-

ically, when H0 is true,

P (B01 ≤ a) =

m∑
d=0

P

[
B

(
d

2
,
(n− d)

2

)
≤ a
]
pd,

where B(a, b) is a Beta(a, b) random variable, and p0, . . . , pm are mixing proba-

bilities readily obtained through simulations to the desired precision. See Robert-

son, Wright and Dykstra (1988) for details concerning the constant versus increas-

ing test, without smoothing or covariates. Meyer (2003) gave a similar result for

the linear versus convex test, again without smoothing or covariates. The gen-
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eral test for V versus C was given by Raubertas, Lee and Nordheim (1986). This

extension to the partial linear model allows for a test against a constant or linear

f , while controlling for possibly confounding covariates.

To demonstrate the test, we look at voting data from the 2000 U.S. pres-

idential election, in the state of Georgia, using the percent of uncounted votes

as a response variable and asking whether the percent of uncounted votes is in-

creasing in the percent of black voters registered in the county. The data are

shown in Figure 2; for more details see Meyer (2002). Because the response is

a proportion, the variance is inversely proportional to the number of ballots, so

this can be used as a weight. The test of constant versus increasing regression

function, without accounting for covariates, gives p-values less than 10−9, for

numbers of knots between 5 and 9, indicating that percent of uncounted votes is

significantly higher in counties with more black voters. With K = 7 knots (the

default in ConSpline), the coefficient of determination is R2 = 0.28. When we

control for the method of voting, the p-value continues to be small (about 10−7),

and R2 = 0.38. In addition we find that the method is significant, with punch

cards having a significantly higher proportion of uncounted votes compared with

OS-PC (optical scan, precinct count) and the lever, OS-CC (optical scan, cen-

tral count), while paper ballots are not significantly different from punch cards.

When we include an economics covariate, it is highly significant that the richer

counties have lower proportions of uncounted votes, and poorer counties have

more. Here R2 = 0.53 and p = 0.88 for the test of constant versus increasing

proportion of uncounted votes with the number of black voters. The proportion

of black voters is strongly confounded with the economics variable, showing the

need for inclusion of covariates in this test. The voting method is also quite

confounded with economic status – after the latter variable is controlled for, we

find that the lever method and both optical scan methods are associated with a

significantly lower proportion of uncounted votes, compared to the punch card

method.

5. Inference for the Linear Term

The result (2.1) gives cov(β̂) ≈ [X>(I −PJ)X]−1σ2 for y ∈ CJ ; this is used

for inference concerning the linear term. A variance estimate σ̂2 typically uses the

sum of squared residuals divided by the residual degrees of freedom. However for

cone regression, Meyer and Woodroofe (2000) showed that this tends to under-

estimate the variance, with
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Figure 2. Percent of uncounted votes in the 2000 U.S. presidential election is plotted
against percent of black voters, for the n = 159 counties in Georgia, with the size of the
plot character proportional to the log of the number of ballots cast in the county. In the
second plot, the shape is the economic status of the county, and the shading represents
the type of voting system used by the county. The curves are the estimated trends for
the lever method and the three economic status levels.

n− 2(E(D) + d0 + p) ≤ E(SSR)

σ2
≤ n− (E(D) + d0 + p),

where D is the size of J and d0 is the number of columns of X0. This suggests

that a reasonable estimator of σ2 is

σ̂2 =
SSR

n− c(d+ d0 + p)
,

where c ∈ (1, 2) and d is the observed size of J . For unsmoothed monotone

regression, Meyer and Woodroofe (2000) demonstrated that c is about 1.5, but

there is empirical evidence that c should be smaller for convex regression and

for splines. In the spline case, if c > 1, then c(d + p) may often be larger than

m + d0 + p, the largest possible degrees of freedom. For a conservative choice,

edf = max(1.2(d+ d0 + p),m+ d0 + p), and σ̂2 = SSR/(n− edf). Then t or F

statistics can be used to test hypotheses about β, with edf for the model degrees

of freedom and ˆcov(β̂) = [X>(I − PJ)X]−1σ̂2.

For a simple demonstration, we did simulations to compare the size and

power of the test H0 : β = 0 versus H1 : β 6= 0, where yi = f(ti) + βxi + εi,

i = 1, . . . , n, xi with values in {0, 1}, and the εi independent standard normal.

The t values were equally spaced in [0, 1], and the probability that xi = 1 was

max[t4, (1−t)4], so x = 1 was more likely when t was close to zero or close to one,

and x = 0 was more likely for middle-range t values. The default knots choices

in ConSpline were used: K = d2n1/2(q+1)e+ q equally-spaced knots.
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Table 1. Proportions of simulated data sets for which H0 : β = 0 was rejected. The
proposed method is labeled “CSm” when using increasing constraints, and “CSmc” for
increasing and convex constraints. The numbers of knots were 6, 7, and 8, for n = 100,
n = 200, and n = 400, respectively. For CS and F -test, N = 100,000 data sets were
generated, but for scam, N = 10,000.

f1(t) = t f2(t) = 4(t− 1/2)2 f3(t) = 20(t− 2/3)2+
n β CSm lin scamm CSc quad scamc CSmc lin quad scammc

100 0 0.046 0.050 0.060 0.050 0.050 0.056 0.048 0.389 0.050 0.067
200 0 0.047 0.050 0.060 0.050 0.050 0.053 0.048 0.650 0.050 0.055
400 0 0.047 0.050 0.056 0.050 0.050 0.051 0.050 0.911 0.049 0.051
100 −1/4 0.173 0.223 0.227 0.192 0.170 0.176 0.159 0.081 0.164 0.155
200 −1/4 0.308 0.403 0.386 0.326 0.296 0.305 0.295 0.108 0.289 0.302
400 −1/4 0.541 0.680 0.648 0.557 0.526 0.537 0.572 0.164 0.510 0.530

For f1(t) = t, we compared the proposed test with monotone increasing shape

constraints with the test available in scam, also using monotone constraints. We

also compared with an exact t-test using a parametric model with f(t) = t. The

results are in Table 1, where the proposed test is labeled CS with a subscript

indicating the shape. For f2 = 4(x− 1/2)2, we compared the proposed test with

convex assumptions to the corresponding test in scam, and to an exact t test

where f(t) was assumed to be quadratic in t. For both the monotone and convex

cases, the proposed test had correct or conservative size, while the scam test had

a slightly inflated test size. The scam test had higher power than the proposed

test for the monotone case, but the proposed test had higher power for the convex

case.

The function f3(t) = 20(t− 2/3)2+ was chosen to “fool” the t-test with linear

assumptions. Because the value of xi was more likely to be one for t-values in the

middle of the range, the linear model chose a negative value for β, to “pull up”

the middle observations into a line. Therefore the test size was quite large, and

worse for larger n. Although the quadratic model was not fooled, if we choose a

different pattern for the probability that xi = 1, such as higher probabilities at

the right end only, this test will also have an inflated size. Although (A4) does

not hold for f3, the results for the proposed test are still acceptable, because we

use a large number of knots. Because the constrained splines are robust to knot

choices (Meyer (2008)), we can choose a number of knots that would result in

under-smoothing, if the spline function were unconstrained.
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6. Discussion

The proposed estimation and inference methods are available in the R pack-

age ConSpline, where the shape choices are increasing, decreasing, convex or

concave, with all four combinations of monotonicity and convexity. The user

may specify the knots and choose c ∈ [1, 2], the adjustment constant for the

variance estimation and degrees of freedom. The simulations and example from

the previous sections used the default choices.

Our proof that the linear term can attain root-n convergence simultaneously

with optimal convergence rate of the regression function uses the assumption

that the constraints hold strictly. The root-n convergence can alternatively be

attained by under-smoothing, or having the knots grow at a faster rate than is

optimal for the estimation of f . For unconstrained splines, choosing a larger

number of knots may result in unacceptably “wiggly” function estimates, but

the constrained case obviates wiggling. Therefore, the rate at which the knots

grow is not a practical consideration, and in ConSpline, the default choices are

larger numbers of knots than would be reasonable for the unconstrained case.

As a result, the test size tends to be conservative rather than inflated, without

sacrificing power.

The cone projection methods are computationally efficient. The function

conspline was called 100,000 times with n = 400 for the simulations in Table 1.

This took 16 minutes using a Mac Powerbook with a 2.8 GHz processor. In

contrast, the 10,000 calls to scam took over 25 minutes on the same machine.

Simulations to compare mean squared error of scam fits with that of the proposed

fits were performed for a variety of regression functions, sample sizes, and model

variances; no appreciable advantages were found for either method.
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Appendix

A. Proofs

Proof of Theorem 1: Checking that Ω is a convex cone is straight-forward.

Suppose θ1 and θ2 are non-zero vectors in Ω such that θ1 + θ2 = δj , the jth
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column of ∆. Because θ1 and θ2 are in C, we can write θ1 = Zα1+X0β01+Xβ1,

and θ2 = Zα2 + X0β02 + Xβ2, and we can write Z = PVZ + ∆. Then

θj = ∆αj + vj , where vj ∈ V. Because θ1 and θ2 are in V⊥, v1 = v2 = 0.

Then θ1 + θ2 = ∆(α1 + α2) = ∆ej , where ej is a vector with all zeros but

the jth element is one. Because a basis for V and columns of Z form a linearly

independent set, the columns of ∆ are linearly independent, and we must have

α1 + α2 = ej . But the elements of α1 and α2 are non-negative, so all elements

but the jth must be zero. Therefore, θ1 and θ2 are collinear and δj is an edge.

Proof of the Corollary: Suppose an and bn are random vectors taking values in

IRn. If ‖an + bn‖ converges to zero in probability at a rate faster than ‖an‖
converges to zero, then ‖an + bn‖/|an‖

p→ 0. We can write bn as the sum of its

projection onto an and the residual of this projection:

bn =
a>n bn
‖an‖2

an + rn,

so that

‖an + bn‖2 =

[
1 +

a>n bn
‖bn‖2

]2
‖an‖2 + ‖rn‖2

by orthogonality of an and rn. By assumption we have ‖rn‖2/‖an‖2
p→ 0 and

a>n bn/‖bn‖2
p→ −1; then an = −bn+sn, where sn/‖bn‖2

p→ 0. Now if an = θ̂−θ
and bn = W (β̂ − β), then an + bn = µ̂ − µ. Therefore, if µ̂ − µ converges to

zero faster than θ̂ − θ, then θ̂ − θ = −W (β̂ − β) plus a negligible residual; this

is contradicted by (A5).

Proof of Lemma 3: By (A1),

1

n

n∑
i=1

[
f̂(ti)− f(ti)

]2
�
∫ 1

0

[
f̂(t)− f(t)

]2
g(t)dt,

where an � bn means an/bn
p→ 1. Let g0 > 0 be the smallest value of g(t) on

[0, 1]. By (A3), there is a constant c such that infj=1,...,K(ξj+1 − ξj) ≥ c/K for

all sufficiently large n.

For the monotone case and quadratic splines, if j, j + 1 /∈ J , then f̂ ′(ξj) =

f̂ ′(ξj+1) = 0, and f̂ is constant in Ij = [ξj , ξj+1].∫ 1

0

[
f̂(t)− f(t)

]2
g(t)dt ≥ g0

∫ ξj+1

ξj

[
f̂(t)− f(t)

]2
dt,

and because f ′(t) ≥ ε > 0, the integral on the right is minimized when f ′(t) = ε



CONSTRAINED SPLINE 291

over [ξj , ξj+1], so that∫ ξj+1

ξj

[
f̂(t)− f(t)

]2
dt, ≥ ε2

∫ ξj+1

ξj

[
t− ξj + ξj+1

2

]2
dt

=
ε2

12
(ξj+1 − ξj)3 ≥

ε2

12
cK−3.

By the Corollary to Theorem 2 this is too large, and the probability of the event

that j, j + 1 /∈ J for some j = 1, . . . ,K − 1, goes to zero.

For the convex case with cubic splines, if j, j + 1 /∈ J , then f̂ ′′(ξj) =

f̂ ′′(ξj+1) = 0, and f̂ is linear in Ij = [ξj , ξj+1]. Then the integral
∫ ξj+1

ξj
[f̂(t) −

f(t)]2dt is minimized when f ′′(t) = ε. It is straight-forward to show that for a

parabola p(t) with p′′(t) = ε, and linear `(t), then∫ b

a
(p(t)− `(t))dt ≥ ε2δ5

180
,

where δ = b− a. Hence if j, j + 1 /∈ J , we have∫ ξj+1

ξj

[
f̂(t)− f(t)

]2
g(t)dt ≥ g0ε

2(ξj+1 − ξj)5

180
≥ g0ε

2cK−5

180
.

Again by the Corollary to Theorem 2, the probability of the event that j, j+1 /∈ J
for some j = 1, . . . ,K − 1, must go to zero.
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