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Supplementary Material

The supplementary material contains additional technical lemmas and discusses some imple-

mentation issues.

Additional technical lemmas

Lemma S0.1. Let X be an n × p matrix and D = diag(d1, · · · , dn) with

|di| ≤ b and b ≥ 0. Then

ρmax(X
>DX, s) ≤ 2bρmax(X

>X, s).

If di ∈ [0, b], then ρmax(X
>DX, s) ≤ bρmax(X

>X, s).

Proof. Let As = {a ∈ Rp : |a|2 ≤ 1, |a|0 ≤ s}. Write di = d+i − d−i , where

d+i = max(di, 0) and d−i = max(−di, 0) are the positive and negative parts,
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respectively. By definition

ρmax(X
>DX, s) = max

a∈As

|a>X>DXa| = max
a∈As

|tr(D(Xaa>X>))|

= max
a∈As

∣∣∣∣∣
n∑
i=1

(d+i − d−i )(Xaa>X>)ii

∣∣∣∣∣ ≤ 2bmax
a∈As

n∑
i=1

(Xaa>X>)ii

= 2bmax
a∈As

tr(Xaa>X>) = 2bmax
a∈As

a>X>Xa = 2bρmax(X
>X, s),

because X>X is nonnegative definite. The second claim follows from the

same lines with d−i = 0.

Lemma S0.2. Let t ∈ $ and Σ̂t be the kernel smoothed sample covariance

at time t and Σ̂�t = X �t >X �t . Suppose that X �t has full row rank. Assume

further (15), (13) and assumption 6 hold, then we have

ρmin 6=0(Σ̂t) ≥ |Nt|wtε20, (S0.1)

ρmax(Σ̂t, s) ≤ |Nt|wtε−20 . (S0.2)

Proof. Since X �t is of full row rank, r = |Nt|. Note that Xt = (|Nt|Wt)
1/2X �t ,

ρi(Σ̂t) = σ2
i (Xt) and ρi(Σ̂

�
t ) = σ2

i (X �t ). By the generalized Marshall-Olkin

inequality, see e.g. (Wang and Zhang, 1992, Theorem 4), assumption 6 and

(15), we have

ρmin 6=0(Σ̂t) = ρmin(XtX>t ) = |Nt|ρmin(W
1/2
t X �t X �t

>W
1/2
t )

= |Nt|ρmin(X �t X �t
>Wt) ≥ |Nt|ρmin(Wt)ρmin(X �t X �t

>) ≥ |Nt|wtε20.
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The second inequality (S0.2) follows from assumption 3(b) and Lemma S0.1

applying to Σ̂t = |Nt|X �t >WtX �t and Wt ≥ 0.

Lemma S0.3. Suppose assumption 1, 2, 3 and 5(a) hold. Let t ∈ $ be fixed

and λ0 be defined in (17). Then, for λ1 ≥ 2(λ0 + 2C0Lt,1s
1/2ε−10 bn|Nt|wt)

where λ0 is defined in (17), we have, with probability 1− 2p−1,

|Xt[β̃(t)− β(t)]|22 + λ1|β̃(t)− β(t)|1 ≤ 4λ21
s

φ2
0

. (S0.3)

Proof. By definition (8),

|Yt −Xtβ̃(t)|22 + λ1|β̃(t)|1 ≤ |Yt −Xtβ(t)|22 + λ1|β(t)|1,

which implies that

|Xt[β̃(t)−β(t)]|22+λ1|β̃(t)|1 ≤ λ1|β(t)|1+2
〈
Yt −Xtβ(t),Xt[β̃(t)− β(t)]

〉
.

By assumption 2 and Taylor’s expansion in the bn-neighborhood of t, we

see that

Yt −Xtβ(t) = Et +MtXtβ′(t) + Xtξ, (S0.4)

where Mt = diag((ti − t)i∈Nt) and ξ is a vector such that |ξ|∞ ≤ C0b
2
n/2

and |ξ|0 ≤ s. Let J = {2|E>t Xt|∞ ≤ λ0}. Observe that |E>t Xt|∞ =

maxj≤p |
∑

i∈Nt
w(i, t)Xijei| and, by assumption 1,

∑
i∈Nt

w(i, t)Xijei ∼ N

(
0, σ2

∑
i∈Nt

w(i, t)2X2
ij

)
. (S0.5)
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Then, by the standard Gaussian tail bound and the union bound, we obtain

that

P
(

max
j≤p

∣∣∣∣∑i∈Nt
w(i, t)Xijei

σLt,2

∣∣∣∣ ≥√ε2 + 2 log p

)
≤ P(max

j≤p
|Zj| ≥

√
ε2 + 2 log p) ≤ 2 exp

(
−ε

2

2

)
for all ε > 0, where Zj ∼ N(0, 1). Now, choose ε = (2 log p)1/2 and λ0 =

4σLt,2(log p)1/2, we have P(J ) ≥ 1− 2p−1. Further, we have

|β′(t)>X>t MtXt[β̃(t)− β(t)]| ≤ |β̃(t)− β(t)|1|X>t MtXtβ′(t)|∞

≤ |β̃(t)− β(t)|1 max
j≤p

(∑
i∈Nt

w(i, t)X2
ij

)1/2 [
β′(t)>X>t M2

t Xtβ′(t)
]1/2

(Cauchy-Schwarz)

≤ |β̃(t)− β(t)|1Lt,1
√
ρmax(X>t M2

t Xt, s)|β′(t)|2 (assumption 2)

≤ |β̃(t)− β(t)|1Lt,1C0s
1/2bn

√
ρmax(X>t Xt, s) (Lemma S0.1, assumption 2 and 3)

≤ |β̃(t)− β(t)|1Lt,1C0(|Nt|wts)1/2bnε−10 (Lemma S0.2, equation (S0.2)).

Similarly, we can show that |ξ>X>t Xt[β̃(t)−β(t)]| = O(Lt,1(|Nt|wts)1/2b2nε−10 |β̃(t)−

β(t)|1). Therefore, it follows that, with probability at least (1− 2p−1),∣∣∣〈Yt −Xtβ(t),Xt[β̃(t)− β(t)]
〉∣∣∣ ≤ [λ0 + 2Lt,1C0(|Nt|wts)1/2bnε−10 (1 + o(1))

]
|β̃(t)− β(t)|1.

Now, choose λ1 ≥ 2(λ0 + 2Lt,1C0(|Nt|wts)1/2bnε−10 ), we get

2|Xt[β̃(t)− β(t)]|22 + 2λ1|β̃(t)|1 ≤ λ1|β̃(t)− β(t)|1 + 2λ1|β(t)|1.

Denote S0 := S0(t) = supp(β(t)). By the same argument as (Bühlmann

and van de Geer, 2011, Lemma 6.3), it is easy to see that, on J ,

2|Xt[β̃(t)− β(t)]|22 + λ1|β̃Sc
0
(t)|1 ≤ 3λ1|β̃S0

(t)− βS0
(t)|1.
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But then, (S0.3) follows from the restricted eigenvalue condition (assump-

tion 5) with the elementary inequality 4ab ≤ a2 + 4b2 that

2|Xt[β̃(t)−β(t)]|22+λ1|β̃(t)−β(t)|1 ≤ 4λ1|β̃S0
(t)−βS0

(t)|1 ≤ |Xt[β̃(t)−β(t)]|22+4λ21s/φ
2
0.

Definition S0.1. A mean zero random variable is said to be sub-Gaussian

with variance factor σ2 if

logE(eλX) ≤ λ2σ2/2 for all λ ∈ R.

Lemma S0.4. Let ξi be iid sub-Gaussian random variables with mean zero

and variance factor σ2, and ei =
∑∞

m=0 amξi−m be a linear process. Let

w = (w1, · · · , wn) be a real vector and Sn =
∑n

i=1wiei be the weighted

partial sum of ei.

1. (Short-range dependence). If |a|1 =
∑∞

i=0 |ai| <∞, then for all x > 0

we have

P(|Sn| ≥ x) ≤ 2 exp

(
− x2

2|w|22|a|21σ2

)
. (S0.6)

2. (Long-range dependence). Suppose K = supm≥0 |am|(m + 1)% < ∞,

where 1/2 < % < 1. Then, there exists a constant C% that only depends

on % such that

P(|Sn| ≥ x) ≤ 2 exp

(
− C%x

2

|w|22n2(1−%)σ2K2

)
. (S0.7)
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Proof. Put am = 0 if m < 0 and we may write Sn =
∑

m∈Z bmξm, where

bm =
∑n

i=1wiai−m. By the Cauchy-Schwarz inequality,

∑
m∈Z

b2m ≤
∑
m∈Z

(
n∑
i=1

w2
i |ai−m|

)(
n∑
i=1

|ai−m|

)
≤ |w|22|a|21.

Then, (S0.6) follows from the Cramér-Chernoff bound Boucheron et al.

(2013). Let ām = maxl≥m |al| and Am =
∑m

l=0 |al|. Note that An ≤

K
∑n

l=0(l + 1)−% ≤ C%K(n+ 1)1−%, where C% = (1− %)−1. Then, we have

n∑
m=1−n

b2m ≤
n∑

m=1−n

(
n∑
i=1

w2
i |ai−m|

)(
n∑
i=1

|ai−m|

)
≤ |w|22A2

2n.

If m ≤ −n, then |bm| ≤ |w|1ā1−m and therefore

∑
m≤−n

b2m ≤ |w|21
∑
m≤−n

ā21−m ≤ C%n|w|22K2n1−2%,

where the last inequality follows from Karamata’s theorem; see e.g. Resnick

(1987). Hence, the proof is complete by invoking the Cramér-Chernoff

bound for sub-Gaussian random variables.

Some implementation issues

We assumed that the noise variance-covariance matrix Σe is known. In the

iid error case Σe = σ2In, we have seen that the distribution F (·) is indepen-

dent of σ2 and therefore its value does not affect the inference procedure.
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The noise variance only impacts the tuning parameter of the initial Lasso

estimator. In practice, we can use the scaled Lasso to estimate σ2 in our

numeric studies. Given that |σ̂/σ − 1| = oP(1) Sun and Zhang (2012), the

theoretical properties of our estimator (10) remains the same if we plug in

the scaled Lasso variance output to our method. For temporally depen-

dent stationary error process, estimation of Σe becomes more subtle since

it involves n autocovariance parameters. We propose a heuristic strategy:

first, run the tv-Lasso estimator and get the residuals; then calculate the

sample autocovariance matrix and apply a banding or tapering operation

Bh(Σ) = {σjk1(|j−k| ≤ h)}pj,k=1 Bickel and Levina (2008); Cai et al. (2010);

McMurry and Politis (2010).

We provide some justification on the heuristic strategy for SRD time

series models. To simplify explanation, we consider the uniform kernel and

the bandwidth bn = 1. Suppose we have an oracle where β(t) is known

and we have access to the error process e(t). Let Σ∗e be the oracle sample

covariance matrix of ei with the Toeplitz structure i.e. the h-th subdiagonal

of Σ∗e is σ∗e,h = n−1
∑n−h

i=1 eiei+h. We first compare the oracle estimator and

the true error covariance matrix Σe. Let α > 0 and define

T (α,C1, C2) =

{
M ∈ ST p×p :

p∑
k=h+1

|mk| ≤ C1h
−α, ρj(M) ∈ [C2, C

−1
2 ], ∀j = 1, · · · , p

}
,

where ST p×p is the set of all p × p symmetric Toeplitz matrices. If ei has
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SRD, then Σe ∈ T (% − 1, C1, C2). By the argument in Bickel and Levina

(2008) and Lemma S0.4, we can show that

ρmax(Bh(Σ
∗
e)− Σe) ≤ ρmax(Bh(Σ

∗
e)−Bh(Σe)) + ρmax(Bh(Σe)− Σe)

.P h

√
log h

n
+ h−(%−1).

Choosing h∗ � (n/ log n)1/(2%), we get

ρmax(Bh(Σ
∗
e)− Σe) = OP

((
log n

n

) %−1
2%

)
.

This oracle rate is sharper than the one established in Bickel and Levina

(2008) for regularizing more general bandable matrices if n = o(p). Here,

the improved rate is due to the Toeplitz structure in Σe. Since Σe has

uniformly bounded eigenvalues from zero and infinity, the banded oracle

estimator Bh(Σ
∗
e) can be used as a benchmark to assess the tv-Lasso resid-

uals Ẽt = Yt −Xtβ̃(t).

Proposition S0.5. Suppose Σe ∈ T (%−1, C1, C2) and conditions of Lemma

S0.3 are satisfied except that (ei) is an SRD stationary Gaussian process

with % > 1. Then

ρmax(Bh(Σ̂e)−Bh(Σ
∗
e)) = OP(hλ1s

1/2). (S0.8)

With the choice h∗ � (n′/ log n′)1/2% where n′ = |Nt|, we have

ρmax(Bh(Σ̂e)−Σe)) = OP

((
log n′

n′

) %−1
2%

+

(
n′

log n′

) 1
2%

(√
s log p

n′
+ sbn)

))
.

(S0.9)
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It is interesting to note that the price we pay to choose h for not knowing

the error process is the second term in (S0.9). Bandwidth selection for

the smoothing parameter bn is a theoretically challenging task in the high

dimension. Asymptotic optimal order for the parameter is available up to

some unknown constants depending on the data generation parameters. We

shall use the cross-validation (CV) in our simulation studies and real data

analysis.

Proof of Proposition S0.5. Since we consider the uniform kernel, we may

assume bn = 1, |Nt| = n and then rescale. Observe that

max
|k|≤h
|σ̂2
e,k − σ∗2e,k| = max

|k|≤h

1

n

∣∣∣∣∣
n−k∑
i=1

(êiêi+k − eiei+k)

∣∣∣∣∣
≤ max

|k|≤h

1

n

∣∣∣∣∣
n−k∑
i=1

êi(êi+k − ei+k)

∣∣∣∣∣+

∣∣∣∣∣
n−k∑
i=1

ei+k(êi − ei)

∣∣∣∣∣
≤ max

|k|≤h

1

n

(
n−k∑
i=1

ê2i

)1/2(n−k∑
i=1

(êi+k − ei+k)2
)1/2

+ max
|k|≤h

1

n

(
n−k∑
i=1

e2i+k

)1/2(n−k∑
i=1

(êi − ei)2
)1/2

≤

( 1

n

n∑
i=1

ê2i

)1/2

+

(
1

n

n∑
i=1

e2i

)1/2
( 1

n

n∑
i=1

(êi − ei)2
)1/2

.

By Lemma S0.3,

1

n

n∑
i=1

(êi − ei)2 = |Ẽt − Et|22 = |Xt[β̃(t)− β(t)]|22 = OP(λ21s).
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Then, it follows from the last expression and n−1
∑n

i=1 e
2
i = OP(1) that

max
|k|≤h
|σ̂2
e,k − σ∗2e,k| = OP(λ1s

1/2).

Therefore

ρmax(Bh(Σ̂e)−Bh(Σ
∗
e)) . hmax

|k|≤h
|σ̂2
e,k − σ∗2e,k| = OP(hλ1s

1/2).
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