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Here the reader may find additional material, including the full conditional distributions for

implementing the proposed model, further details of the proof of posterior propriety, and

Supplementary Figures discussed in the main text.

S1 Full Conditional Distributions for the ProposedModel

Model (2.4) leads to the following full conditional distributions needed for a Gibbs sampling

algorithm:

µj | µ(−j),γ, σ
2, η, ρ, p,y ∼ N

(

γjyj + ρη−1
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(S1.1)

where [ · | · ] denotes a conditional density.
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S2 Additional Facts

In this Section, we provide a proof that the maximum value of ρ is an increasing function of

d in Model (2.4). Also, we detail the simplifications used to obtain (5.1), (5.2), and (5.3) in

the proof of posterior propriety.

S2.1 Relationship Between ρ and d

Consider two values d1 < d2. Let x
∗
i = argmax

x
xT (Dw+diI)

−1/2W(Dw+diI)
−1/2x/xTx, i =

1, 2, and let λJ,i > 0 be the maximum eigenvalue of (Dw+diI)
−1/2W(Dw+diI)

−1/2, i = 1, 2.

Then it follows from the properties of the Rayleigh quotient that
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x
∗,T
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2
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√
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x
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wijx
∗
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∗
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√
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≤ x
∗,T
1 (Dw + d1I)

−1/2W(Dw + d1I)
−1/2x∗

1

x
∗,T
1 x∗

1

= λJ,1,

so λ−1
J,1 < λ−1

J,2. The inequality in the third line follows from the Perron-Frobenius Theo-

rem (e.g., Serre (2002)), which guarantees that the elements of the eigenvector associated

to λJ,2 are all positive. Thus, the maximum possible value for ρ is an increasing function in d.

S2.2 Facts Used in the Proof of Posterior Propriety

The simplifications make use of a simple inequality, which we state as a Lemma.
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Lemma 1. For any positive constants a, b, and c,

b

ba + c
<

max{b, 1}
a+ c

.

Proof. Let a, c ∈ R
+. Then, for 0 < b < 1,

b

ba + c
− 1

a + c
=

b(a + c)− ba− c

(ba + c)(a+ c)

=
c(b− 1)

(ba + c)(a+ c)

< 0,

and for b > 1,

b

ba + c
− b

a + c
=

b(a+ c)− b(ba + c)

(ba + c)(a+ c)

=
ba(1 − b)

(ba+ c)(a + c)

< 0.

Now, the matrix (w
(J)

+ d)I−D∗
w = w

(J)
I−Dw is diagonal with nonnegative entries and

thus positive semidefinite, which we denote as (w
(J)

+ d)I−D∗
w ≥ 0.

Let ν1 ≤ ν2 ≤ · · · ≤ νJ be the ordered eigenvalues of W∗. Then the eigenvalues of

I− ρW∗ are 1− ρνj , j = 1, . . . , J . Hence,

ρ ∈ (ν−1
1 , ν−1

J ) ⇒ 1− ρνj > 0, ∀j

⇒ (I− ρW∗) > 0

⇒ η(I− ρW∗)−1 > 0.
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By adding and subtracting η(I− ρW∗)−1, we obtain

(w
(J)

+ d)I−D∗
w = (w

(J)
+ d)I+ η(I− ρW∗)−1 − (D∗

w + η(I− ρW∗)−1) ≥ 0.

Making use of the fact that B > 0,A−B ≥ 0 ⇒ B−1 −A−1 ≥ 0, it follows that

(D∗
w + η(I− ρW∗)−1)−1 − ((w

(J)
+ d)I+ η(I− ρW∗)−1)−1 ≥ 0

⇒ xT (D∗
w + η(I− ρW∗)−1)−1x ≥ xT ((w

(J)
+ d)I+ η(I− ρW∗)−1)−1x

⇒ (xT (D∗
w + η(I− ρW∗)−1)−1x)−J/2 ≤ (xT ((w

(J)
+ d)I+ η(I− ρW∗)−1)−1x)−J/2.

Now, W∗ is symmetric, so it has a spectral decomposition of the form W∗ = PMPT ,

where P is the orthogonal matrix of eigenvectors of W∗ and M is the diagonal matrix of

eigenvalues. Let u = PTx ⇒ x = Pu so that

xT ((w
(J)

+ d)I+ η(I− ρW∗)−1)−1x = uTPT ((w
(J)

+ d)I+ η(I− ρW∗)−1)−1Pu

= uT (PT (w
(J)

+ d)P+ ηPT (I− ρW∗)−1P)−1u

= uT ((w
(J)

+ d)I+ η(I− ρM)−1)−1u

=
J∑

j=1

(1− ρνj)u
2
j

(w
(J)

+ d)(1− ρνj) + η
.

Since D∗
w is diagonal and the diagonal elements of W are zero, the diagonal elements

of W∗ = (D∗
w)

−1/2W(D∗
w)

−1/2 are zero and thus tr(W∗) = 0 =
∑J

j=1 νj . It must then be

true that there are r1 > 0 negative eigenvalues and r2 > 0 positive eigenvalues of W∗, since

r := r1+r2 = rank(W∗) > 0. The summation in the last line can then be separated according

to the sign of the eigenvalue in each term as

r1∑

j=1

(1− ρνj)u
2
j

(w
(J)

+ d)(1− ρνj) + η
︸ ︷︷ ︸

νj<0

+

J∑

j=J−r2+1

(1− ρνj)u
2
j

(w
(J)

+ d)(1− ρνj) + η
︸ ︷︷ ︸

νj>0

+

J−r2∑

j=r1+1

u2
j

w
(J)

+ d+ η
︸ ︷︷ ︸

νj=0

. (S2.2)
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If ν−1
1 < ρ < 0, then 0 < 1−ρνj < 1 for j = 1, . . . , r1 and 1−ρνj > 1 for j = J−r2+1, . . . , J,

so

(S2.2) ≥
J∑

j=J−r2+1

(1− ρνj)u
2
j

(w
(J)

+ d)(1− ρνj) + η
+

J−r2∑

j=r1+1

u2
j

w
(J)

+ d+ η

≥
J∑

j=J−r2+1

u2
j

w
(J)

+ d+ η
+

J−r2∑

j=r1+1

u2
j

w
(J)

+ d+ η

= (w
(J)

+ d+ η)−1
J∑

j=r1+1

u2
j ,

where the second line follows from noticing that (w
(J)

+ d+ η)−1 − (1− ρνj)((w(J)
+ d)(1−

ρνj) + η)−1 < 0 for νj > 0. Similarly, if 0 < ρ < ν−1
J , then

(S2.2) ≥
r1∑

j=1

(1− ρνj)u
2
j

(w
(J)

+ d)(1− ρνj) + η
+

J−r2∑

j=r1+1

u2
j

w
(J)

+ d+ η

≥
r1∑

j=1

u2
j

w
(J)

+ d+ η
+

J−r2∑
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u2
j

w
(J)

+ d+ η

= (w
(J)

+ d+ η)−1

J−r2∑

j=1

u2
j .

Thus, we have that for all ρ ∈ (ν−1
1 , ν−1

J ),

xT ((w
(J)

+ d)I+ η(I− ρW∗)−1)−1x ≥ k(w
(J)

+ d+ η)−1

⇒ (xT ((w
(J)

+ d)I+ η(I− ρW∗)−1)−1x)−J/2 ≤ k′(w
(J)

+ d+ η)J/2

where 0 < k′ < ∞ is constant. This establishes (5.1).
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To see that (5.2) holds, note that

|I+ η(D∗
w − ρW)−1| = |(D∗

w)
−1/2||D∗

w + η(I− ρW∗)−1||(D∗
w)

−1/2|

= |(D∗
w)|−1|D∗

w + η(I− ρW∗)−1|

≡ k|D∗
w + η(I− ρW∗)−1|.

Letting w
(1)

= min
1≤j≤J

wj., and again adding and subtracting η(I− ρW∗)−1, we obtain

D∗
w − (w

(1)
+ d)I ≥ 0 ⇒ D∗

w + η(I− ρW∗)−1 − ((w
(1)

+ d)I+ η(I− ρW∗)−1) ≥ 0.

But B > 0, A−B ≥ 0 implies |A| ≥ |B|, so we find that

|D∗
w + η(I− ρW∗)−1| ≥ |(w

(1)
+ d)I+ η(I− ρW∗)−1|

⇒ k|D∗
w + η(I− ρW∗)−1| ≥ K|(w

(1)
+ d)I+ η(I− ρW∗)−1|.

The eigenvalues of (I−ρW∗)−1 are (1−ρνj)
−1, j = 1, . . . , J , so it follows that the eigenvalues

of (w
(1)

+ d)I+ η(I− ρW∗)−1 are w
(1)

+ d+ η(1− ρνj)
−1, j = 1, . . . , J . Therefore,

k|(w
(1)

+ d)I+ η(I− ρW∗)−1| = k

J∏

j=1

(w
(1)

+ d+ η(1− ρνj)
−1)

=
k
∏J

j=1((1− ρνj)(w(1)
+ d) + η)

∏J
j=1(1− ρνj)

,

and subsequently

|I+ η(D∗
w − ρW)−1|−1/2 ≤ k′

(∏J
j=1((1− ρνj)(w(1)

+ d) + η)
∏J

j=1(1− ρνj)

)−1/2

,
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where 0 < k′ < ∞ is constant. But 1− ρνj > 0, for all j, so by Lemma 1

1− ρνj
(1− ρνj)(w(1)

+ d) + η
≤ max{1− ρνj , 1}

w
(1)

+ d+ η
, ∀j ∈ {1, . . . , J}

⇒
∏J

j=1(1− ρνj)
∏J

j=1((1− ρνj)(w(1)
+ d) + η)

≤
∏J

j=1max{1− ρνj , 1}
(w

(1)
+ d+ η)J

References

Serre, D. (2002). Matrices: Theory and applications. Springer-Verlag, New York.



8 D. ANDREW BROWN, GAURI S. DATTA AND NICOLE A. LAZAR

S3 Supplementary Figures

Figure 1: Comparison of the |t2| prior on τ (Gelman, 2006) (after transforming to the τ 2

scale) and the prior on τ 2 | σ2 suggested by Scott and Berger (2006), denoted by SB. Here,
the scale parameter is set to 1 in both densities.
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Figure 2: Simulated binary activation pattern drawn from an Ising distribution.
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Figure 3: Simulated data using the activation pattern in Figure 2 with non-null mean 3.5.

−2

0

2

4

6

Figure 4: Neighborhood structures and weights used for the Bayesian CAR model in the
simulation study. In each illustration, the center square represents the gene of interest, and
the numbers are the weights wij assigned to each gene in the neighborhood.
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Figure 5: Estimated posterior inclusion probabilities pi versus test statistics yi, i =
1, . . . , 1000 for the simulated microarray data with neighborhoods determined through phys-
ical adjacency. The dashed (jagged) curve results from the CAR(W1) model, and the dotted
(smooth) line results from the SB model. The circled point corresponds to the indicated
statistic depicted in Figure 6.
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Figure 6: Graphical depiction of test statistics from the simulated microarray data. The
test statistics yi are arranged in order, i = 1, 2, . . . , 1000, going from the lower left to the
upper right, row-wise from left to right. The circle indicates the statistic corresponding to
the circled (yi, pi) point in Figure 5.
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Figure 7: Empirical ROC curves for the testing model using the physical-adjacency CAR
model and the generalized CAR using pathways to define neighborhoods with isolated points
included.
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Figure 8: Histogram of test statistics from the simulated pathways example with normal den-
sities superimposed, each with mean zero and standard deviations estimated as

√

E(σ2 | y)
from the posterior distributions of both neighborhood structures. The tick marks at the
bottom indicate the non-null cases.
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Figure 9: Posterior inclusion probabilities estimated under the CAR testing model with and
without the isolated cases. The dashed line is at the 0.95 threshold. Notice that several of the
P5 cases have been pulled downward, resulting in more false non-discoveries by excluding
the isolated cases.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yj

p j

Isolated points
P1
P2 (active)
P3
P4
P5 (active)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yj

p j

P1
P2 (active)
P3
P4
P5 (active)



S3. SUPPLEMENTARY FIGURES13

Figure 10: Histograms of realizations of Moran’s I calculated from the posterior predictive
distribution of the CAR testing model, p(I(y∗) | y) =

∫

θ
p(I(y∗) | θ)π(θ | y)dθ, under

partially incorrect correlation assumptions. The dark vertical line indicates the observed
value of I under the assumed neighborhood structure.
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Figure 11: Smoothed posterior densities of p and ρ for the E. Coli data (Xiao, Reilly, and
Khodursky, 2009) with different values of α in the prior p ∼ Beta(α, 1).
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Figure 12: Estimated posterior inclusion probabilities for each of the 22,283 genes in
the lymphoblastoid cell data (Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette,
Paulovich, Pomeroy, Golub, Lander, and Meslrov, 2005) under both CAR testing models
with and without isolated cases. The left panel results from excluding the isolated cases
(d = 0), the right panel results from including isolated cases (d = 1). The horizontal lines
represent the 0.99 threshold.
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