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Supplementary Material

S1. Proof of Lemma 1: Let us consider hd ∈ Ad(Rp), the affine subspace spanned by the

origin and the first d vectors of the canonical basis in Rp. Take r > 0 such that PX(S(hd, r)) ≥
1− α and consider the trimming function τd = IS(hd,r) ∈ Tα−. We have

Vd,α(X) ≤ 1

PX(S(hd, r))

∫
S(hd,r)

‖x− Prhd(x)‖2dPX(x) < r2. 2

S2. Proof of Lemma 2: For every τ ∈ Th,β and τ ′ ∈ Tβ , we have that

τ(x)(1− τ ′(x)) = 0 for all x /∈ S(h, rβ(h)),∫
τ(x)(1− τ ′(x))dPX(x) =

∫
τ ′(x)(1− τ(x))dPX(x), and,

τ ′(x)(1− τ(x)) = 0 for all x ∈ S(h, rβ(h)).

Hence, by applying the above equalities, we have∫
τ(x)(1− τ ′(x))‖x− Prh(x)‖2dPX(x) ≤ r2

β(h)

∫
τ(x)(1− τ ′(x))dPX(x) (S2.1)

= r2
β(h)

∫
τ ′(x)(1− τ(x))dPX(x) ≤

∫
τ ′(x)(1− τ(x))‖x− Prh(x)‖2dPX(x). (S2.2)

So, we have∫
τ(x)‖x− Prh(x)‖2dPX(x)

=

∫
τ(x)τ ′(x)‖x− Prh(x)‖2dPX(x) +

∫
τ(x)(1− τ ′(x))‖x− Prh(x)‖2dPX(x)

≤
∫
τ(x)τ ′(x)‖x− Prh(x)‖2dP +

∫
τ ′(x)(1− τ(x))‖x− Prh(x)‖2dPX(x)

=

∫
τ ′(x)‖x− Prh(x)‖2dPX(x).
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Moreover, the equality holds if and only if (??) and (??) are equalities. However, (??) is

an equality if and only if ∫
S(h,rβ(h))

τ(x)(1− τ ′(x))dPX(x) = 0,

which implies that ∫
S(h,rβ(h))

(1− τ ′(x))dPX(x) = 0,

and, thus, we conclude that IS(h,rβ(h)) ≤ τ ′, PX -a.e. . The equality in (??) would analogously

imply τ ′ ≤ IS(h,rβ(h)), PX -a.e. Therefore, assertion (b) in this Lemma is also proven. 2

S3. Proof of Lemma 3: Without loss of generality, we can assume that τh,β ≥ τh,α, PX -a.e.,

for β ≤ α (in fact, we can always choose τh,β and τh,α such that τh,β ≥ τh,α pointwise).

Now, we can see that∫
τh,α(x)dPX(x)

∫
(τh,β(x)− τh,α(x))‖x− Prh(x)‖2dPX(x)

≥
∫
τh,α(x)dPX(x) · r2

α(h)

∫
(τh,β(x)− τh,α(x))dPX(x) (S3.1)

≥
∫
τh,α(x)‖x− Prh(x)‖2dPX(x) ·

∫
(τh,β(x)− τh,α(x))dPX(x), (S3.2)

and then we have∫
τh,α(x)dPX(x)

∫
τh,β(x)‖x− Prh(x)‖2dPX(x)

=

∫
τh,α(x)dPX(x)

∫
τh,α(x)‖x− Prh(x)‖2dPX(x)

+

∫
τh,α(x)dPX(x)

∫
(τh,β(x)− τh,α(x))‖x− Prh(x)‖2dPX(x)

≥
∫
τh,α(x)dPX(x)

∫
τh,α(x)‖x− Prh(x)‖2dPX(x)

+

∫
τh,α(x)‖x− Prh(x)‖2dPX(x)

∫
(τh,β(x)− τh,α(x))dPX(x)

=

∫
τh,β(x)dPX(x)

∫
τh,α(x)‖x− Prh(x)‖2dPX(x).

Now, by using
∫
τh,α(x)dPX(x) = 1− α and

∫
τh,β(x)dPX(x) = 1− β, we have

1

1− β

∫
τh,β(x)‖x− Prh(x)‖2dPX(x) ≥ 1

1− α

∫
τh,α(x)‖x− Prh(x)‖2dPX(x).

and result (a) is derived.

Moreover, the equality in (a) holds if and only if (??) and (??) are equalities. Now, the

equality (??) holds if and only if∫
S(h,rα(h))c

(τh,β(x)− τh,α(x))dPX(x) = 0,
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which holds if and only if rα(h) = rβ(h). Analogously, (??) is an equality if and only if∫
S(h,rα(h))

τh,α(x)dPX(x) = 0,

which implies PX(S(h, rα(h))) = 0. In other words, all the probability mass is concentrated on

the boundary of S(h, rβ(h)). 2

S4. Proof of Lemma 4: Let us consider a ball B centered at the origin and with radius

R > 0, such that PX(B) > max{1− α, α}. As PX(Sn) ≤ 1− α ≤ PX(Sn), it can be easily seen

that Sn ∩B 6= ∅ and B 6⊆ Sn. Therefore, dn−R ≤ rn ≤ dn +R for every n ∈ N, and {rn}n will

be bounded if and only if {dn}n is bounded. We will prove that {dn}n is a bounded sequence.

Let {εn}n and {γn}n be two sequences of positive numbers such that εn ↓ 0, γn ↑ ∞ and

PX(B(0, γn)) > 1 − εn. If {dn}n were not bounded, we could find a subsequence (denoted as

the original one) such that dn > 2γn for every n ∈ N. Then, we would have

Vd,α(hn) =
1

1− α

∫
τn(x)‖x− Prhn(x)‖2dPX(x)

≥ 1

1− α

∫
B(0,γn)

τn(x)‖x− Prhn(x)‖2dPX(x)

≥ 1

1− α

∫
B(0,γn)

τn(x) γ2
n dPX(x)

≥ γ2
n

1− α− εn
1− α ↑ ∞ as n→∞,

contradicting the boundedness of Vd,α. Thus, {dn}n and {rn}n are bounded. 2

S5. Proof of Theorem 1 (existence): Taking into account the comments and results

at the beginning of Section 3, we can take a sequence {hn}n ⊂ Ad(Rp) satisfying Vd,α(hn) ↓
Vd,α as n→∞, and such that the corresponding sequences of unitary director vectors, distances

to the origin and radius are convergent. Let us denote h0 ∈ Ad(Rp) the limit subspace, r0 the

limit of the radius sequence and S0 = S(h0, r0) the corresponding limit strip.

We have that

IS0(X) ≤ lim
n

inf τn(X) ≤ lim
n

sup τn(X) ≤ IS0
(X),

and then, Fatou’s Lemma implies∫
IS0(x)dPX(x) ≤

∫
lim
n

inf τn(x)dPX(x) ≤ 1− α

≤
∫

lim
n

sup τn(x)dPX(x) ≤
∫
IS0

(x)dPX(x),

which means that r0 = rα(h0) and S0 = S(h0, rα(h0)).

We can consider a trimming function τ0 := τh0,α ∈ Tα associated to the limit strip S0. If

we prove that h0 satisfies limn→∞ Vd,α(hn) = Vd,α(h0), then

Vd,α(h0) = Vd,α = inf
h∈Ad(Rp)

Vd,α(h),
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and the proof would be finished. To do this task, we need to prove that∣∣∣∣ ∫ τn(x)‖x− Prhn(x)‖2dPX(x)−
∫
τ0(x)‖x− Prh0(x)‖2dPX(x)

∣∣∣∣→ 0.

Let us denote En = Sc0 ∩ Sn, Fn = S0 ∩ Scn and Gn = S0 ∩ Sn. Note that the convergence

of the sequence of strips Sn toward the strip S0 implies that PX(En)→ 0 and PX(Fn)→ 0 as

n → ∞. Thus, taking into account that τn(x) = τ0(x) = 0 for x ∈ (En ∪ Fn ∪ Gn)c, we can

decompose∣∣∣∣ ∫ τn(x)‖x− Prhn(x)‖2dPX(x)−
∫
τ0(x)‖x− Prh0(x)‖2dPX(x)

∣∣∣∣
≤

∣∣∣∣ ∫
En

τn(x)‖x− Prhn(x)‖2dPX(x)−
∫
En

τ0(x)‖x− Prh0(x)‖2dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
Fn

τn(x)‖x− Prhn(x)‖2dPX(x)−
∫
Fn

τ0(x)‖x− Prh0(x)‖2dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
Gn

τn(x)‖x− Prhn(x)‖2dPX(x)−
∫
Gn

τ0(x)‖x− Prh0(x)‖2dPX(x)

∣∣∣∣
:= A(1)

n +A(2)
n +A(3)

n .

We need to prove that A
(1)
n , A

(2)
n and A

(3)
n converge to 0. For A

(1)
n , recalling the bounded

character of the sequence {rn}n from Lemma 4, we have:

A(1)
n ≤

∣∣∣∣ ∫
En

τn(x)‖x− Prhn(x)‖2dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
En

τ0(x)‖x− Prh0(x)‖2dPX(x)

∣∣∣∣
≤ r2

n

∫
En

τn(x)dPX(x) + r2
0

∫
En

τ0(x)dPX(x)

≤ r2
nPX(En) + r2

0PX(En) = (r2
n + r2

0)PX(En)→ 0.

In a similar way we can prove that A
(2)
n converges to 0. To study the convergence of A

(3)
n

we can obtain the following decomposition:

A(3)
n ≤

∣∣∣∣ ∫
Gn

τn(x)(‖x− Prhn(x)‖2 − ‖x− Prh0(x)‖2)dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
Gn

(τn(x)− τ0(x))‖x− Prh0(x)‖2dPX(x)

∣∣∣∣ := A(3,a)
n +A(3,b)

n .

As for x ∈ Gn it holds τn(x) = τ0(x) = 1 and then τn(x) − τ0(x) = 0, we have A
(3,b)
n = 0

and it only remains the convergence of A
(3,a)
n . Now, taking into account the uniform continuity

of the real valued quadratic function g(x) = x2 on the compact set [0, supn rn], we have

A(3,a)
n ≤ sup

x∈Gn

{
‖x− Prhn(x)‖2 − ‖x− Prh0(x)‖2

}
(1− α)→ 0,

and the proof is complete. 2
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S6. Proof of Theorem 2 (continuity): It suffices to prove that every subsequence of {hn}n
(resp. {Vn}n) admits a new subsequence which converges to h0 (resp. V0). Along the proof, all

subsequences will be denoted as the original sequences.

For every n = 1, 2, ..., let us denote by τ ′n = τ ′n(Xn) a trimming function in Th0,α. So, with

r′n, n = 1, 2, ..., the radius associated to τ ′n, that is,

r′n = inf{r ≥ 0 : PXn(S(h0, r)) ≤ 1− α ≤ PXn(S(h0, r))},

we have IS(h0,r′n) ≤ τ ′n ≤ IS(h0,r′n). Moreover, denote

V ′n =
1

1− α

∫
τ ′n(x)‖x− Prh0(x)‖2dPXn(x).

Obviously, {r′n}n is a bounded sequence, so we can assume, without loss of generality,

that r′n → r′0 for some r′0 ∈ R. Then, because of the continuity of PX0 , we have τ ′n(Xn) →
IS(h0,r

′
0)(X0) P -a.e., and, then, taking into account that |τ ′n| ≤ 1, we may write

1− α =

∫
τ ′n(x)dPXn(x)→

∫
IS(h0,r

′
0)(x)dPX0(x), as n→∞.

Therefore, we have IS(h0,r
′
0)(X0) = τ0(X0), P -a.e. .

The sequence {τ ′n(Xn)‖Xn − Prh0(Xn)2‖}n is uniformly bounded and satisfies

τ ′n(Xn)‖Xn − Prh0(Xn)‖2 → τ0(X0)‖X0 − Prh0(X0)‖2, P -a.e. .

Hence we have

Vn ≤ V ′n =
1

1− α

∫
τ ′n(x)‖x− Prh0(x)‖2dPXn(x)

→ 1

1− α

∫
τ0(x)‖x− Prh0(x)‖2dPX0(x) = V0

and, consequently, recalling the optimal character of Vn for Xn, we have

lim
n

supVn ≤ lim
n

supV ′n ≤ V0. (S6.1)

Taking into account Lemma 5 and the boundedness of the sequences of unitary spanning

vectors, we can take a subsequence of {hn}n ⊂ Ad(Rp) such that the corresponding sequences

of unitary spanning vectors, distances to the origin and radius are convergent. Let us denote

h0 ∈ Ad(Rp) the limit subspace, r0 the limit of the radius sequence and S0 = S(h0, r0) the

corresponding limit strip.

In order to prove that S0 = S(h0, r0) provides trimming function of level α for X0, we

note that limn τn(Xn) = IS0(X0), P -a.e.. Now, by taking into account that |τn| ≤ 1 for every

n = 1, 2, ..., we have

1− α =

∫
τn(x)dPXn(x)→

∫
IS0(x)dPX0(x),
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so that IS0 is a trimming function of level α for X0. Let us denote V 0 the associated trimmed

variation around h0, i.e.

V 0 =
1

1− α

∫
IS0(x)‖x− Prh0(x)‖2dPX0(x).

Moreover, the sequence {τn(Xn)‖Xn − Prhn(Xn)2‖}n is uniformly bounded and satisfies

τn(Xn)‖Xn − Prhn(Xn)‖2 → IS0(X0)‖X0 − Prh0(X0)‖2, P -a.e. .

Then, we have

Vn =
1

1− α

∫
τn(x)‖x− Prhn(x)‖2dPXn(x)

→ 1

1− α

∫
IS0(x)‖x− Prh0(x)‖2dPX0(x)

and, consequently, recalling the optimal character of V0 for X0, we have

lim
n

inf Vn = V 0 ≥ V0. (S6.2)

Finally, from (??) and (??) we obtain

lim
n

supVn ≤ lim
n

supV ′n ≤ V0 ≤ V 0 ≤ lim
n

inf Vn, (S6.3)

i.e., limn Vn = V0, P -a.e. and the convergence of the variations holds.

Moreover, from (??) we also have V0 = V 0 and then h0 is optimal for X0, but taking

into account the uniqueness of the d-dimensional trimmed principal component subspace of X0

we must have h0 = h0, PX0 -a.e., and then it also holds the convergence of the optimal affine

subspaces. 2

S7. Proof of Theorem 4 (uniqueness in the elliptical case: We first start stating a

technical lemma given in Davies (1987) which will be later considered in the proof of this

theorem:

Lemma (Davies 1987): Let µ ∈ Rp and Σ be a symmetric positive definite matrix. Let ξ and

g : R+ → R+ be nonincreasing functions with
∫
g(x′x)dx <∞. Then∫

ξ((x− µ)′Σ−1(x− µ))g(x′x)dx ≤
∫
ξ(x′Σ−1x)g(x′x)dx.

Without loss of generality, let us now assume that µ = 0. The proof of the Theorem is

arranged in two steps:

1. Any optimal affine subspace pass trough µ = 0. In the first step we will prove that given

any h ∈ Ad(Rp), the value of the target function Vd,α(h) is strictly decreased when choosing the

affine subspace h0 ∈ Ad(Rp) parallel to h and passing through the origin. I.e., let us consider h0

the affine subspace passing through the origin and spanned by the columns of a matrix U , where
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the d columns of U are unitary and orthogonal vectors spanning the original affine subspace h.

Consider an orthonormal basis spanning h⊥0 , the p− d affine subspace orthogonal to h0, and let

us denote V the p× (p− d) matrix having these vectors as columns. Notice that

d(x, h0)2 = ‖x− Prh0(x)‖2 = ‖Prh⊥0
(x)‖2 = ‖V ′x‖2.

As h is an affine subspace parallel to h0, then there exists x1 ∈ Rp such that h ≡ h0 + x1 and

d(x, h)2 = ‖x− Prh(x)‖2 = ‖V ′(x− x1)‖2.

Without loss of generality, we have assumed µ = 0 and, then, we have X ∼ Ep(0,Σ) and

Y = V ′X ∼ Ep−d(0, V ′ΣV ) with p.d.f. equal to

fY (y) = |V ′ΣV |−1/2h(y′
(
V ′ΣV )−1y

)
,

with h a decreasing radial density function.

If we denote r0 = rα(h0), the trimmed variation around h0 can be written as

Vd,α(h0) =
1

1− α

∫
S(h0,r0)

‖x− Prh0(x)‖2fX(x)dx

=
1

1− α

∫
S(h0,r0)

x′V V ′xfX(x)dx =
1

1− α

∫
B(0,r0)

‖y‖2fY (y)dy

where B(0, r0) ⊂ Rp−d denotes the ball with radius r0 around 0 ∈ Rp−d.
In a similar fashion, we get

Vd,α(h) =
1

1− α

∫
S(h,rα(h))

‖x− Prh(x)‖2fX(x)dx

=
1

1− α

∫
B(y1,rα(h))

‖y − y1‖2fY (y)dy,

with B(y1, rα(h)) ⊂ Rp−d and y1 = V ′x1.

Now, we take ξ(·) = |V ′ΣV |−1/2h(·) and g(·) = (r2
0 − ·)I[0,r0](·), for applying Davies’s

lemma with θ = −y1 and the positively defined matrix V ′ΣV , we obtain that (I1) ≤ (I2) with

(I1) =

∫
ξ((y + y1)′(V ′ΣV )−1(y + y1))g(y′y)dy

=

∫
fY (y + y1)g(y′y)dy

= r2
0

∫
B(0,r0)

fY (y + y1)dy −
∫
B(0,r0)

‖y‖2fY (y + y1)dy

= r2
0

∫
B(y1,r0)

fY (y)dy −
∫
B(y1,r0)

‖y − y1‖2fY (y)dy

= r2
0

∫
S(h,r0)

fX(x)dx−
∫
S(h,r0)

‖x− Prh(x)‖2fX(x)dx
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and

(I2) =

∫
ξ(y′(V ′ΣV )−1y)g(y′y)dy

=

∫
fY (y)g(y′y)dy

= r2
0

∫
B(0,r0)

fY (y)dy −
∫
B(0,r0)

‖y‖2fY (y)dy

= r2
0

∫
S(h0,r0)

fX(x)dx−
∫
S(h0,r0)

‖x− Prh0(x)‖2fX(x)dx.

Then, we have

r2
0

∫
S(h0,r0)

fX(x)dx− (1− α)Vd,α(h0)

≥ r2
0

∫
S(h,r0)

fX(x)dx−
∫
S(h,r0)

‖x− Prh(x)‖2fX(x)dx.

Now, adding and subtracting (1− α)Vd,α(h) and rearranging terms in the previous expression,

we obtain the inequality

(1− α)[Vd,α(h)− Vd,α(h0)]

≥ r2
0

[∫
S(h,r0)

fX(x)dx−
∫
S(h0,r0)

fX(x)dx

]

−

[∫
S(h,r0)

‖x− Prh(x)‖2fX(x)dx−
∫
S(h,rα(h))

‖x− Prh(x)‖2fX(x)dx

]

= r2
0

[∫
S(h,r0)

fX(x)dx−
∫
S(h,rα(h))

fX(x)dx

]

−

[∫
S(h,r0)

‖x− Prh(x)‖2fX(x)dx−
∫
S(h,rα(h))

‖x− Prh(x)‖2fX(x)dx

]
,

where we have used PX(S(h0, r0)) = PX(S(h, rα(h)) = 1 − α. Now, taking into account

that rα(h) > r0 (that is a trivial consequence of the Anderson lemma for strictly unimodal

distributions (Anderson 1955), fX(x) > 0 and ‖x − Prh(x)‖2 > r2
0 for all x ∈ S(h, r0)c ∩

S(h, rα(h)), we have

(1− α)[Vd,α(h)− Vd,α(h0)]

≥

[∫
S(h,r0)c∩S(h,rα(h))

‖x− Prh(x)‖2fX(x)dx

]

−r2
0

[∫
S(h,r0)c∩S(h,rα(h))

fX(x)dx

]

> r2
0

[∫
S(h,r0)c∩S(h,rα(h))

fX(x)dx

]
− r2

0

[∫
S(h,r0)c∩S(h,rα(h))

fX(x)dx

]
= 0.
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Thus, it holds the desired inequality Vd,α(h)− Vd,α(h0) > 0.

2. The optimal affine subspace is spanned by the d largest eigenvectors of the scatter

matrix Σ. Once proved that the d-dimensional trimmed principal component pass through the

origin, we will search for the directions of the optimal subspace. Without loss of generality,

we continue assuming that µ = 0 and, thus, that X ∼ Ep(0,Σ). Let us consider again Y =

V ′X ∼ Ep−d(0, V
′ΣV ). When trying to minimize Vd,α(h) on h ∈ Ad(Rp), but restricted to

affine subspaces passing through the origin, we need to minimize

min
V

∫
B(0,rα,Y )

‖y‖2fY (y)dy,

(0 now stands for the zero vector in Rp−d) where rα,Y is defined as

rα,Y := inf{r : PY (B(0, r)) ≥ 1− α}.

Take Z = (V ′Σ1/2)−1Y (in such a way that Z ∼ Ep−d(0, Ip−d)). We have that∫
B(0,rα,Y )

‖y‖2fY (y)dy = |Σ|1/2
∫
B(0,zα)

‖V ′Σ1/2z‖2fZ(z)dz

= |Σ|1/2
∫
B(0,zα)

trace[V ′Σ1/2zz′Σ1/2V ]fZ(z)dz

= |Σ|1/2trace

[
V ′Σ1/2

(∫
B(0,zα)

zz′fZ(z)dz

)
Σ1/2V

]
,

(S7.1)

with zα := inf{r : PZ(B(0, r)) ≥ 1− α}.
It can be seen (see, e.g., Theorem 8.1 of Liu et al. 1999) that there exists a positive

constant ζα depending only on α, the dimension p − d, and, the elliptical family considered,

such that ∫
B(0,zα)

zz′fZ(z)dz = ζαIp−d.

Therefore, from (??), the problem reduces to the minimization of

min
V

[
trace[V ′ΣV ]

]
,

where V is a p× (p− d) matrix with unitary orthogonal vectors in its columns. This problem

admits a unique solution if the eigenvalues of Σ, λ1 ≥ ... ≥ λp > 0, satisfies λd > λd+1.

Moreover, the solution is obtained from the matrix with columns equal to the eigenvectors

associated to these d largest eigenvalues, see for example Jolliffe (2002). 2

S8. Proof of Theorem 5 (Fisher consistency): Without loss of generality, we assume that

µ = 0 and that Σ is diagonal with decreasing diagonal elements. Theorem 4 and Corollary 2

yields that the d largest eigenvectors of C(P ) are the same as those of Σ, showing Fisher consis-

tency for the eigenvectors. So we restrict attention to the eigenvalues. The first d eigenvectors

are the first d canonical basis vectors, and they span the axis of the strip S(P ). Hence

S(P ) = {x = (x1, . . . , xp)
′ ∈ Rp|x2

d+1 + . . .+ x2
p ≤ r2(P )},
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with r(P ) the radius of the strip. The strip is thus unbounded in the first d coordinates, and

we get that the first d eigenvalues of cC(P ) are given by

Λj(P ) =
c

1− αE[X2
j I(X2

d+1 + . . .+X2
p ≤ r2(P ))]

for 1 ≤ j ≤ d and with X = (X1, . . . , Xp)
′. Denoting λj the eigenvalues of the covariance

matrix, which is a multiple of Σ, we have that the distribution of Xj/
√
λj is the same for every

j. Hence

Λj(P ) =
cλj

1− αE[(X1/λ1)2I(X2
d+1 + . . .+X2

p ≤ r2(P ))].

We get Λj(P ) = λj , hence Fisher consistency, for 1 ≤ j ≤ d, if we set

c =
1− α

E[(X1/λ1)2I(X2
d+1 + . . .+X2

p ≤ r2(P ))]
. (S8.1)

Note that the expression above is not depending on j. For the normal distributions, we can use

independency of the marginals, resulting in c = 1. Hence at the normal model no correction for

Fisher consistency is needed. 2

S9. Proof of Theorem 6: Given a sequence of distributions Qn, n = 1, 2, ..., converging

weakly to P , we can obtain through the Skorohod Representation theorem a sequence of r.v.

Zn, n = 1, 2, ..., and Z0 with distributions Qn, n = 1, 2, ..., and P , respectively, and converging

almost surely. Thus, we can apply Theorem 2 to the sequence {Zn}∞n=0 to obtain the weak

continuity of the functional.

Now, if Pn denotes the product measure on Rn×p, the weak continuity together with the

continuity of Tn as a point function on Rn, except for a set of Pn-measure 0, would imply the

qualitative robustness of Tn (Theorem 1.a in Hampel 1971). In our case, the point continuity

is achieved, except perhaps in those points where we have (at least) two optimal subsets of

the sample X reaching the same minimum value in the target function (2.1). However, for

absolutely continuous distributions with respect to the Lebesgue measure, those points are a

finite union of Pn-measure 0 zones, so those points have null Pn-measure. 2

S10. Proof of Theorem 7: Let P be an elliptical symmetric distribution X ∼ Ep(µ,Σ) and

let T (P ) = (d0, r0, V0) denotes its unique d-dimensional trimmed principal component. Let us

consider the point-mass contaminated distribution Pε,x0 = (1− ε)P + εδ{x0}, and T (Pε,x0) the

corresponding trimmed principal components. As Pε,x0 → P when ε ↓ 0, we can use Corollary

3 to obtain the convergence T (Pε,x0)→ T (P0).

We now start with the derivation of the influence function. Recall that we assumed µ = 0,

and Σ a diagonal matrix with decreasing diagonal elements. Denote

mε = m(Pε,x0) =
1− ε
1− α

∫
S(Pε,x0 )

xdP (x) +
ε

1− αIS(Pε,x0 )(x0)x0

and

Cε = C(Pε,x0) = c

{
1− ε
1− α

∫
S(Pε,x0 )

xx′dP (x) +
ε

1− αIS(Pε,x0 )(x0)x0x
′
0 −mεm

′
ε

}
. (S10.1)
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We have by definition

IF (x0, C, P ) =

(
∂Cε
∂ε

)
|ε=0

.

Differentiating (??) gives

∂Cε
∂ε |ε=0

= c

{
− 1

1− α

∫
S(P )

xx′dP (x) +
1

1− α
∂

∂ε

∫
S(Pε,x0 )

xx′dP (x)|ε=0

+
1

1− αIS(P )(x0)x0x
′
0

}
. (S10.2)

By definition, the first term is just −C(P ). The third term is easily handled. We now turn to

the differentiation of the second term. We introduce the notation

I(ε) =

∫
S(Pε,x0 )

xx′dP (x)

To obtain a tractable integration domain, we apply the change of variables y = V −1
ε (x −mε),

where Vε is the matrix of eigenvectors of Cε. To obtain an admissible change of variable, it must

be that all eigenvalues are distinct. However, it is easily seen that, making an arbitrary choice

where needed, the results for the first d eigenvalues and eigenvectors remain even if the last

p−d eigenvalues are equal. To avoid further notational complications, we develop the argument

assuming all eigenvalues to be distinct. The domain of integration then becomes a strip of the

same radius rε but with axis equal to the span of the first d coordinates of the space.

I(ε) = |Vε||Σ|−
1
2

∫
y2
d+1

+...+y2p≤r2ε

(Vεy +mε) (Vεy +mε)
′

h
(
(Vεy +mε)

′ Σ−1 (Vεy +mε)
)
dy.

Now to make differentiation easier, we rewrite the last p − d coordinates in polar form :

(yd+1, . . . , yp)
′ = r e(θ) with r ∈ [0, rε], θ ∈ Θ = [0, π[×...[0, π[×[0, 2π[, and e(θ) ∈ Sp−d−1, the

unit hypersphere in p − d dimensions. Denote by J(r, θ) the Jacobian of this transformation.

We get, with y1:d = (y1, . . . , yd)
′,

I(ε) = |Vε||Σ|−
1
2

∫
Rd

∫
[0,rε]

∫
Θ

J(r, θ) [Vε(y1:d, r e(θ)) +mε] [Vε(y1:d, r e(θ)) +mε]
′

h
(
[Vε(y1:d, re(θ)) +mε]

′ Σ−1 [Vε(y1:d, r e(θ)) +mε]
)
dθ dr dy1:d.

By matrix differentiation, and since V0 = I we have

∂det (Vε)

∂ε |ε=0

= trace(IF (x0, V, P )). (S10.3)

Applying the Leibniz formula, the derivative of the integral in the expression of I(ε) is given by

∂rε
∂ε |ε=0

A(r0, h,Σ) +

∫
S(P )

∂

∂ε
B(ε, h,Σ, y)|ε=0

dy (S10.4)



12 C. Croux, L.A. Garćıa-Escudero, A. Gordaliza, C. Ruwet and R. San Mart́ın

where

A ≡ A(r0, h,Σ) = |Σ|−
1
2

∫
Θ

J(r0, θ)

∫
Rd

[y1:d, r0e(θ)] [y1:d, r0e(θ)]
′

·h
(
[y1:d, r0e(θ)]

′ Σ−1 [y1:d, r0e(θ)]
)
dy1:d dθ (S10.5)

and

B(ε, h,Σ, y) = [Vεy +mε] [Vεy +mε]
′ |Σ|−

1
2 h
(
[Vεy +mε]

′ Σ−1 [Vεy +mε]
)
.

Using symmetry arguments, it is clearly seen that A is a diagonal matrix. An exact expression

is available for some specific distributions, but in the general case, there seem to be no further

simplification.

Differentiating B one gets

∂

∂ε
B(ε, h,Σ, y)|ε=0

=

{
IF (x0, V, P )yy′ + yy′IF (x0, V, P )′

+IF (x0,m, P )y′ + yIF (x0,m, P )′
}
|Σ|−

1
2 h(y′Σ−1y)

+yy′|Σ|−
1
2 ḣ
(
y′Σ−1y

){
2y′Σ−1IF (x0,m, P ) + 2y′Σ−1IF (x0, V, P )y

}
. (S10.6)

Due to the symmetry of integration domain and distribution, the quantities with an odd number

of y’s integrate to zero. This implies that terms including IF (x0,m, P ) give a zero contribution

to the integral.

Now let us take care of
∂rε
∂ε |ε=0

.

By definition of a solution strip, one has

1− α = (1− ε)
∫
S(Pε,x0 )

dP (x)|ε=0
+ εIS(Pε,x0 )(x0).

Differentiating both sides w.r.t. ε yields

0 = −
∫
S(P )

dP (x) +
∂

∂ε

∫
S(Pε,x0 )

dP (x)|ε=0
+ IS(P )(x0).

In a similar fashion as was already done, one easily verifies that

∂

∂ε

∫
S(Pε,x0 )

dP (x)|ε=0
= (1− α)trace(IF (x0, V, P )) +

∂rε
∂ε |ε=0

G(r0, h,Σ)

+2|Σ|−
1
2

∫
S(P )

ḣ
(
y′Σ−1y

)
y′Σ−1IF (x0, V, P )ydy

where

G ≡ G(r0, h,Σ) = |Σ|−
1
2

∫
Θ

J(r0, θ)

∫
Rd
h
(
[y1:d, r0e(θ)]

′ Σ−1 [y1:d, r0e(θ)]
)
dy1:d dθ. (S10.7)
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By symmetry of the integration domain, the integral in the last term reduce to the diagonal

terms, hence:

∂rε
∂ε |ε=0

=
1

G

(
(1− α)(1− trace(IF (x0, V, P ))) (S10.8)

−2|Σ|−
1
2

∫
S(P )

ḣ
(
y′Σ−1y

)
y′Σ−1diag(IF (x0, V, P ))ydy − IS(P )(x0)

)
At this point, we have an expression of IF (x0, C, P ) as a function of IF (x0, V, P ) where

V is the matrix of eigenvectors of C. By Lemma 3 in Croux and Haesbroeck (2000), the last

influence function elements may be expressed in term of the firsts. So we’ll end up with an

expression involving only IF (x0, C, P ) and some constants.

Combining (??), (??), (??), (??), and (??), IF (x0, C, P ) becomes

=
c

1− αIS(P )(x0)

(
x0x
′
0 −

1

G
A

)
+(trace(IF (x0, V, P ))− 1)

(
C(P )− cA

G

)
− cA

(1− α)G
2|Σ|−

1
2

∫
S(P )

ḣ
(
y′Σ−1y

)
y′Σ−1diag(IF (x0, V, P ))ydy

+
c

(1− α)
|Σ|−

1
2

∫
S(P )

{
IF (x0, V, P )yy′ + yy′IF (x0, V, P )′

}
h(y′Σ−1y)dy

+
c

1− α |Σ|
− 1

2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy

Using Lemma 3 of Croux & Haesbroeck (2000) and the diagonality of C(P ), the diagonal

elements of the influence function of V , the matrix of eigenvector functionals, is zero, hence is

also the trace, and that the non diagonal elements are given by

IF (x0, V, P )jk =
IF (x0, C, P )jk
Λk(P )− Λj(P )

(S10.9)

So that we have to assume that all eigenvalues are distinct. As was mentioned above, a more

refined change of variables, with the identity on the last p − d coordinates, would avoid this

assumption. We end up with the simplified form for IF (x0, C, P ):

=
c

1− αIS(P )(x0)

(
x0x
′
0 −

1

G
A

)
−C(P ) +

cA

G

+
c

1− α |Σ|
− 1

2

∫
S(P )

{
IF (x0, V, P )yy′ + yy′IF (x0, V, P )′

}
h(y′Σ−1y)dy

+
c

1− α |Σ|
− 1

2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy,

where the two terms in the integral of the second line above involve the matrix C(P ), so that

we can further simplify into

IF (x0, C, P ) =
c

1− αIS(P )(x0)

(
x0x
′
0 −

1

G
A

)
−C(P ) +

cA

G

+IF (x0, V, P )C(P ) + C(P )IF (x0, V, P )′

+
c

1− α |Σ|
− 1

2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy.

(S10.10)
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Regarding the second line in the above formula, we are using (??) for the element in position

i, j: [
IF (x0, V, P )C(P ) + C(P )IF (x0, V, P )′

]
ij

= IF (x0, V, P )ijΛj(P ) + IF (x0, V, P )jiΛi(P )

= (1− δij)
(
IF (x0, C, P )ij
Λj(P )− Λi(P )

Λj(P ) +
IF (x0, C, P )ji
Λi(P )− Λj(P )

Λi(P )

)
= (1− δij)IF (x0, C, P )ij

since IF (x0, C, P ) is a symmetric matrix, and C(P ) has its eigenvalues Λj(P ) on its diagonal.

Let us now treat the last integral in (??):

J =
c

1− α |Σ|
− 1

2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy.

We consider a typical element of the resulting matrix

Jij =
c

1− α |Σ|
− 1

2

∫
S(P )

yiyj ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy.

The integrand is given by

2ḣ
(
y′Σ−1y

) p∑
k,l=1

yiyjykyl
IF (x0, V, P )kl

λk
,

where we recall that λ1, . . . , λp are the eigenvalues and also diagonal elements of the matrix Σ.

By symmetry of the integration domain, only those terms where the indices i, j, k, l are such

that only even powers of y are present will contribute to the integral. Moreover, for k = l the

influence function is zero. That is, non-zero contributions come from k 6= l and i = k, j = l or

i = l, j = k. So that for the element i, j of J , the contribution comes from

2ḣ
(
y′Σ−1y

)
y2
i y

2
j

(
IF (x0, V, P )ij

λi
+
IF (x0, V, P )ji

λj

)
.

Using (??) and the symmetry of IF (x0, C, P ), we get

Jij = (1− δij)IF (x0, C, P )ij
λj − λi

(Λj(P )− Λi(P ))λiλj

2c

1− α |Σ|
− 1

2

∫
S(P )

y2
i y

2
j ḣ
(
y′Σ−1y

)
dy

= (1− δij)IF (x0, C, P )ij
λj − λi

(Λj(P )− Λi(P ))λiλj

2c

1− αHij ,

with

Hij = |Σ|−
1
2

∫
S(P )

y2
i y

2
j ḣ
(
y′Σ−1y

)
dy. (S10.11)

In the end, following up on (??), we can write an element i, j of the influence function for

C:

IF (x0, C, P )ij =
c

1− αIS(P )(x0)

(
x0ix0j −

Aij
G

)
− C(P )ij +

cAij
G

+(1− δij)IF (x0, C, P )ij

(
1 +

2c

(1− α)

λj − λi
(Λj(P )− Λi(P ))λiλj

Hij

)
.
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Given the expression above, it is profitable to give separate expression for diagonal and off-

diagonal terms. We have

IF (x0, C, P )ii =
c

1− αIS(P )(x0)

(
x2

0i −
Aii
G

)
− Λi(P ) +

cAii
G

and for an off-diagonal term (i 6= j), we use that A in (??) is diagonal,

IF (x0, C, P )ij =
c

1− αIS(P )(x0)x0ix0j

+ IF (x0, C, P )ij

(
1 +

2c

1− α
λj − λi

(Λj(P )− Λi(P ))λiλj
Hij

)
which gives

IF (x0, C, P )ij = − (Λj(P )− Λi(P ))λiλj
2(λj − λi)

IS(P )(x0)x0ix0j

Hij
. 2

S11. Proof of Theorem 8: Let X = {x1, ..., xn} ⊂ Rp be the original sample and hX ∈
Ad(Rp) the empirical d-dimensional trimmed principal component of X . Assume, without loss

of generality, that D(X ) = d(hX , 0) = 0. Let us denote R = maxi=1,...,n d(xi, 0). Then the

original sample satisfies X ⊂ B(0, R).

We will develop the proof for the case (bnαc+ d+ 1)/n ≤ (n−bnαc)/n. In the other case

the proof is easier. Note that this inequality may be equivalently rewritten as n−2bnαc−d ≥ 1.

The proof will be arranged in two steps:

1. We first prove that ε∗n(D,X ) ≥ (bnαc + d + 1)/n. If we replace at most bnαc + d

points of X in order to obtain a corrupted sample X ′, then at least n−bnαc− d original points

remain in X ′. Let hX ′ ∈ Ad(Rp) be the empirical d-dimensional trimmed principal component

of X ′, which is based on a subsample Y ′ ⊂ X ′ containing n − bnαc data points. Note that

n− bnαc − (bnαc+ d) = n− 2bnαc − d ≥ 1, therefore any subsample Y ′ ⊂ X ′ contains at least

1 data point from the original sample X .

Assume that for any arbitrarily large constant C > (
√
n+1)R, we could get a contaminated

sample satisfying D(X ′) = d(hX ′ , 0) ≥ C. Then, we would have

(n− bnαc)Vd,α(hX ′) =
∑
y∈Y′

d(y, hX ′)
2 ≥

∑
y∈Y′∩X

d(y, hX ′)
2 ≥ (C −R)2 > nR2.

On the other hand, if we considered a subsample Y∗ ⊂ X ′ made of n−bnαc−d points belonging

to X together with d arbitrary points belonging to X ′−X and the affine subspace hY∗ ∈ Ad(Rp)
containing the origin 0 and those d arbitrary points, then we would have

(n− bnαc)Vd,α(hY∗) =
∑
y∈Y∗

d(y, hY∗)
2 =

∑
y∈Y∗∩X

d(y, hY∗)
2 ≤ nR2.

Then, we would get Vd,α(hY∗) < Vd,α(hX ′), contradicting the fact that hX ′ is a d-dimensional

trimmed principal component of X ′. Therefore, supX ′ d(hX ′ , 0) <∞ and the first inequality is

proven.
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2. We now prove that ε∗n(D,X ) ≤ (bnαc+ d+ 1)/n. The goal is now to built a corrupted

sample X ′ replacing at least bnαc + d + 1 points of X in such a way that the optimum hX ′

satisfies that D(X ′) is arbitrarily large. Firstly, note that hX ′ would be based on a subsample

Y ′ ⊂ X ′ of size n− bnαc containing at least d+ 1 corrupted observations belonging to X ′ −X
and at most n− bnαc − d− 1 points from the original sample X . Given M > 0, let us consider

a d-dimensional subspace h0 parallel to hX and satisfying d(h0, hX ) = M . Take a corrupted

sample X ′ satisfying:

(i) X ′ −X ⊂ h0,

(ii) d(y, y′) ≥M for every y, y′ ∈ X ′ −X for y 6= y′, and,

(iii) every subset of d+ 1 points in X ′ −X are in general position.

Some technicalities that will be here omitted (see San Mart́ın (2008) for details) lead us

to limM→∞ d(hX ′ , 0) =∞ and the result is proven. 2

S12. Obtention of Asymptotic Variances in the elliptical case: For an elliptical con-

toured distribution with µ = 0 and Σ = diag(λ1, . . . , λp), Theorem 7 and the fact that

ASV(T, P ) =

∫
Rd
IF (x, T, P )IF (x, T, P )′dP (x)

give

ASV(Λi, P ) =

∫
Rd

{
c

1− αIS(P )(x)

(
x2
i −

Aii
G

)
− Λi(P ) +

cAii
G

}2

|Σ|−
1
2 h(x′Σ−1x)dx

=
c2

(1− α)2

∫
S(P )

x4
i |Σ|−

1
2 h(x′Σ−1x)dx+

[
−cαAii

(1− α)G
− Λi(P )

]

· 2c

1− α

∫
S(P )

x2
i |Σ|−

1
2 h(x′Σ−1x)dx+

α

1− α

(
cAii
G

)2

+ Λi(P )2

=
c2

(1− α)2

∫
S(P )

x4
i |Σ|−

1
2 h(x′Σ−1x)dx− Λi(P )2 +

α

1− α

(
cAii
G

)2

+ 2Λi(P )
cAii
G

(
−α

1− α ).

For the eigenvectors, we obtain

ASV(Vi, P ) =

∫
Rd

(∑
j 6=i

λiλj
λj − λi

IS(P )(x)xixj

2Hij
vj ·

∑
k 6=i

λiλk
λk − λi

IS(P )(x)xixk

2Hik
vk
′
)
dP (x).

By symmetry of S(P ) and P , the terms for j 6= k integrate to zero. Hence there remains

ASV(Vi, P ) =
∑
j 6=i

λ2
iλ

2
j

(λi − λj)2

∫
S(P )

x2
ix

2
jdP (x)

4H2
ij

vjvj
′. (S12.1)
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S13. Obtention of Asymptotic Relative Efficiencies in the gaussian case: By definition

of G and A, see (??) and (??), and by using the property that the marginals of a multivariate

normal are independent, we have that

Aii
G

=

∫
R
y2φ(y/

√
λi)dy∫

R
φ(y/

√
λi)dy

= λi,

where φ(·) denotes the probability density function of the standard normal. These results allow

for simpler expressions of the asymptotic variance of the eigenvalues with 1 ≤ i ≤ d:

ASV(Λi, P ) =
1

(1− α)2

∫
S(P )

x4
i |Σ|−

1
2 h(x′Σ−1x)dx

− λ2
i +

α

1− α

[(
Aii
G

)2

− 2λi
Aii
G

]

=
1

(1− α)2

∫
S(P )

x4
i dP (x)− λ2

i
1

1− α =
1

1− αλ
2
i (3− 1) =

2

1− αλ
2
i .

For the eigenvectors with 1 ≤ i ≤ d, the definition of Hij in (??) together with the fact

that, under the gaussian assumption, we have ḣ
(
y′Σ−1y

)
= − 1

2
h
(
y′Σ−1y

)
gives

Hij = −1

2

∫
S(P )

x2
ix

2
jf(x)dx. (S13.1)

Inserting (??) in the expression for the asymptotic variance (??) gives

ASV(Vi, P ) =
∑
j 6=i

λ2
iλ

2
j

(λi − λj)2

1∫
S(P )

x2
ix

2
jdP (x)

vjvj
′.

Now, since i ≤ d, we have ∫
S(P )

x2
ix

2
jdP (x) = λiλj

1− α
cj

,

with

c−1
j =

∫
S(P )

x2
jdP (x)

(1− α)λj

for 1 ≤ j ≤ p. We, thus, finally obtain

ASV(Vi, P ) =
1

1− α
∑
j 6=i

λiλjcj
(λi − λj)2

vjvj
′.
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S14. Additional simulation results

As a complement to Table 8.1, we computed additional finite sample and asymptotic

efficiencies for the settings (i) p = 5, d = 4, α = 0.10 or 0.25 and (ii) α = 0.1, p = 8, d = 3

or 7. The findings of Table 8.1 are confirmed, see Table ??. Increasing α leads to decreasing

efficiencies, increasing d slightly increases efficiency. Again, we observe the remarkably high

efficiencies for smaller sample sizes in the last setting of the Table (p = 8, d = 7, design 2).

In Table ?? we report the finite sample efficiencies for the untrimmed PCA estimator. We

see that some values are larger than 1, confirming that finite sample efficiencies may be larger

than the asymptotic counterparts, even for the ML estimator. Furthermore, in the last setting

of Table ?? it is observed that the efficiencies first decrease, and afterwards increase again with

the sample size, similar as for the trimmed case.

To study robustness with respect to point contamination, we follow exactly the same

simulation design as described in Section 8.2, but now the outliers are all concentrated at the

same vector Σ−1/2(K, . . . ,K)t), with K a scalar. The multiplication with Σ−1/2 is done to

make the size of the outliers comparable across directions. Figure ?? plots the simulated value

of D2 as a function of K, where K takes values between 0 and 30 in steps of size 1. Plots are

given for four different contamination levels: ε = 0.05, 0.1, 0.15 and 0.20. We make the following

observations

- For trimmed PCA, ROBPCA and the MCD, the curves have a maximum at intermediate

values. This means that for these estimators the most dangerous point-mass contamina-

tion is not located at infinity, but much nearer to the data cloud.

- Comparing the four different contamination levels, we see that for trimmed PCA, ROBPCA

and the MCD, the value of the performance measure D2 for K large remains pretty much

the same. This is similar to what we observed in Figure 8.3. On the other hand, the

maximum of the D2 values over all possible K-values, attained for intermediate outliers,

increases with the contamination level.

- In line with the discussion of Figure 8.3, we observe the good performance of ROBPCA,

but the trimmed PCA performs almost equally well for all values of K and ε. On the other

hand, we see that MCD is more vulnerable to point-mass contamination and performs

somehow worse than trimmed PCA.

- For the type of point contamination considered, the classical method, the projection

pursuit PP approach, and the Sign Covariance Matrix based method are not competitive

for large outliers. On the other hand, for intermediate outliers, the classical PCA approach

is even the best in terms of lowest values for D2.

The Table below shows the maximum value of D2 over all possible value of K, for the considered

robust estimators and for the different values of the contamination level ε. We also report the
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value of K where this maximum is attained and denote it Kmax. In line with the observations

made above, we see that this maximum value increases with ε, and that trimmed PCA and

ROBPCA are performing best among the robust estimators according to this criterion. Since

K ranges from 1 to 30 in steps of 1, it is also confirmed that intermediate outliers are the most

dangerous for the robust estimators (with an exception for the Sign Covariance Matrix).

ε Trimmed ROBPCA MCD PP Sign

max Kmax max Kmax max Kmax max Kmax max Kmax

0.05 5.77 2 5.53 2 6.58 2 6.58 2 5.72 7

0.1 7.27 2 6.94 3 8.63 2 7.85 2 7.09 3

0.15 8.09 3 7.88 3 9.45 3 8.50 2 7.99 5

0.2 8.45 3 8.55 5 10.49 4 9.15 3 9.21 10
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Table S.1: Finite sample efficiencies for the trimmed PCA w.r.t. the ML.

Design (a)

p d α n Eigenvalues Eigenvectors

5 4 .10 50 .961 .668 .622 .552 .472

100 .948 .747 .738 .718 .614

500 .892 .877 .894 .858 .693

∞ .900 .886 .881 .853 .713

5 4 .25 50 .824 .524 .470 .438 .366

100 .769 .580 .563 .551 .408

500 .761 .714 .717 .663 .503

∞ .750 .717 .707 .649 .430

8 3 .10 50 .977 .620 .596 .521

100 .947 .776 .725 .669

500 .908 .871 .876 .751

∞ .900 .870 .855 .748

8 7 .10 50 .972 .642 .595 .587 .556 .523 .516 .462

100 .914 .735 .765 .774 .737 .726 .701 .614

500 .897 .856 .890 .901 .860 .832 .814 .745

∞ .900 .898 .898 .897 .893 .884 .855 .717

Design (b)

p d α n Eigenvalues Eigenvectors

5 4 .10 100 1.179 .667 .628 .592 .640

500 .955 .729 .718 .789 .846

1000 .894 .833 .809 .823 .858

∞ .900 .900 .900 .899 .898

5 4 .25 100 1.163 .779 .693 .539 .467

500 .826 .492 .467 .532 .634

1000 .808 .604 .585 .620 .714

∞ .750 .749 .749 .749 .747

8 3 .10 100 1.426 1.168 1.168 .974

500 1.167 .597 .560 .607

1000 .995 .695 .674 .737

∞ .900 .899 .899 .898

8 7 .10 100 1.594 1.196 1.106 .914 .734 .612 .562 .599

500 1.087 .644 .590 .572 .608 .676 .760 .782

1000 .978 .716 .668 .689 .745 .774 .848 .896

∞ .900 .900 .900 .900 .900 .900 .900 .899
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Table S.2: Finite sample efficiencies for untrimmed PCA

Design (a)

p d α n Eigenvalues Eigenvectors

5 3 0 50 1.109 .714 .651 .661

100 1.003 .910 .873 .832

500 .969 .946 .987 1.017

∞ 1 1 1 1

5 4 0 50 1.083 .689 .678 .642 .573

100 1.033 .938 .910 .875 .851

500 0.986 1.019 .987 .993 .936

∞ 1 1 1 1 1

8 3 0 50 1.043 .813 .753 .626

100 1.059 .853 .852 .871

500 1.021 .973 .970 .967

∞ 1 1 1 1

8 7 0 50 1.070 .731 .705 .682 .669 .702 .647 .563

100 1.023 .895 .878 .851 .830 .788 .831 .806

500 1.016 1.019 1.015 .977 .951 .958 .972 .958

∞ 1 1 1 1 1 1 1 1

Design (b)

p d α n Eigenvalues Eigenvectors

5 3 0 100 1.211 .741 .692 .705

500 1.083 .808 .797 .861

1000 .992 .929 .918 .958

∞ 1 1 1 1

5 4 0 100 1.479 .870 .776 .636 .592

500 1.063 .733 .707 .790 .911

1000 1.012 .843 .836 .891 .950

∞ 1 1 1 1 1

8 3 0 100 1.282 .816 .699 .626

500 1.129 .890 .812 .803

1000 .960 .874 .874 .903

∞ 1 1 1 1

8 7 0 100 1.881 1.396 1.406 1.146 .934 .761 .632 .597

500 1.232 .680 .647 .650 .590 .619 .770 .889

1000 1.134 .793 .715 .726 .764 .816 .901 .894

∞ 1 1 1 1 1 1 1 1
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Figure S.1: Simulated value of D2 as a function of the position of the outliers for 6

different estimators, for design (a) with n = 50, p = 5, and d = 3. We consider four

different percentages ε of outliers.
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