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Abstract: Principal Component Analysis (PCA) is a widely used technique for

reducing dimensionality of multivariate data. The principal component subspace is

defined as the affine subspace of a given dimension d giving the best fit to the data.

PCA suffers from a well-known lack of robustness. As a robust alternative, one can

resort to an impartial trimming-based approach and search for the best subsample

containing a proportion 1 − α of the observations, with 0 < α < 1, and the best

d-dimensional affine subspace fitting this subsample, yielding the trimmed principal

component subspace. A population version is given and existence of solutions to

both the sample and population problems are proven. Under mild conditions,

the solutions of the sample problem are consistent toward the solutions of the

population one. The robustness of the method is studied by proving qualitative

robustness, computing the breakdown point, and deriving the influence functions.

Furthermore, asymptotic efficiencies at the normal model are derived and finite

sample efficiencies are studied by means of a simulation study.

Key words and phrases: Affine subspaces, dimension reduction, multivariate statis-

tics, orthogonal regression, principal components, robustness, trimming.

1. Introduction

When analyzing multivariate data sets, one of the primary goals is to reduce

the dimension of the data set at hand with a minimal loss of information. This is

often a preliminary step to carry out other statistical analysis such as classifica-

tion, regression fits, and so on. Principal Component Analysis (PCA) is the most

commonly used technique for doing this task and most practitioners of statistics

are familiar with this method due to its intuitive geometrical appealing and its

implementation in most of statistical packages. One of the main drawbacks of

PCA is the lack of robustness against the presence of outlying observations in

the data set. There are examples in the literature showing that a single outlier,

strategically placed, is enough to make classical PCA unreliable.

There have been several proposals to robustify classical PCA. Most of them

use robust estimates of the covariance matrix and compute eigenvectors and
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eigenvalues from it. As such, Campbell (1980) and Devlin, Gnanadesikan and

Kettering (1981) use M estimates, Croux and Haesbroeck (2000) take high break-

down point covariance matrix estimators such as the Minimum Covariance Deter-

minant estimator and Croux, Ollila and Oja (2002) use sign and rank covariance

matrices. Another approach is based on projection pursuit, where one looks for

the direction maximizing a robust measure of scale of the data projected on it

(Li and Chen (1985); Croux and Ruiz-Gazen (2005)). A hybrid approach was

taken by Hubert, Rousseeuw and Vanden Branden (2005). Robust procedures

have also been developed for kernel PCA (see, e.g., Debruyne and Verdonck

(2010) and references therein) and in the learning machine literature (see, e.g.,

Xu, Caramanis and Sanghavi (2012) and references therein).

In this paper we aim at retrieving the lower-dimensional affine subspace best

fitting the large majority of the data. More precisely, we look for the “best”

subset of size n− bnαc, with 0 ≤ α < 1, trimming a portion α of the data, and

the corresponding best fitting affine subspace of a given dimension, where the

goodness of fit is measured by the sum of squared Euclidean distances between the

subspace and the selected observations. Thus, given a sample X = {x1, . . . , xn}
of observations in Rp and 0 ≤ α < 1, one looks for the solution of the problem:

min
Y⊂X , #Y≥ n−bnαc

min
h∈Ad(Rp)

1

#Y
∑
xi∈Y
‖xi − Prh(xi)‖2, (1.1)

where Ad(Rp) denotes the set of d-dimensional (1 ≤ d < p) affine subspaces in

Rp and Prh(·) denotes the orthogonal projection on h ∈ Ad(Rp). The “best”

subspace according to (1.1) is called the trimmed principal component subspace.

The “best” Y with n − bnαc observations is the optimal set that contains the

observations surviving the trimming process.

To overcome the implicit hypothesis of symmetry and to extend the idea of

trimming to such other frameworks as multivariate estimation and regression,

trimming procedures based on the idea of searching for the “best” subsample

containing a fixed proportion of the data were introduced by Rousseeuw (1984,

1985). That gave raise to the Least Median of Squares (LMS) and Least Trimmed

Squares (LTS) procedures in the robust regression context and the Minimum

Volume Ellipsoid (MVE) and the Minimum Covariance Determinant (MCD) in

the robust multivariate estimation context. Gordaliza (1991) stated a functional

or population version of some related trimming procedures in the multivariate

setting and coined the term “impartial trimming” to mean that it is the data set

bxc represents the largest integer not greater than x.
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itself which tells us the best way of trimming a fixed proportion α of the data.

The problem at (1.1) was also considered in Maronna (2005), who proposed a

fast approximative algorithm to compute its solution. His paper mainly discussed

computational aspects, while we present a theoretical study of the trimmed prin-

cipal component subspace, including the existence, consistency, influence func-

tion, and asymptotic variance of the estimators.

The outline of the paper is as follows. In Section 2, we state the functional

version of the problem by using trimming functions, and we prove some prelim-

inary results simplifying the problem and throwing light on the way impartial

trimming proceeds in this case. Section 3 is devoted to a general existence result,

not requiring any conditions on the distribution. Consistency is proven in Section

4 for absolutely continuous random variables. Special attention is paid to the

case of elliptical distributions in Section 5. Robustness aspects are considered in

Section 6, including qualitative robustness, influence functions, and breakdown

point, while asymptotic variances are obtained in Section 7. Section 8 provides

finite-sample efficiencies. We also compare the robustness of different robust

estimators for PCA by means of a simulation study. Section 9 contains a data

example and there is a conclusion section. Proofs are deferred to a supplementary

file.

2. Notation and Preliminary Results

Here, X is a Rp-valued random vector (r.v.) defined on a probability space,

βp denotes the σ-algebra of all Borel sets in Rp, PX the probability measure

induced by X on (Rp, βp), and ‖ · ‖ the usual norm on Rp. For a set S ⊂ Rp, S
denotes its closure, Sc its complementary set and IS(·) its associated indicator

function. For 1 ≤ d < p, Ad(Rp) denotes the set of d-dimensional affine subspaces

in Rp and for h ∈ Ad(Rp), Prh(·) denotes the orthogonal projection on h.

As introduced in Gordaliza (1991) and used in Cuesta-Albertos, Gordaliza

and Matrán (1997), trimming functions allow impartial trimming of observations

and play an important technical role. For 0 ≤ α < 1, Tα = Tα(X) denotes the

nonempty set of trimming functions for X at level α,

Tα = {τ : Rp → [0, 1] measurable,

∫
τ(x)dPX(x) = 1− α},

and Tα− = Tα−(X) denotes the set of trimming functions for level 0 ≤ β ≤ α,

Tα− = {τ : Rp → [0, 1] measurable,

∫
τ(x)dPX(x) ≥ 1− α} =

⋃
β≤α
Tβ.
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A more general statement of our trimming problem can be posed by using trim-

ming functions instead of trimming subsets. For α ∈ (0, 1) and 1 ≤ d < p, search

for a trimming function τ0 ∈ Tα− and an affine subspace h0 ∈ Ad(Rp) solution of

the problem:

inf
τ∈Tα−

inf
h∈Ad(Rp)

1∫
τ(x)dPX(x)

∫
τ(x)‖x− Prh(x)‖2dPX(x). (2.1)

The minimum value in (2.1) is denoted Vd,α ≡ Vd,α(PX) ≡ Vd,α(X).

We need some technical results to simplify the problem at (2.1).

Lemma 1. For any 1 ≤ d < p and any 0 ≤ α < 1, Vd,α(X) <∞.

Given h ∈ Ad(Rp) and r ≥ 0, we take a strip around h and with radius r as

S(h, r) := {x ∈ Rp : ‖x− Prh(x)‖ < r}.

Lemma 2. For any h ∈ Ad(Rp) and 0 ≤ β < 1, let rβ(h) = inf{r ≥ 0 :

PX
(
S(h, r)

)
≤ 1 − β ≤ PX

(
S(h, r)

)
} and Th,β = {τ ∈ Tβ : IS(h,rβ(h)) ≤ τ ≤

IS(h,rβ(h)), PX-a.e.},. For all τ ∈ Th,β we have

(a)
∫
τ(x)‖x−Prh(x)‖2dPX(x) ≤

∫
τ ′(x)‖x−Prh(x)‖2dPX(x) for all the trim-

ming functions τ ′ ∈ Tβ,

(b) the equality in (a) holds if and only if τ ′ ∈ Th,β.

From Lemma 2 (b) it follows that

Vd,β(h) :=
1

1− β

∫
τh,β(x)‖x− Prh(x)‖2dPX(x), (2.2)

is the same for every τh,β ∈ Th,β. We call it the β-trimmed variation of X around

h,and τh,β, essentially an indicator function of the strip S(h, rβ(h)) around h, is

the optimal trimming function for the problem (2.1).

Lemma 3. In the notation of Lemma 2, if β ≤ α, we have

(a) Vd,α(h) ≤ Vd,β(h),

(b) the equality in (a) holds if and only if rα(h) = rβ(h) and PX(S(h, rα(h))) =

0.

Thus, to minimize the α-trimmed variation around h, it is strictly better to

trim the exact proportion α, except in the case that all the probability mass of

S(h, rα(h)) is supported on its boundary.

Proposition 1. For any h ∈ Ad(Rp) and 0 ≤ α < 1, it holds that Vd,α =

infh∈Ad(Rp) Vd,α(h).
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Thus, one can to simplify the original double minimization problem (2.1) to

the single search of the optimal affine subspace h. Once it is determined, the

optimal trimming function is essentially the indicator function of the associated

strip S(h, rα(h)). Any affine subspace h0 solving (2.1), is called a d-dimensional

α-trimmed principal component subspace of X, the trimmed principal component

subspace for short.

The results cover both the population and the sample problem. Thus, if

we have a sample {Xi}ni=1 of size n from the probability distribution PX , the

associated empirical measure is

Pωn (A) =
1

n

n∑
i=1

IA(Xi(ω))

for ω in the sample space Ω. Given the outcome of a sampleX1(ω) = x1, . . . , Xn(ω) =

xn, the problem stated in (1.1) is equivalent to the problem (2.1) when taking

Pωn instead of PX .

3. Existence

Here we state the existence of solutions of (2.1), without moment conditions

on the underlying distribution. This is important in terms of robustness, because

outliers are often associated with the presence of heavy tails for the underlying

distribution, where moment conditions are not realistic.

From Lemma 1 and Proposition 1, we have that

Vd,α = inf
h∈Ad(Rp)

Vd,α(h) <∞, (3.1)

so we can take a sequence of subspaces {hn}n ⊂ Ad(Rp) such that Vd,α(hn) ↓ Vd,α
as n→∞. For any affine subspace hn in that sequence, let τn = τhn,α, the radius

rn = rα(hn), and Sn = S(hn, rn). We parameterize hn through the distance to

the origin, dn = infx∈hn ‖x‖, and the choice of d unitary vectors spanning the

affine subspace.

Lemma 4. If {hn}n is a sequence of affine subspaces in Ad(Rp) satisfying

Vd,α(hn) ↓ Vd,α as n→∞, then {dn}n and {rn}n are bounded sequences.

Furthermore, as all d sequences of unitary vectors are bounded and Rp is

a complete space, {hn}n contains a convergent subsequence in the sense that

the corresponding subsequences of unitary spanning vectors, distances to the

origin {dn}n, and the radii {rn}n, are all convergent. We pass to this convergent

subsequence without changing notation.
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Theorem 1. Let X be a random vector, α ∈ (0, 1) and 1 ≤ d < p. Then there

exists a d-dimensional α-trimmed principal component of X.

Corollary 1. Under the hypotheses of Theorem 1, if (τ0, h0) is a solution of

(2.1), then IS(h0,rα(h0)) ≤ τ0 ≤ IS(h0,rα(h0))
, PX-a.e. Moreover, if PX is absolutely

continuous w.r.t. the Lebesgue measure on Rp, then IS(h0,rα(h0)) = τ0, PX-a.e.

For every τ ∈ Tα, let P τX be the probability distribution with, for every Borel

set A,

P τX(A) =
1

1− α

∫
A
τ(x)dPX(x).

Corollary 2. Under the hypotheses of Theorem 1, if τ0 and h0 are a solution

of (2.1) and X has finite second order moments, then h0 is the affine subspace

spanned by the ordinary principal components of the probability distribution P τ0X .

If Corollary 2 did not hold, the α-trimmed variation could be strictly dimin-

ished by replacing h0 by the affine subspace spanned by the ordinary principal

components of P τ0X and then τ0, and h0 would not be a solution of (2.1).

4. Consistency

We now prove the convergence of the sample solutions to the population ones.

The convergence between affine subspaces is stated as the convergence of the

distances to the origin and the possible choice of a sequence of converging unitary

spanning vectors; the sequences of sample optimal radii and sample trimmed

variations are then consistent.

From now on, {Xn}n is a sequence of Rp-valued r.v. and hn ∈ Ad(Rp), n =

1, 2, . . ., is the d-dimensional trimmed principal component subspace for Xn with

associated optimal trimming function τn = τhn,α(Xn) and optimal radius rn, and

Vn := Vd,α(Xn), n = 0, 1, 2, . . ., denotes the trimmed variation of Xn.

The proof main result on the consistency is similar to that used in Cuesta-

Albertos, Gordaliza and Matrán (1997) to establish consistency for trimmed k-

means. Difficulties arise since the trimming functions have discontinuities on

the boundaries of the corresponding strips, so the continuity of the probability

distribution of the limit random vector is imposed.

Lemma 5. Let {Xn}n be a sequence of Rp-valued random vectors such that

Xn → X0, P -a.e. Then {dn}n and {rn}n are bounded sequences.

The proof of this lemma is essentially the same as that of Lemma 4.
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Theorem 2. Let {Xn}n be a sequence of Rp-valued random vectors, α ∈ (0, 1)

and 1 ≤ d < p. Let {hn}n ⊂ Ad(Rp) be the sequence of d-dimensional trimmed

principal component of Xn, for n = 1, 2, . . . and assume

(a) Xn → X0, P -a.e.,

(b) PX0
is an absolutely continuous distribution,

(c) h0 is the unique d-dimensional trimmed principal component of X0.

Then hn → h0 and Vn → V0 as n→∞.

By applying the a.s. Skorohod representation theorem, there exists a se-

quence {Yn}n of Rp-valued r.v. such that PX0
≡ PY0

, PXn ≡ PYn and Yn → Y0
P−a.s. Hence, by applying Theorem 2 to {Yn}n we get the following.

Corollary 3. Theorem 2 holds if we replace condition (a) by (a′) Xn → X0 in

distribution.

To obtain the desired consistency result, consider a sequence of independent,

identically distributed r.v. {Xn}n, with probability distribution PX and recall

that (1.1) is equivalent to (2.1) taking Pωn instead of PX . The desired consistency

result follows as a simple consequence of Corollary 3:

Theorem 3. Let {Xn}n be a sequence of independent, identically distributed

Rp-valued random vectors with distribution PX and let {Pωn } be the sequence

of empirical probability measures, for any ω ∈ Ω. Assume PX is absolutely

continuous having a unique d-dimensional trimmed principal component subspace

h0 ∈ Ad. If {hωn}n is a sequence of empirical d-dimensional trimmed principal

components of {Pωn }n, then hωn → h0, P-a.s. and Vd,α(Pωn )→ Vd,α(X),P-a.s.

The consistency result requires the uniqueness of the d-dimensional trimmed

principal component subspace, which does not hold in general.

5. Uniqueness and Fisher Consistency for Elliptical Distributions

Here, we consider elliptically contoured distributions. A Rp-valued r.v. X

has an elliptical symmetric distribution X ∼ Ep(µ,Σ) if it admits a probability

density function of the form

fX(x) = |Σ|−
1

2h((x− µ)′Σ−1(x− µ)) for x ∈ Rp, (5.1)

where h is a positive and non-increasing square integrable function called the

radial function. The density f is unimodal if the radial function h has a strictly
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positive derivative ḣ. The location parameter of the distribution is µ and the

symmetric positive definite matrix Σ is called the scatter matrix; it is proportional

to the covariance matrix if the distribution has a second moment. The ordered

eigenvalues of Σ are denoted by λ1 ≥ . . . ≥ λp > 0 and the associated eigenvectors

are v1, . . . , vp, respectively. To have uniqueness we need λd > λd+1, where d is

the dimension of the affine subspace we are looking for.

Theorem 4. Let X be a random vector with the elliptically symmetric density

at (5.1), and unimodal. If λ1 ≥ . . . ≥ λp > 0 are the eigenvalues of Σ with

λd > λd+1, then

(a) for every α > 0 and every d < p, the d-dimensional trimmed principal

component subspace of X is unique, it passes through µ, and is spanned by

the d largest eigenvectors of matrix Σ;

(b) if X has finite second order moments, the trimmed d-dimensional principal

component subspace coincides with the ordinary principal component sub-

space of dimension d.

The proof needs a multivariate probability inequality in Davies (1987); it is

given in the supplementary file. If second moments exist, Σ is proportional to the

covariance matrix and, therefore, the principal axes corresponding to the trimmed

principal components are the same as those obtained by using the standard PCA.

From now on, we omit the reference to the random vector X in the notation

PX , writing P . For a given distribution P with density as in (5.1), denote

by S(P ) the optimal strip associated with the trimmed principal component

subspace. This strip is centered at µ and has the first d eigenvectors of Σ as

spanning vectors. We define the functional

m(P ) =
1

1− α

∫
S(P )

xdP (x),

and the (restricted) covariance matrix

C(P ) =
1

1− α

∫
S(P )

(x−m(P ))(x−m(P ))′dP (x). (5.2)

Due to orthogonal and translation equivariance of the loss function defining

the optimal strip, these functionals are orthogonal and translation equivariant.

Thus we can restrict our attention to elliptical distributions centered at the origin

and with diagonal scatter matrix. In this case, m(P ) = 0 and C(P ) is diagonal.

Theorem 5. Let P be with density as in (5.1). Given finite second order mo-

ments, there exists a real constant c, depending only on the distribution P via the
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radial function h and the trimming constant α, such that the first d eigenvalues

and eigenvectors of cC(P ) are the first d eigenvalues and eigenvectors of the

covariance matrix of P . At the multivariate normal distribution, c = 1.

In the sequel, the functional C is multiplied by this consistency factor c.

6. Robustness

6.1. Qualitative robustness

Hampel (1971) introduces the qualitative robustness of a sequence of esti-

mators {Tn}∞n=1 as the equicontinuity of the mappings {P → LP (Tn)}∞n=1, where

LP (Tn) denotes the distribution of the estimator Tn under the distribution P .

He also defines a “continuity” condition for a sequence of estimators at a distri-

bution F . If Tn is such that Tn = T (Pωn ) with Pωn the empirical distribution, the

continuity condition is analogous to that of T being a weak continuous functional.

Theorem 6. The d-dimensional trimmed principal component subspace func-

tional is weakly continuous and qualitatively robust at any absolutely continuous

distribution P having a unique d-dimensional trimmed principal component sub-

space.

6.2. Influence function

To investigate the infinitesimal robustness and asymptotic properties of the

trimmed principal component subspace estimator, we compute its influence func-

tion, for the eigenvalues and eigenvectors, at elliptical contoured distributions.

The main ideas follow Croux and Haesbroeck (1999). The IF of a functional T at

a distribution P is given by IF (x0;T, P ) = limε↓0(T ((1−ε)P +εδ{x0})−T (P ))/ε,

for those x0 where this limit exists. Here δ{x0} denotes a Dirac distribution

putting all its mass at x0.

For deriving the influence function of the eigenvectors and eigenvalues at

elliptical distributions, we first need the influence function for the functional

C, defined in (5.2). For j = 1, . . . , p, we denote by Λj(P ) and Vj(P ) the jth

eigenvalue and eigenvector of C(P ).

Theorem 7. For an elliptical distribution function P with density at (5.1), µ =

0, and Σ = diag(λ1, . . . , λp), for any diagonal term of C,

IF (x0;C,P )ii =
c

1− α
IS(P )(x0)

(
x20i −

Aii
G

)
− Λi(P ) +

cAii
G

, (6.1)

and for any off-diagonal term (i 6= j),
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IF (x0;C,P )ij = −(Λj(P )− Λi(P ))λiλj
2(λj − λi)

IS(P )(x0)x0ix0j

Hij
.

The quantities G, Aii, and Hij are given in the supplementary file, Section (S10).

The influence functions are not bounded. This comes from the unbound-

edness of the strip S(P ) along the first d eigenvectors of C(P ). However, the

influence function reveals that only outliers in the direction of the first d eigen-

vectors and still belonging to S(P ) can have huge influence. On the other hand,

bad outliers have bounded influence, and their influence is redescending to zero

for the non-diagonal elements. The influence function is similar to that of the

classical estimator for contaminations close to the subspace spanned by the first

d eigenvectors.

One can now obtain the influence functions for eigenvectors and eigenvalues

of C. For Σ diagonal, Lemma 3 of Croux and Haesbroeck (2000) yields

IF (x0, Vji, P ) =
IF (x0, C, P )ji
Λi(P )− Λj(P )

(1− δij),

where δij values 1 when j = i, 0 otherwise, and the corresponding result for

eigenvalues IF (x0,Λi, P ) = IF (x0, C, P )ii is obtained. For an eigenvector Vi,

with 1 ≤ i ≤ p, the influence function of its ith component is zero, while for

component j 6= i

IF (x0, Vi, P )j =
λjλi
λj − λi

IS(P )(x0)x0ix0j

2Hij
.

In another form

IF (x0, Vi, P ) =
∑
j 6=i

λiλj
λj − λi

IS(P )(x0)x0ix0j

2Hij
vj , (6.2)

with vj the jth eigenvector of Σ.

Figures 1 and 2 picture the influence functions of the largest eigenvalue and

its associated eigenvector for a bivariate normal distribution with zero mean and

covariance matrix Σ = diag(2, 1). We take d = 1. Only the non-zero component

of the influence function of the eigenvector is represented.

Inside the strip S(P ) = {x2|x22 ≤ r2(P )}, the influence function for the

untrimmed and the trimmed influence functions have a similar behavior; out-

side the optimal strip the influence of the “trimmed” eigenvalue is zero, and

is bounded for the “trimmed” eigenvectors. For the classical eigenvectors and

eigenvalues, the influence functions is unbounded, also outside the optimal strip.

The plots illustrate that the trimmed principal components bound the influence

of bad leverage points (outside the optimal strip), while they still give unbounded
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Figure 1. Influence function of the largest eigenvalue at P = N(0,diag(2, 1)) when α = 0
(left panel) and α = 0.01 (right panel).
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Figure 2. Influence function of the eigenvector associated to the largest eigenvalue at
P = N(0,diag(2, 1)) when α = 0 (left panel) and α = 0.01 (right panel).

influence to good leverage points. The latter property ensures that the loss in

statistical efficiency due to the trimming remains limited, as is further explored

in Section 7.

6.3. Breakdown point

The breakdown point provides a measure of how far from the model the good

properties derived from the influence function of the estimator can be expected
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to extend. We consider Donoho and Huber (1983) sample version. Given X =

{x1, . . . , xn} a sample of n points and T an estimator based on that sample, let

ε∗n(T,X ) = min
{
k/n; supX ′ ‖T (X )− T (X ′)‖ =∞

}
, with X ′ ranging on the set

of all possible samples obtained by replacing k original data points in the sample

by arbitrary ones.

We consider the “distance to the origin” of the empirical optimal trimmed

principal component subspace based on the sample X . If hX denotes the em-

pirical optimal subspace for the sample, the distance to the origin is D(X ) :=

infx∈hX ‖x‖, and we say that the procedure breaks down when D(X ′) can be

made arbitrarily large.

For the “distance to the origin” estimator associated with classical PCA,

it suffices to replace d+ 1 data points strategically placed in order to obtain an

affine subspace whose distance to the origin is arbitrarily large. Hence ε∗n(T,X ) =

(d+1)/n→ 0 as n→∞, showing the lack of robustness of the classical estimator.

Theorem 8. Let α ∈ (0, 1/2] and 1 ≤ d < p. The breakdown point of the

“distance to the origin” estimator D, at any p-dimensional sample X , satisfies

ε∗n(D,X ) = min
{bnαc+ d+ 1

n
,
n− bnαc

n

}
→ α, as n→∞.

Maronna (2005) also analyzed the breakdown point of this procedure. His

result coincides with that in Theorem 8 while focusing on the breakdown of the

“trimmed scale” target function, (1.1), in terms of preventing it to become 0 or

∞ (“implosion” and “explosion”). We consider a different situation where the

whole PCA subspace may be unbounded by taking an arbitrarily large “distance

to the origin”.

The breakdown point of the “distance to the origin” has its limitation. It

considers breakdown due to shifts, but says nothing about the orientation of the

eigenvectors. We refer to Tyler (2005) for further discussion of the definition of

breakdown point for eigenvectors.

7. Asymptotic Variances

7.1. Asymptotic variances in the elliptical case

For an elliptical contoured distribution with µ = 0 and Σ = diag(λ1, . . . , λp),

(6.1) and (6.2) allows us to obtain expressions for the asymptotic variances for

the associated eigenvalues and eigenvectors estimators as

ASV(Λi, P ) =
c2

(1− α)2

∫
S(P )

x4i |Σ|−1/2h(x′Σ−1x)dx− Λi(P )2
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+
α

1− α

(
cAii
G

)2

+ 2Λi(P )
cAii
G

(
−α

1− α
),

ASV(Vi, P ) =
∑
j 6=i

λ2iλ
2
j

(λi − λj)2

∫
S(P ) x

2
ix

2
jdP (x)

4H2
ij

vjvj
′, (7.1)

where the quantities G, Aii, and Hij are given in the supplementary file.

7.2. Asymptotic relative efficiencies in the gaussian case

Using the preceding results, one can obtain information on the efficiency of

the estimators of the eigenvectors and eigenvalues of C computed after trimming.

We restrict our attention here to gaussian distributions and we only consider the

first d eigenvalues and eigenvectors.

From Section 5, the consistency factor c is 1 for the d first eigenvalues, and

Λi(P ) = λi. Thus the asymptotic variances of the eigenvalues with 1 ≤ i ≤ d are

ASV(Λi, P ) =
2

1− α
λ2i . (7.2)

For the eigenvectors with 1 ≤ i ≤ d, we obtain

ASV(Vi, P ) =
1

1− α
∑
j 6=i

λiλjcj
(λi − λj)2

vjvj
′ (7.3)

with cj defined as

c−1j =

∫
S(P ) x

2
jdP (x)

(1− α)λj
. (7.4)

The availability of asymptotic variances under closed form expressions allows

us to compute asymptotic relative efficiencies (ARE) with respect to maximum

likelihood (ML) estimators at the gaussian model. As the ML estimator is the

untrimmed PCA, its asymptotic variances are given by the above expressions for

α = 0. So it follows from (7.2) that, for 1 ≤ i ≤ d,

ARE(Λi, P ) =
ASV(ΛML;i, P )

ASV(Λi, P )
=

2

2/(1− α)
= 1− α,

and the efficiency is just the complementary of the trimming proportion. For

instance, a trimming level of 10% yields a 90% efficiency for the eigenvalue esti-

mators.

Regarding eigenvectors, we have from (7.3) that

ARE(Vi, P ) =
trace(ASV(VML;i, P ))

trace(ASV(Vi, P ))
=

∑
j 6=i λj/(λi − λj)2

1
1−α

∑
j 6=i(λjcj)/(λi − λj)2

.
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We evaluate the above expression for the spherical noise situation, where

the p − d last eigenvalues are assumed to be equal, say, to λ. Observations

generated by a spherical noise model are lying in the same subspace, with some

spherical noise added. Using (7.4), cj = 1 for j ≤ d, and cj = c̃ for j > d, with

c̃−1 = E[Z2
1I(‖Z‖ ≤ r̃)] and r̃2 the 1 − α quantile of a chi-square distribution

with p − d degrees of freedom. The constant c̃ is the same as the consistency

factor needed for the Minimum Covariance determinant estimator computed in

(Croux and Haesbroeck, 1999, p. 165). We get

ARE(Vi, P ) = (1− α)

∑
j 6=i,j≤d λj/(λi − λj)2 + (p− d)λ/(λi − λ)2∑
j 6=i,j≤d λj/(λi − λj)2 + (p− d)c̃λ/(λi − λ)2

.

Globally, the efficiency is again determined by the trimming proportion, but

other effects appear. For instance (i) if the noise level tends to zero, or λ ↓ 0, the

efficiency tends to 1− α; (ii) if the eigenvalue λi gets closer to the noise level λ,

the efficiency decreases to (1− α)/c; (iii) if the space dimension p rises for fixed

model dimension d, the efficiency reaches 1 − α for very high space dimensions,

since c̃ tends to 1 with p going to infinity; (iv) everything else being fixed, if

the model dimension d rises, numerical computations show that the efficiency

increases in almost all scenarios (except for high trimming levels and low initial

noise dimension).

8. Simulations

Simulation experiments consisted of m = 1,000 replications of p-dimensional

samples of size n with p = 5 or p = 8 and n = 50, 100, 500, or 1,000. The

samples were generated according to a normal distribution with a zero mean and

a diagonal covariance matrix Σ = diag(λ1, . . . , λp). Two sets of diagonal elements

were considered, similar as in Maronna (2005): (a) a smooth decrease of the

eigenvalues, λj = 2p−j for 1 ≤ j ≤ p; (b) an abrupt decrease of the eigenvalues

after λd, λj = 20(1 + 0.5(d − j + 1)) for 1 ≤ j ≤ d and λj = 1 + 0.1(p − j + 1)

for d+ 1 ≤ j ≤ p. For each dataset, the d-dimensional α-trimmed PCA method

was applied with d = 3 or 7, and α = 0.05, 0.1, or 0.25.

The computation of the empirical d-dimensional α-trimmed PC has a high

computational complexity, since one needs to optimize over the space of all sub-

sets of a given size. Exact algorithms are, in general, no longer possible. Here, the

approximative algorithm of Maronna (2005) was used. This algorithm follows the

rationale behind the fast-MCD algorithm in Rousseeuw and Van Driessen (1999)

for computing the Minimum Covariance Determinant (MCD) estimator, combin-
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ing random starts and so-called “concentration” steps. We recommend taking the

number of initial random starts equal to 500, and the number of concentration

steps equal to 10.

8.1. Finite-sample efficiencies

To assess the performance of the estimators of the eigenvalues and eigenvec-

tors, mean squared error (MSE) were computed. For the eigenvalues, a correction

for bias was first applied and then the classical definition of MSE was used:

MSE(Λj) =
1

m

m∑
i=1

(
ˆ̂
λ
(i)
j − λj)

2,

where
ˆ̂
λ
(i)
j = λ̂

(i)
j ×(1/m

∑m
k=1 λ̂

(k)
j /λj)

−1 and λ̂
(i)
j is the estimate of λj computed

from the ith generated sample. For the eigenvectors, following Croux, Ollila and

Oja (2002), the MSE is defined as

MSE(Vj) =
1

m

m∑
i=1

(
cos−1 |vtj v̂

(i)
j |
)2
,

where v̂
(i)
j is the estimate of vj computed from the ith generated sample.

From the MSE values, relative finite sample efficiencies were computed as

Effn(Λj) =
ASV(ΛML;j , P )

nMSE(Λj)
and Effn(Vj) =

trace(ASV(VML;j , P ))

nMSE(Vj)
.

These finite sample efficiencies are reported in Table 1. Since the efficiencies for

the different eigenvalues of a particular setting are quite similar, their average

value is reported. In this table, the asymptotic relative efficiencies derived in the

previous section appear in the rows referred as “n =∞”.

With smoothly decreasing eigenvalues, we can see from Table 1, p = 5, d = 3,

that the efficiency decreases with an increasing trimming size. The finite sample

efficiency of the eigenvalues tends to decrease towards the asymptotic value, while

they increase for the eigenvectors towards the limit value with increasing sample

size. The results for p = 8, where the trimming size is 0.25, show that if the

model dimension d increases, everything else being fixed, a small increase in the

efficiency of the eigenvectors is observed. This behavior has already been pointed

out when studying the asymptotic efficiencies.

Under design (b), there is a large difference between the noise and non-noise

levels. The convergence towards the asymptotic efficiencies is slower than for

design (a). Some finite sample efficiencies are larger than one, which is possible

since they are computed relative to the asymptotic variance of the ML estimator.
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Table 1. Finite sample efficiencies for the trimmed PCA w.r.t. the ML.

Design (a)
p d α n Eigenvalues Eigenvectors
5 3 0.05 50 0.992 0.754 0.677 0.590

100 0.979 0.918 0.845 0.710
500 0.942 0.927 0.900 0.852
∞ 0.950 0.932 0.922 0.846

5 3 0.10 50 0.985 0.652 0.608 0.502
100 0.912 0.762 0.782 0.650
500 0.905 0.828 0.809 0.710
∞ 0.900 0.869 0.853 0.736

5 3 0.25 50 0.837 0.458 0.428 0.356
100 0.761 0.586 0.554 0.436
500 0.762 0.662 0.630 0.476
∞ 0.750 0.689 0.659 0.483

8 3 0.25 50 0.806 0.497 0.447 0.356
100 0.762 0.565 0.513 0.429
500 0.722 0.665 0.654 0.527
∞ 0.750 0.692 0.665 0.502

8 7 0.25 50 0.816 0.532 0.476 0.444 0.457 0.427 0.393 0.353
100 0.791 0.628 0.629 0.605 0.593 0.603 0.554 0.446
500 0.770 0.755 0.732 0.714 0.698 0.689 0.643 0.517
∞ 0.750 0.746 0.746 0.742 0.733 0.712 0.654 0.435

Design (b)
p d α n Eigenvalues Eigenvectors
5 3 0.05 100 1.275 0.697 0.642 0.642

500 1.040 0.688 0.702 0.851
1,000 0.951 0.899 0.927 0.967
∞ 0.950 0.950 0.950 0.949

5 3 0.10 100 1.196 0.686 0.593 0.546
500 0.919 0.689 0.665 0.713

1,000 0.923 0.831 0.829 0.882
∞ 0.900 0.899 0.899 0.898

5 3 0.25 100 1.026 0.623 0.564 0.511
500 0.813 0.495 0.485 0.561

1,000 0.778 0.651 0.651 0.678
∞ 0.750 0.749 0.749 0.747

8 3 0.25 100 1.009 0.614 0.541 0.485
500 0.808 0.541 0.542 0.618

1,000 0.752 0.685 0.669 0.709
∞ 0.750 0.748 0.748 0.745

8 7 0.25 100 1.523 1.253 1.306 1.094 0.858 0.669 0.536 0.479
500 0.969 0.598 0.521 0.473 0.485 0.532 0.572 0.590

1,000 0.866 0.547 0.505 0.516 0.552 0.601 0.641 0.691
∞ 0.750 0.750 0.750 0.750 0.750 0.750 0.749 0.747
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The ML estimator itself also has finite sample efficiencies larger than one in these

cases (see the supplementary file). For p = 8, d = 7 the finite sample efficiencies

first decrease, and then increase again with n. We do not have an explanation

for this, but the same behavior is found for the untrimmed PCA.

8.2. Robustness at finite samples

We generated samples containing outliers in order to study the robustness

of the estimators at finite samples. Trimmed PCA is compared with five other

approaches: (i) the ROPCA method of Hubert, Rousseeuw and Vanden Branden

(2005); (ii) the eigenvectors of the Minimum Covariance Determinant estima-

tor; (iii) the Projection Pursuit (PP) approach of Li and Chen (1985); (iv) the

eigenvectors of the Sign Covariance Matrix; (v) the eigenvectors of the sample

covariance matrix. We used the rrcov R-package, see Todorov and Filzmoser

(2009). Similar simulation studies were carried out in Maronna (2005) and En-

gelen, Hubert and Vanden Branden (2005), among others.

We generated M = 1,000 samples of size n, where n− bnεc of the data were

generated by the model distribution N(0,Σ), with Σ as in the previous subsec-

tion. The bnεc outliers followed a N(101p, 10Σ′), where Σ′ is Σ with reversed

diagonal elements, and 1p a vector of ones of length p. The outliers are at a

large distance from the true principal component space, and also far away from

the main data cloud. Hence they are bad leverage points. We performed similar

experiments for good leverage points and vertical outliers, yielding compara-

ble relative performance of the different methods. For reasons of comparability

between methods, we let the estimated subspace pass the true center of the dis-

tribution. The percentage of outliers varied from 5% to 20%. For the trimmed

PCA, we selected α = 0.25, yielding a good compromise between robustness and

efficiency. As performance criterion we took the expected squared distance be-

tween an observation from the model and the estimated subspace. We computed

it as

D2 = Trace

Σ

p∑
j=d+1

v̂j v̂
t
j

 .

The lowed D2, the better. Figure 3 presents the D2, averaged over the M

simulation runs, this for the representative case n = 50, p = 5, d = 3, and design

(a).

If no outliers are present, ε = 0, then the sample covariance matrix gives

the best results, but its performance deteriorates quickly. The robust estimators
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Figure 3. Simulated value of D2 as a function of the percentage of outliers for 6 different
estimators, for design (a) with n = 50, p = 5, and d = 3.

are much more stable under contamination; the PP and the Sign covariance

matrix start to perform worse in presence of outliers, but they do not explode.

The Trimmed PCA, the MCD, and ROBPCA yield the best results, where the

D2 does not increases further when outliers are added (the reason for this is

that the more outliers there are, the less good observations are trimmed away).

The ROBPCA method gives very good results, in line with previous simulation

studies. ROBPCA is documented to work very well in practice, but no theoretical

results are available for this approach. The MCD and the trimmed PCA method

perform similar in this experiment, and are not too far from the ROBPCA. It is

not surprising that MCD and trimmed PCA give similar results, since both yield

eigenvectors from sample covariances matrices computed from trimmed samples.

But trimmed PCA is the more natural approach in this setting, and it can also

be computed for n < p or when a majority of the data is lying exactly on a

subspace.

In the supplementary file, we consider the worst case behavior of the estima-

tor over a larger range of outlier positions. We find that the performance of the

robust estimators is deteriorating if ε is getting larger, and intermediate outliers

may be more dangerous than extreme outliers.

9. Data Example

In this section we illustrate the method using the Breast cancer data set
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described in Chin et al. (2006), and available in the R-package PMA. We took the

p = 20 comparative genomic hybridization (CGH) variables with largest standard

deviation, measured for n = 89 patients for the first chromosome. The aim was

to visualize the patients in a plane, and therefore we looked for the optimal

subspace of dimension d = 2. Outliers were to be expected in such datasets, and

we took the α = 0.25 trimming level. In Figure 4 we plot the data projected

on the trimmed principal subspace, together with a 95% tolerance ellipse. The

tolerance ellipse uses the first d = 2 estimated eigenvalues. We add a plot of

the squared distances of each observation to the α trimmed principal component

subspace. We compare the outcomes of the trimmed case (α = 0.25, top figure)

and the non trimmed case (α = 0, bottom figure). The different robust PCA

methods give comparable results on this example.

We see from Figure 4 that the non-trimmed approach gives a more spher-

ical tolerance ellipsoid, and only one observation is detected as outlying in the

subspace. The trimmed approach finds a subspace that fits well to the large

majority of the data; some observations have an unusual large distance (see top

right panel) and may be atypical. The horizontal dashed line, that can be used as

an heuristic device to diagnose observations with an unusual high distance, cor-

responds to the 95% critical value of a chi-squared distribution with the degrees

of freedom estimated by the trimmed variation around the optimal subspace.

10. Conclusions

A distinct feature of the proposed method compared to other approaches for

robust PCA is that it directly aims at finding the best fitting affine subspace.

The population version has a clear geometric interpretation, also at non-elliptical

distributions. If one would use, for example, the space spanned by the first d

eigenvectors of a robust estimate of the covariance matrix as best fitting sub-

space, then it is not clear whether the corresponding population quantity has

any optimality property, unless at elliptically symmetric distributions. When

the aim of the robust principal component analysis is to perform dimension re-

duction and to find an optimal subspace of a certain dimension, then trimmed

PCA is a natural candidate. A plot of the values of the trimmed variation as a

function of d can be used to select the dimension of the subspace. If such a plot

indicates that not much further reduction in trimmed variation can be gained by

increasing d to d+ 1, the corresponding dimension can be selected.

Maronna (2005) conducted a simulation study and found good performance
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Trimmed

Not trimmed

Figure 4. Projection on the α-trimmed optimal subspace (left) and squared distances
(right) for 89 patients and p = 20. The top plot is for α = 0.25, the bottom plot for
α = 0.

of the method. He also applied it on several data sets. An application in robust

multivariate error-in-variables modeling was studied in Croux, Fekri and Ruiz-

Gazen (2009). Serneels and Verdonck (2009) showed its good performance when

applied to principal component regression for data containing outliers.

There are several extensions possible of the trimmed principal components

method we studied. One could consider general penalty functions Φ(·) for quan-

tifying the discrepancy between the point x and the affine subspace h through

Φ(‖x − Prh(x)‖), instead of merely considering the squared loss. As in Garćıa-

Escudero and Gordaliza (1999), we expect that the main robustification arises
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from the trimming, less by the different choices of the penalty function Φ. We

could also adopt a “min-max” or L∞ approach and search for the narrowest strip

including a 1−α proportion of the data points. Rousseeuw’s LMS regression es-

timator shares that idea. Applications of the trimming approach in the multiple

population case are in robust linear clustering (Garćıa-Escudero et al. (2009) and

robust cluster analysis (Garćıa-Escudero et al. (2008)).

Supplementary Materials

Supplementary Materials Sections S1-S4 provide the proofs of Lemmas 1,

2, 3, and 4, respectively. The proofs of Theorem 1 and 2 are given in Sections

S5 and S6. The proofs of Theorems 4, 5, 6, 7 and 8 are provided in Sections

S7-S11. Section S12 provides details on obtaining asymptotic variances in the

elliptical case, and Section S13 on obtaining the asymptotic relative efficiencies

in the gaussian one. Section S14 presents additional simulation results.
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