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Abstract: We consider high-dimensional location test problems in which the number
of variables p may exceed the sample size n. The classical T2 test does not work well
because the contamination bias in estimating the covariance matrix grows rapidly
with p. Unlike most existing remedies abandoning all the correlation information,
the composite T test developed here makes use of them in a practical and efficient
way. Under mild conditions, the proposed test statistic is asymptotically normal,
and allows the dimensionality to almost exponentially increase in n. The test
inherits certain appealing features of the classical T2 test and does not suffer from
large bias contamination. Due to incorporating much correlation information, the
proposed test can deliver more robust performance than existing methods in many
cases. Simulation studies demonstrate the validity of asymptotic analysis.

Key words and phrases: Asymptotic normality, composite T2 test, high-dimensional
data, large-p-small-n.

1. Introduction

Assume that Xq,---, X, are independent and identically distributed ran-
dom p-vectors from a distribution F'(x — p) located at p-variate center p. The
classic one-sample testing problem is

Hy:pu=0 versus Hy:p #0. (1.1)

The classic test statistic is the Hotelling’s 72 = nXT31X where X is the
sample mean vector and 3 is the sample covariance matrix, but it cannot be
applied to the so-called large-p-small-n paradigm (p > n—1) due to the singularity
of 3. One could replace 3 with its nonsingular diagonal matrix (Srivastava:
(2009); Park and Ayyala (2013)) or an identity matrix (Bai and Saranadasa
(1996)); |[Chen and Qin| (2010)), but these tests lose all the information of the
correlations between those variables. One could replace 3 by a sparse matrix
estimator (Bickel and Levina/ (2008); |Cai and Liu (2011))), but it is difficult to
maintain the significant level for such modified test statistics (Feng, Zou and
Wang| (2015)) because of the contamination bias that grows rapidly with p. |Chen
et al. (2011) propose a regularized Hotelling’s T test, nXT(ZA)—i—)\Ip)*lX, A >0,
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by stabilizing the inverse of 3. But, the size and power of their test are deeply
impacted by the choice of A\ and the sparsity of X.

We propose another test, called the composite T2 test. Its first step is
to sequentially select the K variables that have the largest correlation among
all combinations of K elements from the remaining variables. We group the
variables in many blocks and let the correlation between those blocks be rather
small. Then we construct p/K Hotelling T2 test statistics and combine them.
The asymptotic normality of the proposed test can be derived under some mild
conditions. We allows the dimensionality to increase almost exponentially with n.
We derive the asymptotic relative efficiency of our test with the [Park and Ayyalal
(2013) test. Our test performs better in most cases and simulation support this.

The remainder of the paper is organized as follows. In the next section,
the test statistic is constructed and its asymptotic normality is established. We
extend our method to the two-sample problem in Section 3. Simulations are
represented on Section 4. Technical details are provided in the Appendix.

2. One Sample Problem
2.1. The test statistic

In high-dimensional settings, the classic Hotelling 72 cannot work because
the sample covariance matrix 3 is not invertible. However, we can divide the
p variables into several small parts for which the covariance matrix is invertible
and then sum the Hotelling T test statistics.

N N
Wn=> Ti =) nX}8;'Xa,

i=1 i=1
where A; U---Ay = {1,---,p}, A4iNA; = 0 and X4, Sa, are the sample
mean vector and covariance matrix of Xg,t € A;, s = 1,--- ,n. We might

choose those subsets from some available prior information. For example, in
multi-sensor detection problem, the sensors located in the same spatial point
could be naturally grouped together. When no preference is given, we suggest
fixing the subsets with the same sizes, |4;] = K = [p/N], ¢ = 1,--- ,N — 1,
and |[Ay| =p — (N — 1)K, and strong correlated in the subset with correlations
between subsets as weak as possible. We propose an algorithm to divide the
variables.

For any symmetric matrix B = (b;;) € R™?, |Bl|;, = > 1, <, |bij|- For
a subset A C {1,---,q}, let By = (a;;) € R¥*? with a;; = b;; if i,j € A and
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a;j =0if i or j ¢ A. For a set of subsets C = {C1,---,Cs}, Be = (¢;5) € RI*?
denotes the “submatrix” of B with ¢;; = b;; if i,j € Cp,k = 1,---,s, and 0
otherwise.

Consider the matrix R € RP*P,

Algorithm 1

Step 1. Find the initial subset 4; =  argmax  [|RY]|,.
Step 2. Suppose Ay, ---, A; have been selected and let A_; = {1,--- ,p}\

Uiy Ak Find A;pq =  argmax  |RY|,,i=1,--,N—2.
ACAfi,lA‘:K
Step 3. Take Ay = A—(N—l)-
Remark 1. If we search all the submatrices with size K, the computation
burden of Step 1 would be O(pX). In practice, we suggest the following algo-

rithm. First, find {a1,a2} = argmax [cor(Xy;, X;;)|. Then, find the k-th vari-
1<i<j<p
able with the largest correlation with {ai,---,a;_1} in the remaining subsets

(Lo pan, e}, ap = argmax MV feor(Xy, Xig, )| De-
ie{lv"'7p}\{a17“'7ak71}
note the result subset by A}. We also use the same algorithm in Step 2, and

have good performance in practice.

Let A,1,---, Ayn be the selected sets by the algorithm based on the sam-
ple correlation matrix R. Then we can write the test statistic W, as W, =
nXTﬁ(_Q}(X, where OX = {A,1,---,A,n}. There is no explicit form of the
expectatgon of W,, under the null hypothesis. When p gets larger, there is a
non-negligible bias term because 53(95 is not independent of X and the sample
mean and variance is only root-n consistent (Feng et al.| (2015))).

Similar to [Feng and Sun| (2015), we consider a test statistic based on the
leave out method (abbreviated as CT hereafter):

T, = ﬁZZX ok X; (2.1)
nn =1 4 J

where 209 R(9) are the corresponding sample covariance and correlation ma-
trixs of {X}j}i-ij, respectively, (’)i}j{ are the corresponding selected sets based

—

on R, Now X, Eg}z), and X, are independent from each other, and the

expectation of T, is zero “under the null hypothesis.
2.2. Results

Following Bai and Saranadasa; (1996) and |Chen and Qin/ (2010) model:
X, =Tz;+pn for i=1,--- n, (2.2)
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where each T' is a p x m matrix for some m > p such that TT?7 = 3, and {z:}7 4
are m-variate independent and identically distributed random vectors with

E(z;) =0, var(z;) =L, E(z}) =3+ A, E(z5) = mg € (0,00),
E(zf,?lZf,‘g’“2 e zf;g‘;) = E(zf,‘cll)E(zﬁé) . ~E(zl.0;jq), (2.3)
whenever 7 ap <8 and ky # ka- -+ # kq. The data structure (2.3) generates

a rich collection of X; from z; with a given covariance. We need the some
conditions when as n,p — o0,

Cl) @pin = MiNj<p<N T > W, WE = min Ao —Ag)/(oa +
(C1) i - ’ act - gt gy M~ M)
[A|=K,A#A
0a¢), where w is a positive constant and A4 = [[R.lf;, - 0? is the asymptotic

variance of /n|Rall;,.
(C2) tr(A%) = o(tr?(A%)), where Ak = 21/226}<21/2 and OF = {A9,--- | A%}
are the selected sets based on the true correlation matrix R.

(C3) NTE(T)}(EE(_Q}(;J, = o(n'tr(A%)) and (MTE(_O}(;J,)Q = o((logp)~/2n=3/2
tr(AZ)).

(C4) logp = o(n).

Condition (C1) is a technical condition to make the partition in Algorithm
1 identifiable. To appreciate Condition (C2), when K = 1. (C2) then becomes
tr(R*) = o{tr?(R?)}, which is similar to Condition (3.7) in|Chen and Qin/ (2010).
If \; <. <\, are the eigenvalues of Ax and v = Y 5| AF, (C2) is vy = o(v3).
If all eigenvalues of Ag are bounded, v4 = O(p) and v = O(p), (C2) is trivially
true; (C3) is ||p|> = O(n~'p'/?), which can be viewed as a high-dimensional
version of the local alternative hypotheses.

Proposition 1. Under (C1)-(C4), we have
P ﬂ {05 = OK} =1- O(n3/2pK+le_”w2/2).
1<i<j<n
Theorem 1. Under (C1)-(C4), we have
Tn - TE?%{
In "B Zoxk £,
2n=2tr(A%)

N(0,1).

To construct a test procedure, we propose a ratio-consistent estimator of
tr(A%),
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. Ly Biois)
tr(A%() = ﬁ Z(Xh - XZ'Q)TEE;;;Z.’I?’I,) (Xla - X’i4)
n 1:%2:%3-%4
— -1
X (X, = Xa) TS (X - X)) (2.4
21,%2:135%4
where O, . are the selected sets based on R(nizisis) and X(iizisis),

R(@@) are the corresponding sample covariance and correlation matrix of
{ X% hir insis ia» TeSPectively. Throughout, we use Y.* to denote summations
over distinct indexes. For example, in t@), the summation is over the set
{il 7& 12 7& 13 75 i4}, for all i1, 19,143,174 € {1, s ,n} and P;ln = n'/(n — m)‘

Proposition 2. Under (C1), (C2) and (C4), as n,p — oo,

tr(A2
( 5) 2.
tr(A%)

This result suggests rejecting Hy with « level of significance if T,/

J——

2n—2tr(A%) > z,, where z, is the upper o quantile of N(0,1).

According to Theorem 1, the power under the local alternative (C3) is
Ty —1
Bor(n) = @ |~z + 20|
2n2tr(A%,)
where ®(-) is the standard normal distribution function. The performance of
the proposed test relies upon the choice of K. The optimal choice of K is the
maximizer of Bop, but p is unknown. For simplicity, we only illustrate the
procedure with K = 2.

Remark 2. In practice, if we know of the correlation between variables, the
should be combined. For example, if we know some genes express a trait together,
we should combine them in a subset. The choice of K in practice deserves
attention. When the correlations between those variables are strong, we need to
use a large K, but generally a small K is preferable. More information in the
simulation studies.

Park and Ayyala (2013]) showed that the power of their test (abbreviated as
PA hereafter) is

TH—1
Bpa(p) = @ (—za + “D”> ,

2n~2tr(R2?)
where D is the diagonal matrix of 3. It is difficult to propose compare our test
with that of Park and Ayyala under general settings.
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3. Two Sample Problem

In this section, we extend our proposed test to the two-sample case (Chen
and Qin (2010)); |Cai, Liu and Xial (2014); Feng et al.| (2015); Gregory et al.
(2015))). Let X5, j = 1,---,n;, i = 1,2, be independent p-dimensional multi-
variate random vectors from the diverging factor model as with mean p;
and unknown common covariance matrix 3.

We extend the test statistic T}, in to the two-sample case

Qn = !

711712(?7,1 — 1)(n2 — 1)

— -1

S > (X - X)) EENE (X, - Xap), (31)

01592551572
1<ii #ia<ny 1<j1 #5252
where X(i1i2,1.72) R(i1:82.01.02) are the corresponding pooled sample covariance
matrix and correlation matrix of the sample {Xi}ri, 4, and {Xoi}i£j, j,, Te-
—_—

spectively, and OF are the selected sets based on R(i1:i2:1.72) by Algorithm

11,82,J1,J2

For n =nj; 4+ ng and ny/n — k € (0, 1), we consider the alternative hypoth-

esis.

(C5) (1 —p2) Bk BBk (11— p2) = o(n~'tr(A%)) and (g1 — p2) " Sgi (1 —
12))* = o((log p)~/2n=3/2tr(A%)).

Theorem 2. Under (C1), (C2), (C4), and (C5), as n,p — oo, we have
Qn — (11 — p2) TS50 (1 — o)

V207 gy h2e(A)
For simplicity, we only use the first sample to estimate tr(A2) by , and

£, N(0,1).

then we reject Hy with « level of significance if Qn/\/Q(nfl +n5 1)2tr(A%) > 2,.
4. Simulation

4.1. One sample problem

4.1.1. Large-p-small-n case

Here we report a simulation study designed to evaluate the performance of
our proposed test (abbreviated as CTy with K = 2 and CT5 with K = 5). We
compared our test with the methods proposed by |Chen et al.| (2011) (abbreviated
as RHT) and |Park and Ayyala (2013) and various covariance matrices.

(I) ¥ = (04j), 0is ~U(0,1),i=1,--- ,p and 0;; = 0 for i # j;
(H) Y = (Uz'j)a Jgk,LQk = 0’2]6,2]{71 = 0.8, k = 1,“- ,p/2 and O = 1, 7, =
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(II) 3 = (04j), Ook—1,2t = O2k2k—1 = —0.8, k = 1,--- ,p/2 and oy = 1,
i=1,p;
(IV) X = (0yj), 0i; = 0.8l
(V) £ = (03), 035 = (—0.8)l]
(VI) ¥ = (0y5), 055 =02fori# jand oy =1,i=1,--- ,p;
(VII) ¥ = (0y5), 055 =09fori#jand oy =1,i=1,--- ,p

We considered that X was (a) N(u,3X); (b) multivariate t-distribution MT(u,
¥, 5); (c) multivariate chisquare, X = p + X7Y2Z, where Z = (Zij)1<i j<p,
Z;; was centered x2. For the alternative hypothesis, we considered two patterns
for p = w(p1, -+, pp). As random cases: (i) p; ~ N(0,1), ¢ = 1,---,p; (ii)
randomly half of the u; were N(0,1) and the others zero; (iii) randomly [0.05p]
of the u; were N(0,1) and the others zero. As fixed cases, we took (iv) pu; = 1,
i=1,---,p; (v) pog—1 = Lipop = =1, k= 1,--+ ,p/2; (Vi) prop—1 = 1, pog = 0,
kE=1,---,p/2; (vii)] u; =1,7=1,---,]0.05p] and the others zero.

To make the power comparable among the configurations of Hy, the coeffi-
cient x was selected so that the signal-to-noise was u’ X~y = 1.5 throughout.
We took (n,p) = (30,100) or (40, 200).

Tables 1-3 report the results of the three tests under different distributions
and choices of p in the one-sample case. The PA test and ours have reasonable
sizes in most cases. The RHT test did not control the empirical size very well,
especially when the correlations between the variables were large. |Chen et al.
(2011)) use the shrinkage estimator (3 + AL,)~" to estimate the inverse of covari-
ance matrix 37! in their test statistic. Thus, if the difference between ¥ and AL,
is very small, RHT performs very well, such as Case (I); if 3 is not very sparse,
the power of the RHT test is smaller than the other tests.

The results together suggest that the CT test is quite robust and efficient
in testing the shift of locations, especially when there are strong correlations
between the variables. If the correlations between the variables are not large, our
test outperforms the PA test when the direction of location shift is contrary to
the correlation between the variables, and vice versa. If the direction of location
shift is random, our test is more efficient than the PA test.

4.1.2. Large-n-small-p case

We considered the large-n-small-p case to compare our test, CTs, with the
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Table 1. Empirical sizes and power (%) comparisons under the multivariate normal
distribution in the one-sample case.

PA RHT CT2 CTs; PA RHT CT2 CTs PA RHT CTy CTs PA RHT CTy CTjs
Random Cases
Model size (i) (ii) (iii)
n = 30,p = 100
€y 51 52 51 53 70 65 72 75 73 69 72 69 69 63 72 67
(I1) 4.7 43 49 62 20 15 79 48 20 16 77 51 20 16 76 41
(II1) 43 45 44 39 20 18 79 51 21 18 79 57 21 17 78 57
vy 71 12 6.1 6.2 10 25 31 42 10 23 30 55 10 26 29 45
(V) 4.7 14 47 54 10 4.1 30 51 10 3.7 29 52 95 3.1 31 48
(viy 71 13 63 38 21 23 43 61 23 17 44 57 22 23 45 56
(VI) 56 04 46 46 64 22 7.3 29 6.1 20 6.5 33 5.3 31 5.6 31
n = 40,p = 200
) 6.1 45 53 52 71 61 7T7 72 65 72 69 71 61 72 73
(I1) 63 21 42 39 20 13 79 55 19 13 79 53 18 13 78 55
(I 6.2 42 41 41 20 14 80 54 20 14 7T 47 18 12 79 45
vy 74 13 6.1 4.8 10 1.3 30 51 93 22 29 37 10 1.2 29 50
(V) 43 24 54 47 96 21 29 45 9.2 3.1 30 46 11 23 30 48
) 71 11 66 6.2 15 14 31 55 16 11 33 37 15 1.7 33 52
(VI) 46 0.1 43 49 83 12 9.5 20 46 04 5.0 19 6.1 15 6.9 24
Fixed Cases
™) ) o) (viD)
n = 30,p = 100
(I 7o 53 69 70 75 67 73 66 68 28 72 70 72 62 73 T2
(Im) 94 21 79 81 13 10 78 53 21 83 79 47 63 44 76 68
(I1I1) 10 5.5 78 49 94 8 78 79 20 10 78 56 10 11 77 43
(IV) 100 0.4 100 99 72 13 24 35 10 1.3 31 45 59 24 65 57
(V) 73 13 24 47 100 93 100 99 9.1 2.2 27 45 83 3.7 28 41
(VI) 100 1.2 100 100 22 23 45 58 48 13 63 75 24 26 45 64
(VII) 41.6 0.5 41.3100 5.0 20 6.0 26 5.3 12 6.7 29 6.0 25 7.9 30
n = 40,p = 200
I 69 4.7 72 62 73 64 73 71 73 23 75 75 67 65 69 T4
(I 94 1.5 76 77 11 7.4 81 42 19 6.6 78 53 95 84 77T 87
(1) 12 44 80 56 97 8 79 85 20 10 79 49 11 10 80 39
(IV) 100 1.2100 98 6.5 1.1 24 43 82 1.2 27 50 88 45 8 83
(V) 7.1 23 23 45 100 99 100 99 12 2.4 30 53 96 2.2 25 43
(VI) 100 1.1 100 100 15 11 32 51 36 51 52 65 18 13 34 49
(VII) 54 0.0 53.3100 6.3 07 7.7 19 3.3 08 4.8 21 5.2 11 6.5 19

classic Hotelling’s T2 test (abbreviated HT hereafter) and the PA test. The
settings were the same as those in Section 4.1.1, except n = 50,p = 4. We
considered only the multivariate normal. Table 4 reports the results. For models
(I)-(III), our test CTy performs similar to the HT test since ¥px = X. For the
other models, the HT test is more powerful than CTs because of the loss of the
information of some correlation of variables. The CT5 test outperforms the PA
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Table 2. Empirical sizes and power (%) comparisons under the multivariate t distribution
in the one-sample case.

PA RHT CT2 CTs; PA RHT CT2 CTs PA RHT CTy CTs PA RHT CTy CTjs
Random Cases
Model size (i) (ii) (iii)
n = 30,p = 100
€y 51 22 57 43 70 53 72 77 69 47 72 69 70 48 72 70
(I1) 52 0.2 44 51 20 4.3 T4 42 22 51 76 47 19 1.8 73 52
(IIry 54 1.8 4.7 53 20 8.1 75 53 23 13 77 49 19 9.1 74 45
(rv) 71 01 53 54 11 0.1 30 41 10 06 29 39 9 0.7 32 35
(V) 6.3 00 52 47 11 1.5 33 43 9 2.1 32 40 10 0.8 32 45
(V) 72 0.0 59 59 24 15 47 64 26 12 49 61 26 13 53 57
(vil) 63 00 6.7 39 63 31 6.3 28 6.0 5.6 5.0 36 3.7 53 4.7 29
n = 40,p = 200
) 6.1 02 47 39 70 37 73 73 69 34 71 70 67 46 72 73
(I1) 66 1.3 51 41 20 3.3 76 49 17 3.2 75 48 19 23 75 49
(1) 52 00 4.7 56 19 2.7 73 53 18 3.5 77 54 18 2.8 73 42
(Iv) 58 01 58 63 9 1.1 33 51 10 1.7 31 35 9 1.1 26 41
(V) 57 0.1 55 59 9 1.5 26 48 10 1.1 29 47 8 1.3 29 40
vl 65 01 62 41 17 5.3 37 58 17 7.1 41 49 18 56 40 65
(Vi) 9.7 01 93 41 10 1.5 11 19 53 1.8 5.3 18 57 1.1 6.0 20
Fixed Cases
™) ) o) (viD)
n = 30,p = 100
I 69 1.1 72 70 72 57 74 73 71 16 73 69 62 56 69 68
(Ir) 90 23 74 T7 11 23 75 37 21 2.1 74 53 58 38 72 68
(I 12 1.7 77 43 89 &8 77 81 17 1.4 74 48 12 43 73 48
(Iv) 99 0.6 98 98 84 03 27 38 11 0.3 32 39 59 31 64 61
(V) 83 1.0 25 35 9 96 99 97 12 1.1 31 48 74 22 25 38
(VI) 100 0.2100 99 25 16 50 61 52 7.2 66 73 27 20 51 65
(VII) 42 0.2 41 100 4.7 53 4.7 45 83 48 7.3 38 77 4.1 7.7 37
n = 40,p = 200
I 69 00 71 79 70 35 72 79 69 96 73 70 71 29 69 75
(Im 91 0.1 75 78 10 3.6 74 41 19 2.7 75 54 92 70 75 85
(I 11 0.3 74 43 91 83 75 82 19 1.1 76 47 12 0.0 76 50
(IV) 100 04 99 99 6.8 1.1 25 40 9 06 29 37 83 48 83 83
(V) 8.5 0.1 26 41 99 100 100 99 10 0.7 29 35 7 0.0 27 39
(VI) 100 0.0 100 100 16 6.2 39 56 36 3.2 51 60 16 56 37 58
(VII) 55 0.0 54 100 6.1 13 6.9 19 53 0.8 5.7 22 48 05 44 21

test for the models (II)-(V) in most cases.

4.2. Two sample problem

We compared our test CT9 with the PA test, the RHT test, [Cai, Liu and
Xial (2014)’s test (abbreviated as CLX test) and |Gregory et al.| (2015)’s test

(abbreviated as GCT test) in the two-sample case. Here we considered Xi; ~
N(0,X),i=1,---,n; and X9 ~ N(p,X), j = 1,--- ,n2. We only considered
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Table 3. Empirical sizes and power (%) comparisons under the multivariate chisquare
distribution in the one-sample case.

PA RHT CT2 CTs; PA RHT CT2 CTs PA RHT CTy CTs PA RHT CTy CTjs
Random Cases
Model size (i) (ii) (iii)
n = 30,p = 100
€y 58 39 6.8 59 67 67 67 59 71 69 69 58 67 66 66 60
(I1) 51 4.1 6.1 6.3 20 18 72 51 19 12 75 47 18 20 70 44
(IIr) 4.3 33 69 4.7 20 17 72 47 18 20 72 43 19 21 71 49
(Iv) 52 1.1 6.5 6.2 9.3 22 30 46 86 1.1 28 44 10 3.4 31 51
(V) 50 1.0 6.0 64 11 3.0 28 43 10 2.6 32 42 10 3.5 29 39
(VII) 69 0.2 53 51 26 23 47 59 23 24 48 54 25 30 45 54
(V) 50 13 58 4.3 5.0 26 6.2 33 3.1 28 4.3 31 8.3 24 8.7 32
n = 40,p = 200
) 59 47 6.1 66 69 58 67 68 72 63 71 73 67 63 66 68
(I1) 57 52 6.9 52 19 14 77 47 16 16 75 56 19 16 72 49
(111) 60 7.1 6.0 6.8 20 19 73 53 18 19 74 53 19 27 72 46
(Iv) 6.1 06 65 43 9.6 26 28 52 7.1 29 29 47 10 1.9 31 45
(V) 6.0 23 6.3 5.2 70 1.2 28 41 82 23 28 45 10 5.1 29 49
(V1) 63 1.7 58 6.1 14 11 35 46 16 12 34 56 13 11 34 47
(Vi) 6.7 0.1 6.3 5.1 5.3 14 5.3 20 7.7 14 9.0 14 4.0 11 4.3 17
Fixed Cases
™) ) o) (viD)
n = 30,p = 100
(I 7o 4.3 54 57 69 62 69 61 67 30 63 58 64 70 70 67
(Im) 93 2.7 8 77 10 73 71 45 22 6.3 77 45 57 48 75 57
(I 12 3.5 79 37 92 73 71 74 18 4.1 81 47 11 11 76 46
(IV) 100 0.2 100 99 8 1.9 24 39 10 0.6 32 44 60 24 67 59

(V) 9.7 19 24 47 100 94 100 96 10 1.7 28 40 7.6 2.1 27 49
(VI) 100 0.6 100 100 25 19 47 60 47 12 63 75 28 28 50 67
(VII) 42 0.1 44 100 5.0 21 6.5 27 3.5 13 4.7 39 5.0 20 6.2 35

n = 40,p = 200

I 69 5.1 53 49 71 65 70 72 69 30 62 64 67 63 71 62
(I 94 34 81 74 11 8.4 73 49 20 72 77 51 90 85 76 81
(1) 12 85 79 43 95 79 75 &4 21 6.9 82 47 12 12 75 49
(IV) 100 0.6 100 100 6 0.0 23 38 11 04 28 47 82 50 87 &4
(V) 53 2.1 21 39 100 100 100 100 11 2.1 27 47 7.3 2.7 24 41
(VI) 100 0.8 100 100 16 14 34 51 34 14 51 68 15 14 36 45
(VII) 57 0.3 56 100 5.7 9.5 5.3 22 7.7 11 8.4 20 61 76 7.2 17

the model (IV) and cases (i) and (vi) for p = &(p1,- -+, pp). The coefficient
k was selected so that the signal-to-noise ||p]|?/+/tr(22) = 0.1. We took n; =
ns = 15,20, 30, and p = 224.

Table 5 reports the results. The sizes of the PA test and our test are close
to the nominal level. Our test is more powerful than the PA test in both (ii) and
(vi). The sizes of RHT test are still smaller than the nominal level, and the tests
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Table 4. Empirical sizes and power (%) comparisons under the multivariate normal
distribution in the one-sample case.

PA HT CT, PA HT CT, PA HT CT, PA HT CT.
Random Cases

Model size (1) (i) (iii)
(I 6.0 6.0 40 33 39 38 38 42 40 36 42 41
(IT) 70 6.7 6.3 17 43 46 20 42 42 12 43 44
(IIT) 8.7 6.3 5.7 19 47 49 16 42 42 14 46 46
(Iv) 3.0 6.7 3.7 9.6 37 27 12 42 29 89 41 28
(V) 83 50 5.1 9.1 39 27 11 38 26 10 42 28
(VI) 47 40 40 37 40 38 39 42 41 32 40 40
(VII) 6.2 52 6.3 6.0 42 25 8.0 41 26 83 39 25

Fixed Cases

) ) ) )
(I) 41 43 42 42 42 42 47 46 46 23 44 43
(II) 51 43 43 9.2 35 40 17 41 44 16 41 42
(I1I) 9.0 37 37 52 41 40 15 41 42 13 46 47
(IV) 58 38 48 6.7 40 25 9.6 41 25 11 43 31
(V) 8.2 41 29 61 40 53 11 41 27 11 37 26
(VI) 58 43 50 33 40 38 38 38 38 45 47 47
(VII) 63 42 59 9.1 45 29 13 42 30 84 35 23

Table 5. Empirical sizes and power (%) comparisons under the multivariate normal

distribution in the two sample case.

n; size

(ii)

(vi)

PA RHT CT; GCT CLX

PA RHT CT,; GCT CLX

PA RHT CT,; GCT CLX

20 6.2 2.1
30 5.7 1.2

5.1
5.6 11

1553 0.0 47 96
8.0

36
23
10

15 33 59 24 56
17 55 73 31 51
27 3.7 97 41 53

15 2.6 46 24 57
18 24 72 28 48
26 21 96 42 45

are not effective under the alternative hypothesis. The sizes of the GCT test are

a little larger than the nominal level. And our test CT5 also outperforms GCT

test. The CLX test did not control the empirical sizes very well in these cases,

especially when the sample size was small.
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Appendix
A.1. Proof of Proposition 1

Proof. Let Aq = ||R4l);, with 5\2 the corresponding estimator based on the
sample { X} }1; j. By the Central Limited Theorem, \/ﬁ(;\ff1 —Aa) £, N(0,0%).
If e = (Aag — Aa)oas /(04 + 0a¢), we have

P (Aag < ) = P (A = g < A = Aag, Aag = Aag > =)
+ P (ag = Aag < X = Aag, Aag = Aag < —¢)
<P (5\% —Aae > —6) + P (S\Ag —Aae < —e)
() (o

OA O A2
_op (YA AN 2 ey
OA+ 049 T W/ 2mnwy
If OF = (A7, AY),
P(AY £ A9) = P U {Jap <39}
Ae{l, p},|A|=K,A£AS
. o 20K .
< O P (ag < AY) < ——Le=ir2,
27an1

Similarly, we can show that P(A;j # A9) < CF/, [2nnwie ""i/2. Then

Pl () {of=0}|=1-P| |J {0F+#0%}

1<i<j<n 1<i<j<n

—1-r| U U {4724}
1<i<j<n 1<k<N

n2NCff

- 6—nwfnin/2 -1 O(’I’L3/2pK+16_mu2/2),

2mnws

by (C1).
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A.2. Proof of Theorem 1

Proof. According to Proposition 1, we only need consider the asymptotic
property of T,

Ty=—t n(n — 1) ZZXTE X

1=1 j#i
1 - T 7 [ $2i9) - 1
— ’] - .
_n(n—l)zzx ZoxXj + ZZX — Yok | X;
1=1 j#i i=1 j#i
= ~n1+Tn2-

We show that
Tnl — K E(’)Ku L
2n=2tr(A%)

£, N(0,1). (A1)

and Tpa = 0, < 2n‘2tr(A%()>, where

n
T = n(n—1) ZZX - ) Z5k (X —u)+%EuT25i(Xz—u)
1—1 jF#i i=1
+ NTZOKN Tnll + Tn12 + zokﬂ
It is easy to show that E(Tmz) = 0 and V&I’(Tnlg) = 4n~ TZ EXOK[L =
0(2n"2tr(A%)). So Tpiz = 0,(1/2n2tr(A%)). We need only show the asymp-
totic normality of T},11. Without lose of generality, we take p = 0.

Take Vyj = nMn — )" XTSOLX;, 5 = 2, ,n, and Wy =
Zf:g Vois k= 2,--- ,n. Let F; = o{X1,---,X;} be the o-field generated by
{X}j<i. It is easy to show that F(V,;|F;—1) = 0 and it follows that {Wyx, F;
2 < k < n} is a zero mean martingale. Let v,; = E(V2|Fi—1), 2 <4 < n and
Vi = > 5 Uni. The central limit theorem (Hall and Hyde| (1980)) will hold if we

can show

Vn P
1 A2
var(Wpn) e (.2)
and, for any € > 0,
> nPtr N (AR)E [Vfil(|Vm| > € n%r(A%())\]-'il} 0. (A.3)

It can be shown that
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1 T T
= 1<j<k<i
Then,
n—1
V, 2
n__ XI's ey lx;
var(Wpn)  n(n—1)tr(A%) ,le 770 o

1<j<k<n
Simple algebras lead to
E(Cn) =1,
n—1
E (D5 (X] ZorTT0n X;)* - (A%
j=1

4

var(Cp1) = n2(n — 1)2tr2(A%)

Let I‘TE(_Q}(EE(_Q}J‘ = (Wki)1<k<i<m.Under the diverging factor model,

E(X] 2ok 285k X;)%)
= (I TTS L 28k T7))%) = ( Zwkzz]kz]z)
k=1 1=1
m m m m
=330 o) = 6+ )Y b+ >k
k=1 1=1 s=1 t=1 k£l
m
= (2+A0)> wiy +tr(Ak) < 3+ A)tr(A%). (A.4)
k=1

Under (C2), E(X!'E5k 85k X;)%) = o(tr?(A%)). Hence, var(Cp1) — 0 and
then C,; 5 1. Similarly, E(Cp2) =0 and

16 tr(A%)
n(n —1) tr2(A%)

implies Chpa 0. Thus, 1' holds. It remains to show 1' Since
8| 221 (121> /720030 ) 1721 | < B(ZIF) /(e u(ak)

we need only show that

var(Cpa) = -0

Z E(Z n4tr?(A%)).
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Note that
n n i—1 4
Y EZy) =0 )Y E D nmiX!X;
i=2 i=2 j=1
and this can be decomposed as 3Q) + P, where
n i—1
Q=0n"*> > E(XSok X XI5 Xi X[ So1 X X S 51 Xi)
i=2 s#t
n i—1
=0(n"*)) > E((XZ5k X))
1=2 s=1

Here Q = O(n’4)E((XZ-TE(_9}<XZ-)2) = o(tr?(A%)) by similar arguments in 1)
For P, with r‘r = (Vkl)lgk,lgm-

4
n i—1 m
= O(nig) Z Z E TI‘TI‘ZS =0(mn® Z E Z VklZik %51
1=2 s=1 i#] k=1
m
_6)< Z v E(Z,) B (2} ‘1‘22%1%5]5 Z) E(25) E(25) E(25,)
k=1 e
+222Uksvkt ]S jt +szklvktvstvle zk)E( )E( 2 )E(ijt>> .
k=1 s#t k#£l s#t
20A2 Y 2\2 _ 2.9
Note that tr*(A%) = (3, Z/St) =D kst VstV and
2
m
Z Vi < Z Vi) Z Z ViV < Z Vi | >
k=1 k=1 st
m m
Z szlvi < Z sthlv Z kalvktvstvsl < Zwkl < Zwkl =1tr A4
kAl st kls,t kAl st k£l
Thus, under (C2), P = o(n~%tr?(A%)) and then (A.3) follows. This complete

the proof of (A.1)).
Next, we show that Ths = op(y/n~2tr(A%)). Obviously, E(T,2) = 0.
— -1
Here, we need only show that E(T?2) = o(n"2tr(A%)). Take EOKEg’J) =

(dst)1<s<t<p and I, = (dst)1<s<t<p. By the Central Limit Theorem, /7 (dg; — dst)
L
— N(0,¢%). Let 02, = maxj<s<t<p(%. Asn,p — oo,

P < max (CZst - dst) > 2Umaxn_1/2(logp)1/2)

1<s<t<p
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P (\/ﬁ(a?st — dst) > 20max(log p)/ 2)

M@
Mv

v
Il
—
~
I
—_

I
NE
NE

(1 @ Comaxs' (0gp)/?)) < p(1 — B((410gp)"/2))

w
Il
-
-

= o~
CHlll

e 2losr _, 0.

IN

V8mlogp
Thus, maxlgsgtgp(dst —dg) = Op(n_l/Q(logp)l/Q), and then by (C3),

E(T7%) < C(logp)*n™ 2 E(T})
< Clogp)*n~ 2 (W Sgk p)? +n~2tr(A%)) = o(n~2tr(A%)).
A.3. Proof of Proposition 2

Proof. Similar to Proposition 1, we can show that
P m {07:}1(,7;2,7;377,'4 - OK} =1 O(?”L?/QpK"'le—an/Q)‘

11,%2,13,84

And similar to the argument for T} in the proof of Theorem 1, we can show that
1 o _ _
tI‘(A%() = ﬁ Z(Xh - Xiz)TE(’)i (Xla. - Xi4)(Xi1 - Xi4)T2(’)%< (Xla - Xlz)
+ op(tr(A%))
RS Ty —1 2 2 ¢ Ts—1 Ts—1
= 5 > (X[ ZokXi,) - o Y XISk XL, XI5k X,
n n

1 - _
+ 51 D X Bor Xi, X Bon Xi, + 0p(tr(A%)).
n
Then, with Theorem 2 in (Chen, Zhang and Zhong (2010), we can easily obtain
the result.

A.4. Proof of Theorem 2

Proof. Similar to Proposition 1, we can show that

P ﬂ {ngviQyjl,jg = (’)K} =1— 0(n7/2pK+le_"“’2/2).
i17i27j17j2
Then

1 T v—1
Qn = § § (X1, —X2;,)" Bk (X1, —Xoj,)
n nina(ni—1)(ng—1) i e T i j 1) i j
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+ 0p(y/n2tr(A%.))

L 1
~om(m 1) X, Bk Xt oy X7 5oL X0,
ni(ny —1) Z i, =0 112+n2(n2—1) Z I S5k Xoj,
IS ALsm 1<j1#j2<n2
2 n1 N2
N ning Z Zle;l 26}<X2]1 + Op( niQtI'(A%())
i1=1j=1

As before, Chen and Qin| (2010]), we can obtain the result.
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