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Abstract: We consider high-dimensional location test problems in which the number

of variables p may exceed the sample size n. The classical T 2 test does not work well

because the contamination bias in estimating the covariance matrix grows rapidly

with p. Unlike most existing remedies abandoning all the correlation information,

the composite T 2 test developed here makes use of them in a practical and efficient

way. Under mild conditions, the proposed test statistic is asymptotically normal,

and allows the dimensionality to almost exponentially increase in n. The test

inherits certain appealing features of the classical T 2 test and does not suffer from

large bias contamination. Due to incorporating much correlation information, the

proposed test can deliver more robust performance than existing methods in many

cases. Simulation studies demonstrate the validity of asymptotic analysis.

Key words and phrases: Asymptotic normality, composite T 2 test, high-dimensional

data, large-p-small-n.

1. Introduction

Assume that X1, · · · ,Xn are independent and identically distributed ran-

dom p-vectors from a distribution F (x − µ) located at p-variate center µ. The

classic one-sample testing problem is

H0 : µ = 0 versus H1 : µ 6= 0. (1.1)

The classic test statistic is the Hotelling’s T 2 = nX̄T Σ̂−1X̄ where X̄ is the

sample mean vector and Σ̂ is the sample covariance matrix, but it cannot be

applied to the so-called large-p-small-n paradigm (p > n−1) due to the singularity

of Σ̂. One could replace Σ̂ with its nonsingular diagonal matrix (Srivastava

(2009); Park and Ayyala (2013)) or an identity matrix (Bai and Saranadasa

(1996); Chen and Qin (2010)), but these tests lose all the information of the

correlations between those variables. One could replace Σ̂ by a sparse matrix

estimator (Bickel and Levina (2008); Cai and Liu (2011)), but it is difficult to

maintain the significant level for such modified test statistics (Feng, Zou and

Wang (2015)) because of the contamination bias that grows rapidly with p. Chen

et al. (2011) propose a regularized Hotelling’s T 2 test, nX̄T (Σ̂+λIp)
−1X̄, λ > 0,
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by stabilizing the inverse of Σ̂. But, the size and power of their test are deeply

impacted by the choice of λ and the sparsity of Σ.

We propose another test, called the composite T 2 test. Its first step is

to sequentially select the K variables that have the largest correlation among

all combinations of K elements from the remaining variables. We group the

variables in many blocks and let the correlation between those blocks be rather

small. Then we construct p/K Hotelling T 2 test statistics and combine them.

The asymptotic normality of the proposed test can be derived under some mild

conditions. We allows the dimensionality to increase almost exponentially with n.

We derive the asymptotic relative efficiency of our test with the Park and Ayyala

(2013) test. Our test performs better in most cases and simulation support this.

The remainder of the paper is organized as follows. In the next section,

the test statistic is constructed and its asymptotic normality is established. We

extend our method to the two-sample problem in Section 3. Simulations are

represented on Section 4. Technical details are provided in the Appendix.

2. One Sample Problem

2.1. The test statistic

In high-dimensional settings, the classic Hotelling T 2 cannot work because

the sample covariance matrix Σ̂ is not invertible. However, we can divide the

p variables into several small parts for which the covariance matrix is invertible

and then sum the Hotelling T 2 test statistics.

Wn =

N∑
i=1

T 2
Ai

=

N∑
i=1

nX̄T
Ai

S−1Ai
X̄Ai

,

where A1 ∪ · · ·AN = {1, · · · , p}, Ai ∩ Aj = ∅ and X̄Ai
, SAi

are the sample

mean vector and covariance matrix of Xst, t ∈ Ai, s = 1, · · · , n. We might

choose those subsets from some available prior information. For example, in

multi-sensor detection problem, the sensors located in the same spatial point

could be naturally grouped together. When no preference is given, we suggest

fixing the subsets with the same sizes, |Ai| = K = [p/N ], i = 1, · · · , N − 1,

and |AN | = p− (N − 1)K, and strong correlated in the subset with correlations

between subsets as weak as possible. We propose an algorithm to divide the

variables.

For any symmetric matrix B = (bij) ∈ Rq×q, ‖B‖l1 =
∑

1≤i,j≤q |bij |. For

a subset A ⊂ {1, · · · , q}, let BA = (aij) ∈ Rq×q with aij = bij if i, j ∈ A and
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aij = 0 if i or j 6∈ A . For a set of subsets C = {C1, · · · , Cs}, BC = (cij) ∈ Rq×q

denotes the “submatrix” of B with cij = bij if i, j ∈ Ck, k = 1, · · · , s, and 0

otherwise.

Consider the matrix R0 ∈ Rp×p.
Algorithm 1

Step 1. Find the initial subset A1 = argmax
A⊂{1,··· ,p},|A|=K

‖R0
A‖l1 .

Step 2. Suppose A1, · · · , Ai have been selected and let A−i = {1, · · · , p}\⋃i
k=1Ak. Find Ai+1 = argmax

A⊂A−i,|A|=K
‖R0

A‖l1 , i = 1, · · · , N − 2.

Step 3. Take AN = A−(N−1).

Remark 1. If we search all the submatrices with size K, the computation

burden of Step 1 would be O(pK). In practice, we suggest the following algo-

rithm. First, find {a1, a2} = argmax
1≤i<j≤p

|cor(Xli, Xlj)|. Then, find the k-th vari-

able with the largest correlation with {a1, · · · , ak−1} in the remaining subsets

{1, · · · , p}\{a1, · · · , ak−1}, ak = argmax
i∈{1,··· ,p}\{a1,··· ,ak−1}

∑k−1
j=1 |cor(Xli, Xlaj

)|. De-

note the result subset by A′1. We also use the same algorithm in Step 2, and

have good performance in practice.

Let An1, · · · , AnN be the selected sets by the algorithm based on the sam-

ple correlation matrix R̂. Then we can write the test statistic Wn as Wn =

nX̄T Σ̂−1OK
n
X̄, where OKn = {An1, · · · , AnN}. There is no explicit form of the

expectation of Wn under the null hypothesis. When p gets larger, there is a

non-negligible bias term because Σ̂OK
n

is not independent of X̄ and the sample

mean and variance is only root-n consistent (Feng et al. (2015)).

Similar to Feng and Sun (2015), we consider a test statistic based on the

leave out method (abbreviated as CT hereafter):

Tn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i
XT
i Σ̂

(i,j)
OK

ij

−1
Xj , (2.1)

where Σ̂(i,j), R̂(i,j) are the corresponding sample covariance and correlation ma-

trixs of {Xk}k 6=i,j , respectively, OKij are the corresponding selected sets based

on R̂(i,j). Now Xi, Σ̂
(i,j)
OK

ij
, and Xj are independent from each other, and the

expectation of Tn is zero under the null hypothesis.

2.2. Results

Following Bai and Saranadasa (1996) and Chen and Qin (2010) model:

Xi = Γzi + µ for i = 1, · · · , n, (2.2)
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where each Γ is a p×m matrix for some m ≥ p such that ΓΓT = Σ, and {zi}ni=1

are m-variate independent and identically distributed random vectors with

E(zi) = 0, var(zi) = Im, E(z4il) = 3 + ∆, E(z8il) = m8 ∈ (0,∞),

E(zα1

ik1
zα2

ik2
· · · zαq

ikq) = E(zα1

ik1
)E(zα2

ik2
) · · ·E(z

αq

ikq), (2.3)

whenever
∑q

k=1 αk ≤ 8 and k1 6= k2 · · · 6= kq. The data structure (2.3) generates

a rich collection of Xi from zi with a given covariance. We need the some

conditions when as n, p→∞,

(C1) $min = min1≤k≤N $k > ω, $k = min
A⊂{1,··· ,p}\{Ao

1∪···∪Ao
k−1}

|A|=K,A6=Ao
k

(λAo
k
− λA)/(σA +

σAo
k
), where ω is a positive constant and λA = ‖RA‖l1 . σ2A is the asymptotic

variance of
√
n‖R̂A‖l1 .

(C2) tr(Λ4
K) = o(tr2(Λ2

K)), where ΛK = Σ1/2Σ−1OKΣ1/2 andOK = {Ao1, · · · , AoN}
are the selected sets based on the true correlation matrix R.

(C3) µTΣ−1OKΣΣ−1OKµ = o(n−1tr(Λ2
K)) and (µTΣ−1OKµ)2 = o((log p)−1/2n−3/2

tr(Λ2
K)).

(C4) log p = o(n).

Condition (C1) is a technical condition to make the partition in Algorithm

1 identifiable. To appreciate Condition (C2), when K = 1. (C2) then becomes

tr(R4) = o{tr2(R2)}, which is similar to Condition (3.7) in Chen and Qin (2010).

If λ1 ≤ · · · ≤ λp are the eigenvalues of ΛK and νk =
∑p

i=1 λ
k
i , (C2) is ν4 = o(ν22).

If all eigenvalues of ΛK are bounded, ν4 = O(p) and ν2 = O(p), (C2) is trivially

true; (C3) is ‖µ‖2 = O(n−1p1/2), which can be viewed as a high-dimensional

version of the local alternative hypotheses.

Proposition 1. Under (C1)-(C4), we have

P

 ⋂
1≤i<j≤n

{
OKij = OK

} = 1−O(n3/2pK+1e−nω
2/2).

Theorem 1. Under (C1)-(C4), we have

Tn − µTΣ−1OKµ√
2n−2tr(Λ2

K)

L−→ N(0, 1).

To construct a test procedure, we propose a ratio-consistent estimator of

tr(Λ2
K),
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̂tr(Λ2
K) =

1

2P 4
n

∗∑
(Xi1 −Xi2)

T ̂
Σ

(i1,i2,i3,i4)
OK

i1,i2,i3,i4

−1
(Xi3 −Xi4)

× (Xi1 −Xi4)
T ̂
Σ

(i1,i2,i3,i4)
OK

i1,i2,i3,i4

−1
(Xi3 −Xi2), (2.4)

where OKi1,i2,i3,i4 are the selected sets based on ̂R(i1,i2,i3,i4), and ̂Σ(i1,i2,i3,i4),

̂R(i1,i2,i3,i4) are the corresponding sample covariance and correlation matrix of

{Xk}k 6=i1,i2,i3,i4 , respectively. Throughout, we use
∑∗ to denote summations

over distinct indexes. For example, in ̂tr(Λ2
K), the summation is over the set

{i1 6= i2 6= i3 6= i4}, for all i1, i2, i3, i4 ∈ {1, · · · , n} and Pmn = n!/(n−m)!.

Proposition 2. Under (C1), (C2) and (C4), as n, p→∞,

̂tr(Λ2
K)

tr(Λ2
K)

p→ 1.

This result suggests rejecting H0 with α level of significance if Tn/√
2n−2 ̂tr(Λ2

K) > zα, where zα is the upper α quantile of N(0, 1).

According to Theorem 1, the power under the local alternative (C3) is

βCT (µ) = Φ

−zα +
µTΣ−1OKµ√
2n−2tr(Λ2

K)

 ,

where Φ(·) is the standard normal distribution function. The performance of

the proposed test relies upon the choice of K. The optimal choice of K is the

maximizer of βCT , but µ is unknown. For simplicity, we only illustrate the

procedure with K = 2.

Remark 2. In practice, if we know of the correlation between variables, the

should be combined. For example, if we know some genes express a trait together,

we should combine them in a subset. The choice of K in practice deserves

attention. When the correlations between those variables are strong, we need to

use a large K, but generally a small K is preferable. More information in the

simulation studies.

Park and Ayyala (2013) showed that the power of their test (abbreviated as

PA hereafter) is

βPA(µ) = Φ

(
−zα +

µTD−1µ√
2n−2tr(R2)

)
,

where D is the diagonal matrix of Σ. It is difficult to propose compare our test

with that of Park and Ayyala under general settings.
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3. Two Sample Problem

In this section, we extend our proposed test to the two-sample case (Chen

and Qin (2010); Cai, Liu and Xia (2014); Feng et al. (2015); Gregory et al.

(2015)). Let Xij , j = 1, · · · , ni, i = 1, 2, be independent p-dimensional multi-

variate random vectors from the diverging factor model as (2.3) with mean µi
and unknown common covariance matrix Σ.

We extend the test statistic Tn in (2.1) to the two-sample case

Qn =
1

n1n2(n1 − 1)(n2 − 1)∑
1≤i1 6=i2≤n1

∑
1≤j1 6=j2≤n2

(X1i1 −X2j1)
T ̂

Σ
(i1,i2,j1,j2)
OK

i1,i2,j1,j2

−1
(X1i2 −X2j2), (3.1)

where ̂Σ(i1,i2,j1,j2), ̂R(i1,i2,j1,j2) are the corresponding pooled sample covariance

matrix and correlation matrix of the sample {X1k}k 6=i1,i2 and {X2l}l 6=j1,j2 , re-

spectively, and OKi1,i2,j1,j2 are the selected sets based on ̂R(i1,i2,j1,j2) by Algorithm

1.

For n = n1 + n2 and n1/n→ κ ∈ (0, 1), we consider the alternative hypoth-

esis.

(C5) (µ1−µ2)
TΣ−1OKΣΣ−1OK (µ1−µ2) = o(n−1tr(Λ2

K)) and ((µ1−µ2)
TΣ−1OK (µ1−

µ2))
2 = o((log p)−1/2n−3/2tr(Λ2

K)).

Theorem 2. Under (C1), (C2), (C4), and (C5), as n, p→∞, we have

Qn − (µ1 − µ2)
TΣ−1OK (µ1 − µ2)√

2(n−11 + n−12 )2tr(Λ2
K)

L−→ N(0, 1).

For simplicity, we only use the first sample to estimate tr(Λ2
K) by (2.4), and

then we reject H0 with α level of significance if Qn/

√
2(n−11 + n−12 )2 ̂tr(Λ2

K) > zα.

4. Simulation

4.1. One sample problem

4.1.1. Large-p-small-n case

Here we report a simulation study designed to evaluate the performance of

our proposed test (abbreviated as CT2 with K = 2 and CT5 with K = 5). We

compared our test with the methods proposed by Chen et al. (2011) (abbreviated

as RHT) and Park and Ayyala (2013) and various covariance matrices.

(I) Σ = (σij), σii ∼ U(0, 1), i = 1, · · · , p and σij = 0 for i 6= j;

(II) Σ = (σij), σ2k−1,2k = σ2k,2k−1 = 0.8, k = 1, · · · , p/2 and σii = 1, i =
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1, · · · , p;

(III) Σ = (σij), σ2k−1,2k = σ2k,2k−1 = −0.8, k = 1, · · · , p/2 and σii = 1,

i = 1, · · · , p;

(IV) Σ = (σij), σij = 0.8|i−j|;

(V) Σ = (σij), σij = (−0.8)|i−j|;

(VI) Σ = (σij), σij = 0.2 for i 6= j and σii = 1, i = 1, · · · , p;

(VII) Σ = (σij), σij = 0.9 for i 6= j and σii = 1, i = 1, · · · , p.

We considered that X was (a) N(µ,Σ); (b) multivariate t-distribution MT (µ,

Σ, 5); (c) multivariate chisquare, X = µ + Σ−1/2Z, where Z = (Zij)1≤i,j≤p,

Zij was centered χ2
4. For the alternative hypothesis, we considered two patterns

for µ = κ(µ1, · · · , µp). As random cases: (i) µi ∼ N(0, 1), i = 1, · · · , p; (ii)

randomly half of the µi were N(0, 1) and the others zero; (iii) randomly [0.05p]

of the µi were N(0, 1) and the others zero. As fixed cases, we took (iv) µi = 1,

i = 1, · · · , p; (v) µ2k−1 = 1, µ2k = −1, k = 1, · · · , p/2; (vi) µ2k−1 = 1, µ2k = 0,

k = 1, · · · , p/2; (vii)] µi = 1, i = 1, · · · , [0.05p] and the others zero.

To make the power comparable among the configurations of H1, the coeffi-

cient κ was selected so that the signal-to-noise was µTΣ−1µ = 1.5 throughout.

We took (n, p) = (30, 100) or (40, 200).

Tables 1-3 report the results of the three tests under different distributions

and choices of µ in the one-sample case. The PA test and ours have reasonable

sizes in most cases. The RHT test did not control the empirical size very well,

especially when the correlations between the variables were large. Chen et al.

(2011) use the shrinkage estimator (Σ̂ +λIp)
−1 to estimate the inverse of covari-

ance matrix Σ−1 in their test statistic. Thus, if the difference between Σ and λIp
is very small, RHT performs very well, such as Case (I); if Σ is not very sparse,

the power of the RHT test is smaller than the other tests.

The results together suggest that the CT test is quite robust and efficient

in testing the shift of locations, especially when there are strong correlations

between the variables. If the correlations between the variables are not large, our

test outperforms the PA test when the direction of location shift is contrary to

the correlation between the variables, and vice versa. If the direction of location

shift is random, our test is more efficient than the PA test.

4.1.2. Large-n-small-p case

We considered the large-n-small-p case to compare our test, CT2, with the
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Table 1. Empirical sizes and power (%) comparisons under the multivariate normal
distribution in the one-sample case.

PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5

Random Cases

Model size (i) (ii) (iii)

n = 30, p = 100

(I) 5.1 5.2 5.1 5.3 70 65 72 75 73 69 72 69 69 63 72 67

(II) 4.7 4.3 4.9 6.2 20 15 79 48 20 16 77 51 20 16 76 41

(III) 4.3 4.5 4.4 3.9 20 18 79 51 21 18 79 57 21 17 78 57

(IV) 7.1 1.2 6.1 6.2 10 2.5 31 42 10 2.3 30 55 10 2.6 29 45

(V) 4.7 1.4 4.7 5.4 10 4.1 30 51 10 3.7 29 52 9.5 3.1 31 48

(VI) 7.1 1.3 6.3 3.8 21 23 43 61 23 17 44 57 22 23 45 56

(VI) 5.6 0.4 4.6 4.6 6.4 22 7.3 29 6.1 20 6.5 33 5.3 31 5.6 31

n = 40, p = 200

(I) 6.1 4.5 5.3 5.2 71 61 71 77 72 65 72 69 71 61 72 73

(II) 6.3 2.1 4.2 3.9 20 13 79 55 19 13 79 53 18 13 78 55

(III) 6.2 4.2 4.1 4.1 20 14 80 54 20 14 77 47 18 12 79 45

(IV) 7.4 1.3 6.1 4.8 10 1.3 30 51 9.3 2.2 29 37 10 1.2 29 50

(V) 4.3 2.4 5.4 4.7 9.6 2.1 29 45 9.2 3.1 30 46 11 2.3 30 48

(VI) 7.1 1.1 6.6 6.2 15 14 31 55 16 11 33 37 15 1.7 33 52

(VI) 4.6 0.1 4.3 4.9 8.3 12 9.5 20 4.6 0.4 5.0 19 6.1 15 6.9 24

Fixed Cases

(iv) (v) (vi) (vii)

n = 30, p = 100

(I) 70 5.3 69 70 75 67 73 66 68 28 72 70 72 62 73 72

(II) 94 2.1 79 81 13 10 78 53 21 8.3 79 47 63 44 76 68

(III) 10 5.5 78 49 94 85 78 79 20 10 78 56 10 11 77 43

(IV) 100 0.4 100 99 7.2 1.3 24 35 10 1.3 31 45 59 24 65 57

(V) 7.3 1.3 24 47 100 93 100 99 9.1 2.2 27 45 8.3 3.7 28 41

(VI) 100 1.2 100 100 22 23 45 58 48 13 63 75 24 26 45 64

(VII) 41.6 0.5 41.3 100 5.0 20 6.0 26 5.3 12 6.7 29 6.0 25 7.9 30

n = 40, p = 200

(I) 69 4.7 72 62 73 64 73 71 73 23 75 75 67 65 69 74

(II) 94 1.5 76 77 11 7.4 81 42 19 6.6 78 53 95 84 77 87

(III) 12 4.4 80 56 97 88 79 85 20 10 79 49 11 10 80 39

(IV) 100 1.2 100 98 6.5 1.1 24 43 8.2 1.2 27 50 88 45 85 83

(V) 7.1 2.3 23 45 100 99 100 99 12 2.4 30 53 9.6 2.2 25 43

(VI) 100 1.1 100 100 15 11 32 51 36 5.1 52 65 18 13 34 49

(VII) 54 0.0 53.3 100 6.3 0.7 7.7 19 3.3 0.8 4.8 21 5.2 11 6.5 19

classic Hotelling’s T 2 test (abbreviated HT hereafter) and the PA test. The

settings were the same as those in Section 4.1.1, except n = 50, p = 4. We

considered only the multivariate normal. Table 4 reports the results. For models

(I)-(III), our test CT2 performs similar to the HT test since ΣOK = Σ. For the

other models, the HT test is more powerful than CT2 because of the loss of the

information of some correlation of variables. The CT2 test outperforms the PA
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Table 2. Empirical sizes and power (%) comparisons under the multivariate t distribution
in the one-sample case.

PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5

Random Cases

Model size (i) (ii) (iii)

n = 30, p = 100

(I) 5.1 2.2 5.7 4.3 70 53 72 77 69 47 72 69 70 48 72 70

(II) 5.2 0.2 4.4 5.1 20 4.3 74 42 22 5.1 76 47 19 1.8 73 52

(III) 5.4 1.8 4.7 5.3 20 8.1 75 53 23 13 77 49 19 9.1 74 45

(IV) 7.1 0.1 5.3 5.4 11 0.1 30 41 10 0.6 29 39 9 0.7 32 35

(V) 6.3 0.0 5.2 4.7 11 1.5 33 43 9 2.1 32 40 10 0.8 32 45

(VI) 7.2 0.0 5.9 5.9 24 15 47 64 26 12 49 61 26 13 53 57

(VII) 6.3 0.0 6.7 3.9 6.3 3.1 6.3 28 6.0 5.6 5.0 36 3.7 5.3 4.7 29

n = 40, p = 200

(I) 6.1 0.2 4.7 3.9 70 37 73 73 69 34 71 70 67 46 72 73

(II) 6.6 1.3 5.1 4.1 20 3.3 76 49 17 3.2 75 48 19 2.3 75 49

(III) 5.2 0.0 4.7 5.6 19 2.7 73 53 18 3.5 77 54 18 2.8 73 42

(IV) 5.8 0.1 5.8 6.3 9 1.1 33 51 10 1.7 31 35 9 1.1 26 41

(V) 5.7 0.1 5.5 5.9 9 1.5 26 48 10 1.1 29 47 8 1.3 29 40

(VI) 6.5 0.1 6.2 4.1 17 5.3 37 58 17 7.1 41 49 18 5.6 40 65

(VII) 9.7 0.1 9.3 4.1 10 1.5 11 19 5.3 1.8 5.3 18 5.7 1.1 6.0 20

Fixed Cases

(iv) (v) (vi) (vii)

n = 30, p = 100

(I) 69 1.1 72 70 72 57 74 73 71 16 73 69 62 56 69 68

(II) 90 2.3 74 77 11 2.3 75 37 21 2.1 74 53 58 38 72 68

(III) 12 1.7 77 43 89 86 77 81 17 1.4 74 48 12 4.3 73 48

(IV) 99 0.6 98 98 8.4 0.3 27 38 11 0.3 32 39 59 31 64 61

(V) 8.3 1.0 25 35 99 96 99 97 12 1.1 31 48 7.4 2.2 25 38

(VI) 100 0.2 100 99 25 16 50 61 52 7.2 66 73 27 20 51 65

(VII) 42 0.2 41 100 4.7 5.3 4.7 45 8.3 4.8 7.3 38 7.7 4.1 7.7 37

n = 40, p = 200

(I) 69 0.0 71 79 70 35 72 79 69 9.6 73 70 71 29 69 75

(II) 91 0.1 75 78 10 3.6 74 41 19 2.7 75 54 92 70 75 85

(III) 11 0.3 74 43 91 83 75 82 19 1.1 76 47 12 0.0 76 50

(IV) 100 0.4 99 99 6.8 1.1 25 40 9 0.6 29 37 83 48 83 83

(V) 8.5 0.1 26 41 99 100 100 99 10 0.7 29 35 7 0.0 27 39

(VI) 100 0.0 100 100 16 6.2 39 56 36 3.2 51 60 16 5.6 37 58

(VII) 55 0.0 54 100 6.1 1.3 6.9 19 5.3 0.8 5.7 22 4.8 0.5 4.4 21

test for the models (II)-(V) in most cases.

4.2. Two sample problem

We compared our test CT2 with the PA test, the RHT test, Cai, Liu and

Xia (2014)’s test (abbreviated as CLX test) and Gregory et al. (2015)’s test

(abbreviated as GCT test) in the two-sample case. Here we considered X1i ∼
N(0,Σ), i = 1, · · · , n1 and X2j ∼ N(µ,Σ), j = 1, · · · , n2. We only considered
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Table 3. Empirical sizes and power (%) comparisons under the multivariate chisquare
distribution in the one-sample case.

PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5 PA RHT CT2 CT5

Random Cases

Model size (i) (ii) (iii)

n = 30, p = 100

(I) 5.8 3.9 6.8 5.9 67 67 67 59 71 69 69 58 67 66 66 60

(II) 5.1 4.1 6.1 6.3 20 18 72 51 19 12 75 47 18 20 70 44

(III) 4.3 3.3 6.9 4.7 20 17 72 47 18 20 72 43 19 21 71 49

(IV) 5.2 1.1 6.5 6.2 9.3 2.2 30 46 8.6 1.1 28 44 10 3.4 31 51

(V) 5.0 1.0 6.0 6.4 11 3.0 28 43 10 2.6 32 42 10 3.5 29 39

(VII) 6.9 0.2 5.3 5.1 26 23 47 59 23 24 48 54 25 30 45 54

(VI) 5.0 1.3 5.8 4.3 5.0 26 6.2 33 3.1 28 4.3 31 8.3 24 8.7 32

n = 40, p = 200

(I) 5.9 4.7 6.1 6.6 69 58 67 68 72 63 71 73 67 63 66 68

(II) 5.7 5.2 6.9 5.2 19 14 77 47 16 16 75 56 19 16 72 49

(III) 6.0 7.1 6.0 6.8 20 19 73 53 18 19 74 53 19 27 72 46

(IV) 6.1 0.6 6.5 4.3 9.6 2.6 28 52 7.1 2.9 29 47 10 1.9 31 45

(V) 6.0 2.3 6.3 5.2 7.0 1.2 28 41 8.2 2.3 28 45 10 5.1 29 49

(VI) 6.3 1.7 5.8 6.1 14 11 35 46 16 12 34 56 13 11 34 47

(VII) 6.7 0.1 6.3 5.1 5.3 14 5.3 20 7.7 14 9.0 14 4.0 11 4.3 17

Fixed Cases

(iv) (v) (vi) (vii)

n = 30, p = 100

(I) 70 4.3 54 57 69 62 69 61 67 30 63 58 64 70 70 67

(II) 93 2.7 81 77 10 7.3 71 45 22 6.3 77 45 57 48 75 57

(III) 12 3.5 79 37 92 73 71 74 18 4.1 81 47 11 11 76 46

(IV) 100 0.2 100 99 8 1.9 24 39 10 0.6 32 44 60 24 67 59

(V) 9.7 1.9 24 47 100 94 100 96 10 1.7 28 40 7.6 2.1 27 49

(VI) 100 0.6 100 100 25 19 47 60 47 12 63 75 28 28 50 67

(VII) 42 0.1 44 100 5.0 21 6.5 27 3.5 13 4.7 39 5.0 20 6.2 35

n = 40, p = 200

(I) 69 5.1 53 49 71 65 70 72 69 30 62 64 67 63 71 62

(II) 94 3.4 81 74 11 8.4 73 49 20 7.2 77 51 90 85 76 81

(III) 12 8.5 79 43 95 79 75 84 21 6.9 82 47 12 12 75 49

(IV) 100 0.6 100 100 6 0.0 23 38 11 0.4 28 47 82 50 87 84

(V) 5.3 2.1 21 39 100 100 100 100 11 2.1 27 47 7.3 2.7 24 41

(VI) 100 0.8 100 100 16 14 34 51 34 14 51 68 15 14 36 45

(VII) 57 0.3 56 100 5.7 9.5 5.3 22 7.7 11 8.4 20 6.1 7.6 7.2 17

the model (IV) and cases (ii) and (vi) for µ = κ(µ1, · · · , µp). The coefficient

κ was selected so that the signal-to-noise ‖µ‖2/
√

tr(Σ2) = 0.1. We took n1 =

n2 = 15, 20, 30, and p = 224.

Table 5 reports the results. The sizes of the PA test and our test are close

to the nominal level. Our test is more powerful than the PA test in both (ii) and

(vi). The sizes of RHT test are still smaller than the nominal level, and the tests
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Table 4. Empirical sizes and power (%) comparisons under the multivariate normal
distribution in the one-sample case.

PA HT CT2 PA HT CT2 PA HT CT2 PA HT CT2

Random Cases
Model size (i) (ii) (iii)

(I) 6.0 6.0 4.0 33 39 38 38 42 40 36 42 41
(II) 7.0 6.7 6.3 17 43 46 20 42 42 12 43 44
(III) 8.7 6.3 5.7 19 47 49 16 42 42 14 46 46
(IV) 3.0 6.7 3.7 9.6 37 27 12 42 29 8.9 41 28
(V) 8.3 5.0 5.1 9.1 39 27 11 38 26 10 42 28
(VI) 4.7 4.0 4.0 37 40 38 39 42 41 32 40 40
(VII) 6.2 5.2 6.3 6.0 42 25 8.0 41 26 8.3 39 25

Fixed Cases
(iv) (v) (vi) (vii)

(I) 41 43 42 42 42 42 47 46 46 23 44 43
(II) 51 43 43 9.2 35 40 17 41 44 16 41 42
(III) 9.0 37 37 52 41 40 15 41 42 13 46 47
(IV) 58 38 48 6.7 40 25 9.6 41 25 11 43 31
(V) 8.2 41 29 61 40 53 11 41 27 11 37 26
(VI) 58 43 50 33 40 38 38 38 38 45 47 47
(VII) 63 42 59 9.1 45 29 13 42 30 8.4 35 23

Table 5. Empirical sizes and power (%) comparisons under the multivariate normal
distribution in the two sample case.

ni size (ii) (vi)
PA RHT CT2 GCT CLX PA RHT CT2 GCT CLX PA RHT CT2 GCT CLX

15 5.3 0.0 4.7 9.6 36 15 3.3 59 24 56 15 2.6 46 24 57
20 6.2 2.1 5.1 8.0 23 17 5.5 73 31 51 18 2.4 72 28 48
30 5.7 1.2 5.6 11 10 27 3.7 97 41 53 26 2.1 96 42 45

are not effective under the alternative hypothesis. The sizes of the GCT test are

a little larger than the nominal level. And our test CT2 also outperforms GCT

test. The CLX test did not control the empirical sizes very well in these cases,

especially when the sample size was small.

Acknowledgment

The authors thank the Editor, an associate editor, and two referees for their

many helpful comments that have resulted in significant improvements in the ar-

ticle. Feng was supported by the National Natural Science Foundation of China

Grants 11501092 and the Fundamental Research Funds for the Central Univer-

sities. Zou and Wang was supported by the NNSF of China Grants 11431006,



1430 LONG FENG, CHANGLIANG ZOU, ZHAOJUN WANG AND LIXING ZHU

11131002, 11371202, the Foundation for the Author of National Excellent Doc-

toral Dissertation of PR China 201232. Zhu was partly supported by a grant

from the Research Grants Council of Hong Kong, Hong Kong, China.

Appendix

A.1. Proof of Proposition 1

Proof. Let λA = ‖RA‖l1 with λ̂ijA the corresponding estimator based on the

sample {Xk}k 6=i,j . By the Central Limited Theorem,
√
n(λ̂ijA−λA)

L−→ N(0, σ2A).

If ε = (λAo
1
− λA)σAo

1
/(σA + σAo

1
), we have

P
(
λ̂Ao

1
< λ̂ijA

)
= P

(
λ̂Ao

1
− λAo

1
< λ̂ijA − λAo

1
, λ̂Ao

1
− λAo

1
> −ε

)
+ P

(
λ̂Ao

1
− λAo

1
< λ̂ijA − λAo

1
, λ̂Ao

1
− λAo

1
< −ε

)
≤ P

(
λ̂ijA − λAo

1
> −ε

)
+ P

(
λ̂Ao

1
− λAo

1
< −ε

)
= Φ

(√
n(λAo

1
− λA − ε)
σA

)
+ Φ

(
−
√
nε

σAo
1

)
= 2Φ

(√
n(λAo

1
− λA)

σA + σAo
1

)
≤ 2√

2πn$1
e−n$

2
1/2.

If OKij = (Aij1 , · · · , A
ij
N ),

P (Aij1 6= Ao1) = P

 ⋃
A∈{1,··· ,p},|A|=K,A6=Ao

1

{
λ̂Ao

1
< λ̂ijA

}
≤ CK

p P
(
λ̂Ao

1
< λ̂ijA

)
≤

2CK
p√

2πn$2
1

e−n$
2
1/2.

Similarly, we can show that P (Aijk 6= Aok) ≤ CK
p /
√

2πn$2
ke
−n$2

k/2. Then

P

 ⋂
1≤i<j≤n

{
OKij = OK

} = 1− P

 ⋃
1≤i<j≤n

{
OKij 6= OK

}
= 1− P

 ⋃
1≤i<j≤n

⋃
1≤k≤N

{
Aijk 6= Aok

}
≤ 1−

n2NCK
p√

2πn$2
min

e−n$
2
min/2 = 1−O(n3/2pK+1e−nω

2/2),

by (C1).
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A.2. Proof of Theorem 1

Proof. According to Proposition 1, we only need consider the asymptotic

property of T̃n,

T̃n =
1

n(n− 1)

n∑
i=1

n∑
j 6=i
XT
i Σ̂

(i,j)
OK

−1
Xj

=
1

n(n− 1)

n∑
i=1

n∑
j 6=i
XT
i Σ−1OKXj +

1

n(n− 1)

n∑
i=1

n∑
j 6=i
XT
i

(
Σ̂

(i,j)
OK

−1
−Σ−1OK

)
Xj

.
= T̃n1 + T̃n2.

We show that

T̃n1 − µTΣ−1OKµ√
2n−2tr(Λ2

K)

L−→ N(0, 1). (A.1)

and T̃n2 = op

(√
2n−2tr(Λ2

K)
)

, where

T̃n1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Xi − µ)TΣ−1OK (Xj − µ) +
2

n

n∑
i=1

µTΣ−1OK (Xi − µ)

+ µTΣ−1OKµ
.
= T̃n11 + T̃n12 + µTΣ−1OKµ.

It is easy to show that E(T̃n12) = 0 and var(T̃n12) = 4n−1µTΣ−1OKΣΣ−1OKµ =

o(2n−2tr(Λ2
K)). So T̃n12 = op(

√
2n−2tr(Λ2

K)). We need only show the asymp-

totic normality of T̃n11. Without lose of generality, we take µ = 0.

Take Vnj = n−1(n − 1)−1
∑j−1

i=1 X
T
i Σ−1OKXj , j = 2, · · · , n, and Wnk =∑k

i=2 Vni, k = 2, · · · , n. Let Fi = σ{X1, · · · ,Xi} be the σ-field generated by

{Xj}j≤i. It is easy to show that E(Vni|Fi−1) = 0 and it follows that {Wnk, Fk;
2 ≤ k ≤ n} is a zero mean martingale. Let vni = E(V 2

ni|Fi−1), 2 ≤ i ≤ n and

Vn =
∑n

i=2 vni. The central limit theorem (Hall and Hyde (1980)) will hold if we

can show
Vn

var(Wnn)

p→ 1, (A.2)

and, for any ε > 0,
n∑
i=2

n2tr−1(Λ2
K)E

[
V 2
niI(|Vni| > ε

√
n−2tr(Λ2

K))|Fi−1
]
p→ 0. (A.3)

It can be shown that
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vni =
1

n2(n− 1)2

 i−1∑
j=1

XT
j Σ−1OKΣΣ−1OKXj + 2

∑
1≤j<k<i

XT
j Σ−1OKΣΣ−1OKXk

 .

Then,

Vn
var(Wnn)

=
2

n(n− 1)tr(Λ2
K)

n−1∑
j=1

jXT
j Σ−1OKΣΣ−1OKXj

+2
∑

1≤j<k≤n
XT
j Σ−1OKΣΣ−1OKXk

 .
= Cn1 + Cn2.

Simple algebras lead to

E(Cn1) = 1,

var(Cn1) =
4

n2(n− 1)2tr2(Λ2
K)
E

n−1∑
j=1

j2(XT
j Σ−1OKΣΣ−1OKXj)

2 − tr2(Λ2
K)

 .

Let ΓTΣ−1OKΣΣ−1OKΓ = (ωkl)1≤k≤l≤m.Under the diverging factor model,

E((XT
j Σ−1OKΣΣ−1OKXj)

2)

= E((zTj ΓTΣ−1OKΣΣ−1OKΓzj)
2) = E

( m∑
k=1

m∑
l=1

ωklzjkzjl

)2


=

m∑
k=1

m∑
l=1

m∑
s=1

m∑
t=1

ωklωstE(zjkzjlzjszjt) = (3 + ∆)

m∑
k=1

ω2
kk +

m∑
k 6=l

ω2
kl

= (2 + ∆)

m∑
k=1

ω2
kk + tr(Λ4

K) ≤ (3 + ∆)tr(Λ4
K). (A.4)

Under (C2), E((XT
j Σ−1OKΣΣ−1OKXj)

2) = o(tr2(Λ2
K)). Hence, var(Cn1) → 0 and

then Cn1
p→ 1. Similarly, E(Cn2) = 0 and

var(Cn2) =
16

n(n− 1)

tr(Λ4
K)

tr2(Λ2
K)
→ 0

implies Cn2
p→ 0. Thus, (A.2) holds. It remains to show (A.3). Since

E

[
Z2
niI

(
|Zni| > ε

√
n−2tr(Λ2

K)

)
|Fi−1

]
≤ E(Z4

ni|Fi−1)/(ε2n−2tr(Λ2
K))

we need only show that
n∑
i=2

E(Z4
ni) = o(n−4tr2(Λ2

K)).
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Note that

n∑
i=2

E(Z4
ni) = O(n−4)

n∑
i=2

E

 i−1∑
j=1

ηiηjX
T
i Xj

4
and this can be decomposed as 3Q+ P , where

Q = O(n−8)

n∑
i=2

i−1∑
s 6=t

E
(
XT
i Σ−1OKXsX

T
s Σ−1OKXiX

T
i Σ−1OKXtX

T
t Σ−1OKXi

)
,

P = O(n−8)

n∑
i=2

i−1∑
s=1

E
(
(XT

i Σ−1OKXs)
4
)
.

Here Q = O(n−4)E((XT
i Σ−1OKXi)

2) = o(tr2(Λ2
K)) by similar arguments in (A.4).

For P , with ΓTΓ = (νkl)1≤k,l≤m.

P = O(n−8)

n∑
i=2

i−1∑
s=1

E
(
(zTi ΓTΓzs)

4
)

= O(n−8)
∑
i 6=j

E

 m∑
k,l=1

νklzikzjl

4
= O(n−6)

(
m∑

k,l=1

ν4klE(z4ik)E(z4jl) +

m∑
k 6=l

m∑
s 6=t

v2klv
2
stE(z2ik)E(z2is)E(z2jl)E(z2jt)

+2

m∑
k=1

m∑
s 6=t

v2ksv
2
ktE(z4ik)E(z2jsz

2
jt)+

m∑
k 6=l

m∑
s 6=t

vklvktvstvslE(z2ik)E(z2jl)E(z2is)E(z2jt)

)
.

Note that tr2(Λ2
K) = (

∑
s,t ν

2
st)

2 =
∑

k,l,s,t ν
2
stν

2
kl and

m∑
k,l=1

ν4kl ≤

∑
k,l

ν2kl

2

,

m∑
k=1

m∑
s 6=t

v2ksv
2
kt ≤

∑
k,l

ν2kl

2

,

m∑
k 6=l

m∑
s6=t

v2klv
2
st ≤

∑
k,l,s,t

ν2stν
2
kl,

m∑
k 6=l

m∑
s 6=t

vklvktvstvsl ≤
∑
k 6=l

ω2
kl ≤

∑
k,l

ω2
kl = tr(Λ4

K).

Thus, under (C2), P = o(n−4tr2(Λ2
K)) and then (A.3) follows. This complete

the proof of (A.1).

Next, we show that T̃n2 = op(
√
n−2tr(Λ2

K)). Obviously, E(T̃n2) = 0.

Here, we need only show that E(T̃ 2
n2) = o(n−2tr(Λ2

K)). Take ΣOKΣ̂
(i,j)
O

−1
=

(d̂st)1≤s≤t≤p and Ip = (dst)1≤s≤t≤p. By the Central Limit Theorem,
√
n(d̂st−dst)

L−→ N(0, ζ2st). Let σ2max = max1≤s≤t≤p ζ
2
st. As n, p→∞,

P

(
max

1≤s≤t≤p
(d̂st − dst) > 2σmaxn

−1/2(log p)1/2
)
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≤
p∑
s=1

p∑
t=1

P
(√

n(d̂st − dst) > 2σmax(log p)1/2
)

=

p∑
s=1

p∑
t=1

(
1− Φ(2σmaxζ

−1
st (log p)1/2)

)
≤ p2(1− Φ((4 log p)1/2))

≤ p2√
8π log p

e−2 log p → 0.

Thus, max1≤s≤t≤p(d̂st − dst) = Op(n
−1/2(log p)1/2), and then by (C3),

E(T̃ 2
n2) ≤ C(log p)1/2n−1/2E(T̃ 2

n1)

≤ C(log p)1/2n−1/2
(
(µTΣ−1OKµ)2 + n−2tr(Λ2

K)
)

= o(n−2tr(Λ2
K)).

A.3. Proof of Proposition 2

Proof. Similar to Proposition 1, we can show that

P

 ⋂
i1,i2,i3,i4

{
OKi1,i2,i3,i4 = OK

} = 1−O(n7/2pK+1e−nω
2/2).

And similar to the argument for T̃n2 in the proof of Theorem 1, we can show that

̂tr(Λ2
K) =

1

2P 4
n

∗∑
(Xi1 −Xi2)

TΣ−1OK (Xi3 −Xi4)(Xi1 −Xi4)
TΣ−1OK (Xi3 −Xi2)

+ op(tr(Λ
2
K))

=
1

P 2
n

∗∑(
XT
i1Σ
−1
OKXi2

)2 − 2

P 3
n

∗∑
XT
i1Σ
−1
OKXi2X

T
i2Σ
−1
OKXi3

+
1

P 4
n

∗∑
XT
i1Σ
−1
OKXi2X

T
i3Σ
−1
OKXi4 + op(tr(Λ

2
K)).

Then, with Theorem 2 in Chen, Zhang and Zhong (2010), we can easily obtain

the result.

A.4. Proof of Theorem 2

Proof. Similar to Proposition 1, we can show that

P

 ⋂
i1,i2,j1,j2

{
OKi1,i2,j1,j2 = OK

} = 1−O(n7/2pK+1e−nω
2/2).

Then

Qn =
1

n1n2(n1−1)(n2−1)

∑
1≤i1 6=i2≤n1

∑
1≤j1 6=j2≤n2

(X1i1−X2j1)
T Σ−1OK (X1i2−X2j2)
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+ op(
√
n−2tr(Λ2

K))

=
1

n1(n1 − 1)

∑
1≤i1 6=i2≤n1

XT
1i1Σ

−1
OKX1i2+

1

n2(n2−1)

∑
1≤j1 6=j2≤n2

XT
2j1Σ

−1
OKX2j2

− 2

n1n2

n1∑
i1=1

n2∑
j=1

XT
1i1Σ

−1
OKX2j1 + op(

√
n−2tr(Λ2

K)).

As before, Chen and Qin (2010), we can obtain the result.
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