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To show (2.1), it suffices to show
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Using a Taylor expansion,
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where R, is the remainder term. By taking expectation on both sides,

+E(R,).
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The second term on the RHS is zero since DD and RR are independent.
The first term of the RHS can be expressed as follows
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Recall
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On the other hand,
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Note that the expectation of the first term on the RHS is (E (RR))?. Hence
Var(RR) is the sum of the remaining three terms on the RHS.
Recall K(t) = LI{|t| < 1}. Hence K2(t) = £ The second term can
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be expressed as follows:
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where |Wp| = S C2(ro)dz = O(|Wy|). Similarly, the third term is of the
same order.

Now, we can show the order of the last term on the RHS as follows.
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Therefore the leading term of Var(RR) is of order O(|Wy|). We con-

clude that
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Furthermore, using the above result and the Chebyshev inequality,
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Since DD and RR are independent, it is straightforward to show the re-
minder term R, = (h=3|W,|~3/?).

Therefore,
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