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To show (2.1), it suffices to show
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Using a Taylor expansion,

DD

RR
=

E (DD)

E (RR)
+

1

E (RR)
(DD − E (DD))− E (DD)

(E (RR))2
(RR− E (RR))

+
2E (DD)

(E (RR))3
(RR− E (RR))2 − 1

(2E (RR))2
(DD − E (DD))(RR− E (RR)) +Rn.

where Rn is the remainder term. By taking expectation on both sides,
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The second term on the RHS is zero since DD and RR are independent.

The first term of the RHS can be expressed as follows
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Note that the expectation of the first term on the RHS is (E (RR))2. Hence

V ar(RR) is the sum of the remaining three terms on the RHS.

Recall K(t) = 1
2
I{|t| ≤ 1}. Hence K2(t) = K(t)

2
. The second term can

be expressed as follows:
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where |W̃0| =
∫
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same order.

Now, we can show the order of the last term on the RHS as follows.
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Therefore the leading term of V ar(RR) is of order O(|W0|). We con-

clude that
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