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Abstract: In this paper we consider nonlinear models with an arbitrary number

of covariates for which the information additionally depends on the value of the

linear predictor. We establish the general result that for many optimality criteria

the support points of an optimal design lie on the edges of the design region, if

this design region is a polyhedron. Based on this result we show that under certain

conditions the D-optimal designs can be constructed from the D-optimal designs in

the marginal models with single covariates. This can be applied to a broad class of

models, which include the Poisson, the negative binomial as well as the proportional

hazards model with both type I and random censoring.
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1. Introduction

In this paper we determine locally D-optimal designs for a large class of

models with an arbitrary number of covariates. Since the models considered are

nonlinear, the optimal designs depend on the unknown parameters. In accor-

dance with Chernoff (1953) such designs, which are optimal for a prespecified

parameter value, are called locally optimal. We show that the D-optimal designs

can be constructed from the D-optimal designs in the marginal models with sin-

gle covariates. In Section 4 we apply these results to a broad class of models,

for which the intensity function of the information matrix depends on the value

of the linear predictor. Such a model with only one covariate was considered by

Konstantinou, Biedermann and Kimber (2014), who computed the D-optimal

design and the c-optimal design for the effect parameter when the design region

is an interval, and by Schmidt and Schwabe (2015), who extended these results

to a discrete design region. Our conditions on the intensity function are satis-

fied by such models as the Poisson and the negative binomial. For the Poisson

model Russell et al. (2009) determined D-optimal designs, where the number

of covariates is arbitrary. This result follows from ours as a special case. For
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the negative binomial model Rodŕıguez-Torreblanca and Rodŕıguez-Dı́az (2007)

determined D- and c-optimal designs for a single covariate. In the context of

measuring human intelligence Graßhoff, Holling and Schwabe (2016) considered

the Poisson-Gamma model, which is equivalent to the negative binomial model,

determining D-optimal designs with two binary covariates. We consider this

model with two continuous covariates and show that the D-optimal design is

much better than the natural design with equal weights on all four possible de-

sign points. Another model covered by our model is the proportional hazards

model with type I and random censoring (cf. Konstantinou, Biedermann and

Kimber (2014)), which will be discussed in Section 5.

2. Model specifications

The information matrix depends on the control variables, which can be cho-

sen by the experimenter. Since under mild regularity conditions the inverse of

the Fisher information matrix is proportional to the asymptotic covariance of

the asymptotically efficient maximum likelihood estimator, we want to maximize

the information matrix in some sense in order to find the optimal choice of con-

trol variables for obtaining the most precise parameter estimates. We determine

approximate designs (cf. Silvey (1980, p. 15))

ξ =

{
x1 x2 . . . xm
ω1 ω2 . . . ωm

}
,

where x1, . . . ,xm are distinct values of the control variables from a given design

region X and ω1, . . . , ωm are the corresponding weights satisfying 0 ≤ ωi ≤ 1 for

i = 1, . . . ,m and
∑m

i=1 ωi = 1. An approximate design can be represented by a

probability measure on X with finite support. The information matrix M(ξ,β)

of a design ξ is (cf. Silvey (1980, p. 53))

M(ξ,β) =

∫
X

I(x,β) ξ(dx) =

m∑
i=1

ωiI(xi,β).

We consider models with information matrix I(x,β) = Q
(
f(x)Tβ

)
f(x)f(x)T ,

where Q is the intensity function (cf. Fedorov (1972, p. 39)), f is a vector of

known regression functions, and β = (β0, β1, . . . , βp−1)
T ∈ Rp is the vector of

parameters. This kind of information occurs in a natural way for generalized

linear models but also for various other models, like censored data as considered

by Konstantinou, Biedermann and Kimber (2014). Here we consider a model
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with information matrices of the form

M(ξ,β) =

m∑
i=1

ωiQ
(
f(xi)

Tβ
)
f(xi)f(xi)

T . (2.1)

An optimal design maximizes (or minimizes) some real-valued function of the

information matrix with respect to the design. In particular for D-optimality, a

design ξ∗ = ξ∗β with regular information matrix M(ξ∗β,β) is locally D-optimal

at β, if det
(
M(ξ∗β,β)

)
≥ det

(
M(ξ,β)

)
holds for all ξ ∈ Ξ (cf. Silvey (1980,

p. 54)), where Ξ denotes the set of all probability measures on X . For verifying

the D-optimality of a design we make use of an adapted version of the celebrated

Kiefer-Wolfowitz equivalence theorem:

Theorem 1. A design ξ∗ is D-optimal if and only if

Q
(
f(x)Tβ

)
· f(x)TM(ξ∗,β)−1f(x) ≤ p (2.2)

for all x ∈X . At the support points of ξ∗ there is equality.

In the following we consider the multilinear case, where f(x) = (1,xT )T and

x = (x1, . . . , xp−1)
T ∈X ⊂ Rp−1.

Lemma 1. Let the design region X be a multidimensional polytope and let the

information matrices be of the form (2.1) with non-negative function Q. The

maximum of the function d(x) = Q
(
f(x)Tβ

)
·f(x)TAf(x) with positive definite

matrix A is attained only at the edges of the design region.

Proof. Let A = (ai,j)i,j=1,...,p and let A11 be the submatrix of A formed by

deleting the first row and the first column. We have

h(x) := f(x)TAf(x) = xTA11x+ 2aTx+ a1,1

with a = (a1,2, . . . , a1,p)
T . Since A is positive definite, so is A11 and hence the

function h is strictly convex. For arbitrary η ∈ R we consider the function d on

the hyperplane Hη =
{
x ∈ Rp−1 : f(x)Tβ = η

}
. We have Q

(
f(x)Tβ

)
= Q(η)

on Hη and d|Hη is maximized at the vertices of X ∩ Hη because of the strict

convexity of the function h. It follows that d is maximized at the edges of X .

From the proof it follows that for an arbitrary design region X the function

d is maximal at the boundary of the design region. Such functions also occur

in the equivalence theorems for other optimality criteria. We directly obtain the

following theorem, which gives a general result for a multiple regression model.
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Theorem 2. Let the assumptions of Lemma 1 hold. If the condition in the

equivalence theorem is of the form

Q
(
f(x)Tβ

)
· f(x)TAf(x) ≤ c (2.3)

with positive definite matrix A and constant c > 0, then the support points of an

optimal design are located at the edges of the design region.

In Theorem 2 the matrix A = A(ξ∗) and the constant c = c(ξ∗) may depend

on the optimal design ξ∗. For example, for A-optimality we haveA = M(ξ∗,β)−2

and c = tr
(
M(ξ∗,β)−1

)
. Theorem 2 is valid for many optimality criteria such

as the general class of φp-criteria of Kiefer (1974), including D-optimality.

Examples of optimal designs with this property for multiple regression mod-

els can be found in Russell et al. (2009) for the Poisson model and in Kabera,

Haines and Ndlovu (2015) for the logistic regression model with two covariates.

Theorem 2 can be extended to unbounded design regions, polyhedra which are

defined as the intersection of a finite number of half-spaces. Here a useful exam-

ple is a quadrant, and then the support points of an optimal design are located

on the axes.

Corollary 1. Let the design region X be a multidimensional polyhedron and

let the condition in the equivalence theorem be of the form (2.3). A design ξ∗

is optimal if and only if (2.3) is satisfied on the edges of the polyhedron. If an

optimal design exists, then its support points are located at the edges of the design

region.

3. D-Optimal Designs

In this section we consider a multiple regression model with p−1 covariates,

p ≥ 3, and a rectangular design region. The information matrices are assumed to

be of the form (2.1). We show that, under some conditions, the D-optimal design

in the overall model with p−1 covariates can be constructed from the D-optimal

designs in the marginal models with a single covariate, where f̃i(xi) = (1, xi)
T .

The two-dimensional parameter vector in the i-th marginal model is denoted by

β̃i, i = 1, . . . , p− 1.

Theorem 3. Suppose that

ξ∗i =

x
∗
i 0

1

2

1

2


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is a D-optimal design in the marginal model with a single covariate, parameter

vector β̃i = (β0, βi)
T and design region Xi = (−∞, 0], i = 1, . . . , p−1. Let x∗i be

the embedding of x∗i in the (p−1)-dimensional design region X = X1×. . .×Xp−1
with components x∗ij = 0 for j 6= i and x∗ii = x∗i . With 0p−1 = (0, . . . , 0)T the

(p− 1)-dimensional zero vector, the design

ξ∗ =


x∗1 . . . x∗p−1 0p−1

1

p
. . .

1

p

1

p


is D-optimal in the overall model with p− 1 covariates and design region X .

The proof is given in the Appendix. The setup for the next result is as

follows. Let S1, S2 ⊆ {1, . . . , p− 1} be index sets (not necessarily non-empty)

with S1 ∩ S2 = ∅ and S1 ∪ S2 = {1, . . . , p− 1}. For i ∈ S1 and j ∈ S2 let

Xi = (−∞, ai] and Xj = [aj ,∞) be the design regions in the marginal models

with a single covariate, with β̃k =
(
β0 +

∑
l 6=k βlal, βk

)T
the parameters for the

marginal models, k = 1, . . . , p− 1, respectively.

Theorem 4. Suppose that

ξ∗i =

x
∗
i ai

1

2

1

2

 and ξ∗j =

aj x∗j
1

2

1

2


are D-optimal designs in the marginal models, i ∈ S1, j ∈ S2. For k = 1, ... , p−1,

take x∗k by x∗kl = al for l 6= k and x∗kk = x∗k, and let a = (a1, . . . , ap−1)
T . Then

the design

ξ∗ =


x∗1 . . . x∗p−1 a

1

p
. . .

1

p

1

p

 (3.1)

is D-optimal in the overall model with p − 1 covariates and the design region

X = X1 × . . .×Xp−1.

Proof. With the transformation zi = xi−ai for i ∈ S1 and zj = aj−xj for j ∈ S2
the design problem can be reduced to a canonical version, where zk ∈ (−∞, 0],

k = 1, . . . , p − 1 (see Ford, Torsney and Wu (1992)). The parameter vector β

is transformed to βz =
(
β0 +

∑p−1
l=1 βlal, β1, . . . , βp−1

)T
. The marginal models

can be transformed in the same way. The parameter vectors of the marginal

models are transformed to β̃z,k =
(
β0 +

∑p−1
l=1 βlal, βk

)T
for k = 1, . . . , p−1. The

D-optimal designs in the transformed marginal models are given by
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ξ∗z,i =

x
∗
i − ai 0

1

2

1

2

 and ξ∗z,j =

aj − x
∗
j 0

1

2

1

2


for i ∈ S1 and j ∈ S2. By Theorem 3 we obtain the D-optimal design for the

canonical model. Back transformation yields the D-optimal design (3.1).

Remark 1. Theorem 4 can also be formulated for bounded design regions. The

design regions of the marginal models are given by Xi = (−∞, vi] for i ∈ S1 and

Xj = [uj ,∞) for j ∈ S2, but let X = [u1, v1]× . . .× [up−1, vp−1] be bounded. Let

ai = vi for i ∈ S1 and aj = uj for j ∈ S2. With this definition the vectors a and

x∗k, k = 1, . . . , p − 1, can be chosen as in Theorem 4. Then the design (3.1) is

D-optimal, if ui ≤ x∗i for i ∈ S1 and x∗j ≤ vj for j ∈ S2.

Example 1. We consider the logistic regression model, for which the function Q

is given by Q(θ) = eθ/(1+eθ)2. The D-optimal design for the unrestricted design

region Xi = R in the marginal model with a single covariate and parameter vector

β̃i = (0, 1)T has two equally weighted support points x∗1 = −1.543 and x∗2 = 1.543.

For the restricted design region Xi = [0,∞) the D-optimal design has the two

equally weighted support points x∗1 = 0 and x∗2 = 2.399 (cf. Ford, Torsney and

Wu (1992)). In the latter case Theorem 4 is applicable. For the model with two

covariates, parameter vector β = (0, 1, 1)T and design region X = [0,∞)×[0,∞)

we obtain the D-optimal design:

ξ∗ =

(2.399, 0) (0, 2.399) (0, 0)

1

3

1

3

1

3

 .

This is in agreement with the results of Kabera, Haines and Ndlovu (2015). The

extension to an arbitrary number of covariates is straightforward.

4. Further Applications

We consider models with information matrices of the form (2.1). The inten-

sity function Q is assumed to satisfy the following conditions (cf. Konstantinou,

Biedermann and Kimber (2014)).

(A1) Q(θ) is positive for all θ ∈ R and twice continuously differentiable.

(A2) Q′(θ) is positive for all θ ∈ R.

(A3) The second derivative g′′(θ) of the function g(θ) = 1/Q(θ) is injective.

(A4) The function Q(θ)/Q′(θ) is an increasing function.
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Condition (A4) is equivalent to Q(θ) being a log-concave function. Let the func-

tion φa(·) : R→ R with a = (a1, . . . , ap−1)
T be defined as

φa(x) := x− 2 ·
Q
(
f(a)Tβ − x

)
Q′
(
f(a)Tβ − x

) .
Lemma 2. If (A1), (A2) and (A4) hold, φa is strictly increasing, continuous

and one-to-one.

For the case of one covariate Konstantinou, Biedermann and Kimber (2014)

determined the D-optimal design for a model with similar conditions on the

function Q. With Theorem 4 we can derive the D-optimal design for p − 1

covariates with arbitrary p ≥ 3. Here ei denotes the i-th standard unit vector.

Theorem 5. Let X = [u1, v1]× . . .× [up−1, vp−1] and (A1)-(A4) be satisfied for

a model with information matrices of the form (2.1). Let ai = vi if βi > 0 and

ai = ui if βi < 0 for i = 1, . . . , p− 1, with a = (a1, . . . , ap−1)
T .

If φ−1a (0) ≤ |βi| (vi − ui) for i = 1, . . . , p− 1, the design

ξ∗ =


x∗1 x∗2 . . . x∗p

1

p

1

p
. . .

1

p


with support points x∗i = a −

(
φ−1a (0)/βi

)
ei, i = 1, . . . , p − 1, and x∗p = a is

D-optimal.

Proof. For βi > 0 the D-optimal design in the marginal model with parameter

vector β̃i =
(
β0 +

∑
k 6=i βkak, βi

)T
and design region Xi = (−∞, vi] has two

equally weighted support points x∗1 and x∗2 = vi, where x∗1 is the unique solution

of (cf. Konstantinou, Biedermann and Kimber (2014))

βi · (vi − x∗1)− 2 ·
Q
(
β0 +

∑
k 6=i βkak + βix

∗
1

)
Q′
(
β0 +

∑
k 6=i βkak + βix∗1

) = 0.

With x∗1 = vi − z∗ the equation is given by φa(βiz
∗) = 0 and hence we have

x∗1 = vi − φ−1a (0)/βi.

For βi < 0 theD-optimal design in the marginal model with parameter vector

β̃i =
(
β0+

∑
k 6=i βkak, βi

)T
and design region Xi = [ui,∞) has the support points

x∗1 = ui and x∗2 = ui − φ−1a (0)/βi with equal weights.

The inequalities φ−1a (0) ≤ |βi| (vi − ui) for i = 1, . . . , p − 1 ensure in both

cases that the support points are located inside the design region. Theorem 5

follows from Theorem 4 and Remark 1.

The statement of Theorem 5 is only valid if all β1, . . . , βp−1 are different from
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zero. If one of the βi is zero, there might be no optimal design with minimal

support. Optimal designs can then be generated incorporating invariance con-

siderations as a product of a uniform design on the vertices for those components

where βk = 0 and an optimal design as constructed above for the components

with non-zero βj . For the latter components the support points may slightly

differ from the optimal marginal design points occurring in Theorem 5, as will

be illustrated in Example 3.

Theorem 5 states that one support point of the D-optimal design is the

vertex a, which depends on the sign of the parameters β1, . . . , βp−1. If all these

parameters are positive, then a = v = (v1, . . . , vp−1)
T . The other p− 1 support

points are located on the p − 1 edges that are incident to the vertex a with

distance φ−1a (0)/βi to a. The vertex a is the point in the design region with the

highest value for the intensity Q. The design region need not be bounded as long

as the vertex a remains finite.

In order to calculate the D-optimal design, only φ−1a (0) has to be determined,

so only one equation must be solved. For Q(θ) = eθ we obtain φ−1a (0) = 2

and thus the result of Russell et al. (2009) for the Poisson model. For Q(θ) =

eθ/(eθ +λ) with some constant λ, which corresponds to the intensity function of

a negative binomial or Poisson-Gamma model, we get

φ−1a (0) = 2 +W

(
2

λ
· ef(a)Tβ−2

)
.

Here W denotes the principal branch of the Lambert W function, the inverse

function of g(w) = wew for w ≥ −1 (cf. Corless et al. (1996)).

Example 2. For the Poisson-Gamma model Graßhoff, Holling and Schwabe

(2016) determined D-optimal designs for the case of two binary covariates. They

showed that under a certain condition the design with equally weighted binary

design points (1, 0), (0, 1) and (0, 0) is D-optimal. For the parameter vector

β = (4,−4,−4)T , for example, and λ = 1, this design is also D-optimal on the

continuous design region X = [0,∞)× [0,∞) by Theorem 5. The D-efficiency of

the product-type design with equal weights on all four binary design points (0, 0),

(1, 0), (0, 1) and (1, 1) is given by 0.772. Hence the D-optimal three-point design

performs much better than the product-type design.

Example 3. In order to illustrate the case of some βi, i > 0, being zero, we

consider the Poisson model with three covariates and β = (0,−1,−1, 0)T . The

numerically calculated D-optimal design on the design region X = [0, 10]3 is

given by the product design
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ξ∗ = ξ∗12 ⊗ ξ∗3

=

{
(0, 0, 0) (1.86, 0, 0) (0, 1.86, 0) (0, 0, 10) (1.86, 0, 10) (0, 1.86, 10)

0.23 0.13 0.13 0.23 0.13 0.13

}
,

where ξ∗12 assigns weight 0.46 to the vertex (0, 0) and weight 0.27 to axial points

(0, 1.86) and (1.86, 0) for the first two components and the uniform design ξ∗3
which assigns equal weights 0.5 to the endpoints 0 and 10 of the design region for

the third component. Compared to the product design

ξ12 ⊗ ξ∗3 =

(0, 0, 0) (2, 0, 0) (0, 2, 0) (0, 0, 10) (2, 0, 10) (0, 2, 10)
1

6

1

6

1

6

1

6

1

6

1

6

 ,

which is generated from the optimal marginal design ξ12 for β1 = β2 = −1

on the first two components with equal weights 1/3 on the vertex (0, 0) and the

axial points (0, 2) and (2, 0), and the optimal design ξ∗3 for β3 = 0 on the third

component, the support points differ slightly whereas there is a larger change in

the weights. In fact, for the optimal marginal design ξ∗12 the axial points move

toward the vertex which itself gets a larger weight. However, the loss in efficiency

is less. The product design ξ12⊗ξ∗3 generated from the optimal marginals still has

a relative D-efficiency of 0.965. Further computations suggest that the design ξ∗12
is independent of the design region for the third component.

5. Proportional Hazards Model

In time-to-event experiments, the time duration until the occurrence of some

event of interest is observed. The event of interest may be death or cure of indi-

viduals under study, or failure of a machine. A typical feature of such experiments

is censoring, which occurs when the event of interest is not observed until the

end of the experiment.

Let Y1, . . . , Yn be independent, nonnegative random variables, representing

the survival times of n individuals and let C1, . . . , Cn be the censoring times

of the individuals. If the survival time for the i-th individual is greater than

its censoring time Ci, then the survival time will be right-censored at Ci. We

observe the pairs (Ti, δi), where Ti = min(Yi, Ci) and δi is a censoring indicator

with δi = 1 if Yi ≤ Ci and δi = 0 if Yi > Ci.

We consider type I and random censoring. For type I censoring all individuals

join the experiment at the same time and the experiment is terminated at a fixed

time point c, so Ci = c > 0 for i = 1, . . . , n. For random censoring the censoring

times are random variables, which are assumed to be independent of the survival

times.
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The Cox proportional hazards model relates the survival times to covariates

xi. We assume a constant baseline hazard function λ0(t) = λ = exp(β0) > 0

such that

λ(t;xi) = exp
(
f(xi)

Tβ
)
,

where λ(t;xi) is the hazard function for the i-th individual under condition xi,

which is constant over time, f = (1, f1, . . . , fp−1)
T is a p-dimensional vector of

known regression functions of the covariates and β = (β0, β1, . . . , βp−1)
T ∈ Rp

is the vector of unknown parameters. The survival times Yi are exponentially

distributed (cf. Duchateau and Janssen (2008, pp. 21-22)):

Yi ∼ Exp
(
ef(xi)

Tβ
)
, i = 1, . . . , n.

The Fisher information matrix is given by (cf. Cox and Oakes (1984, p. 82))

I(x,β) = Eβ(Ti)e
f(x)Tβf(x)f(x)T ,

which can be written in the form

I(x,β) = Q
(
f(x)Tβ

)
f(x)f(x)T

with intensity function Q. For n independent observations the Fisher information

matrix is given by

I(β) =

n∑
i=1

I(xi,β).

For type I censoring the function Q is given by Q(θ) = 1 − exp
(
−c exp(θ)

)
(Konstantinou, Biedermann and Kimber (2014)). It satisfies (A1)-(A4).

For random censoring let fC be the probability density function of the cen-

soring times. Like Konstantinou, Biedermann and Kimber (2014) we conclude

that

Eβ(Ti) = Eβ
(
Eβ(Ti | Ci)

)
=

∫ ∞
0

Eβ(Ti | Ci = c) · fC(c) dc

=

∫ ∞
0

1− e−cef(x)
T β

ef(x)
Tβ

· fC(c) dc

and hence the function Q is given by

Q(θ) =

∫ ∞
0

(
1− e−ceθ

)
· fC(c) dc.

It follows that Q is positive. Proofs of the following are given in the Appendix.

Lemma 3. Let the probability density function fC be continuous. Then the

function Q for random censoring satisfies (A1) and (A2).
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Lemma 4. Let the probability density function fC be continuous and log-concave.

Then the function Q for random censoring satisfies (A4).

Many probability distributions have log-concave density functions. Bagnoli

and Bergstrom (2005) have compiled a list of probability distributions with log-

concave density functions. Truncated distributions may also be of interest for cen-

soring. The truncated distribution of a probability distribution with log-concave

density also has a log-concave density (cf. Bagnoli and Bergstrom (2005)). Our

results are thus valid for a broad class of models with random censoring.

Konstantinou, Biedermann and Kimber (2014) considered censoring times

uniformly distributed on the interval [0, c]. The resulting intensity function is

given by Q(θ) = 1 +
[
exp
(
−c exp(θ)

)
− 1
]
/
(
c exp(θ)

)
. It can be shown to sat-

isfy (A3), so it satisfies (A1)-(A4). If the censoring times are assumed to be

exponentially distributed with parameter λ > 0, then Q(θ) = eθ/(eθ + λ), which

corresponds to the intensity function of a negative binomial model. It can easily

be shown that this function satisfies (A3) and hence (A1)-(A4). For all these

models Theorem 5 gives the D-optimal designs in the case of multiple covariates.

6. Discussion

In this paper we showed that for a large class of models with an arbitrary

number of covariates the D-optimal designs can be constructed from the D-

optimal designs in the marginal models with a single covariate. The necessary

condition is that the D-optimal designs in the marginal models are two-point

designs containing a boundary point of the design region as support point. This

condition is often satisfied, when the design region is limited such that one of

the support points of the D-optimal design on the extended design region R is

located outside of the design region Xi, that is for truncated design regions. For

further examples see Biedermann, Dette and Zhu (2006).

The shape of the D-optimal designs is a consequence of a general result,

which states that the support points of an optimal design lie on the edges of the

design region. It is necessary that only linear terms of the covariates appear in

the model. If the model contains interaction terms, this result is no longer true

and examples can be found, where a support point must be located inside the

design region. Optimal designs with minimal support offer some advantages. In

particular for large numbers of variables they can be more easily run in practice

than designs with more support points, for example the 2p−1 full factorial design

based on the optimal marginal design points. It is also easier to round to an

exact design if necessary.
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Our results may facilitate the search for optimal designs for multiple regres-

sion models, and may extend to other optimality criteria. A different approach

to the computation of locally optimal designs is weighted designs (cf. Atkinson,

Donev and Tobias (2007, Chap.18)), where a prior distribution for the parame-

ters is assumed. These provide a way to overcome the parameter dependence of

the locally optimal design. Another possibility is the computation of maximin

efficient designs.
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Appendix

Proof of Theorem 3. Let x∗ = (x∗1, . . . , x
∗
p−1)

T , 1p−1 = (1, . . . , 1)T , and 0p−1 =

(0, . . . , 0)T denote (p − 1)-dimensional vectors. The information matrix of the

design ξ∗ is given by M(ξ∗,β) = XTQX/p with

X =

(
1 0Tp−1

1p−1 diag(x∗)

)
and Q = diag

(
Q(β0), Q(β0 + β1x

∗
1), . . . , Q(β0 + βp−1x

∗
p−1)

)
, where diag(x) is the

diagonal matrix with entries equal to the components of x. Let d(x) denote

the left-hand side of (2.2) for the design ξ∗. By Corollary 1 and Theorem 1 the

design ξ∗ is D-optimal if and only if for all x ≤ 0

p ≥ d(xei) = Q
(
f(xei)

Tβ
)
· f(xei)

TM(ξ∗,β)−1f(xei)

= p ·Q(β0 + βix) · (1, xeTi )X−1Q−1(XT )−1(1, xeTi )T

for i = 1, . . . , p− 1. Here ei denotes the i-th standard unit vector. We note that

X−1 =

(
1 0Tp−1
−y∗ diag(y∗)

)
with y∗ = (1/x∗1, . . . , 1/x

∗
p−1)

T . We have (1, xeTi )X−1 =
(
1 − x/x∗i , (x/x∗i )eTi

)
and hence

d(xei) = p ·Q(β0 + βix) ·

(
(1− x/x∗i )

2

Q(β0)
+

(x/x∗i )
2

Q(β0 + βix∗i )

)
= p · 1

2
· dM,i(x),

where dM,i(x) denotes the left-hand side of (2.2) for the design ξ∗i in the marginal

model. Since ξ∗i is D-optimal, we have dM,i(x) ≤ 2 for all x ≤ 0 and thus

d(xei) ≤ p, which proves the D-optimality of ξ∗.



OPTIMAL DESIGN FOR MULTIPLE REGRESSION 1383

Proof of Lemma 3. The integrand
[
1− exp

(
−c exp(θ)

)]
· fC(c) is twice differ-

entiable with respect to θ and its derivatives are dominated by the integrable

function M ·fC(c), where M is a sufficiently large constant. By Lebesgue’s Dom-

inated Convergence Theorem, differentiation (with respect to θ) and integration

(with respect to c) may be interchanged. Hence Q is twice differentiable and

Q′(θ) =

∫ ∞
0

ceθe−ce
θ · fC(c) dc.

Since c exp(θ) exp
(
−c exp(θ)

)
> 0 for c > 0, we have Q′(θ) > 0.

Proof of Lemma 4. First, we show that the function m(θ, c) = 1−exp
(
−c exp(θ)

)
is log-concave in θ and c. For this purpose we compute the Hessian of logm(θ, c).

The entries of the symmetric Hessian H = (hij)i,j=1,2 are given by:

H =
eθe−ce

θ(
1− e−ceθ

)2
(
c
(

1− ceθ − e−ceθ
)

1− ceθ − e−ceθ

1− ceθ − e−ceθ −eθ

)
.

The inequality exp(x) > 1 +x for x 6= 0 yields 1− c exp(θ)− exp
(
−c exp(θ)

)
< 0

when x = −c exp(θ). Hence −h11 > 0 and

det(−H) =
−
(
eθe−ce

θ
)2
·
(

1− ceθ − e−ceθ
)
·
(

1− e−ceθ
)

(
1− e−ceθ

)4 > 0.

Thus all leading principal minors of −H are positive. It follows that H is

negative definite, which proves the log-concavity of m(θ, c). Since log
(
m(θ, c) ·

fC(c)
)

= logm(θ, c) + log fC(c), the product m(θ, c) · fC(c) is also log-concave.

By Theorem 6 of Prékopa (1973) it follows that Q(θ) is a log-concave function.
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