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Abstract: There exist nonregular two-level designs with run sizes a power of 2.

Many of these designs have a defining relation. This article characterizes nonregular

two-level fractional factorial designs according to three types. First, there are

designs that can be constructed using generators that are linear combinations of

orthogonal interactions from a subset of the factors. All possible generators for 16-

and 32-run designs are identified. A second type of orthogonal two-level designs

has partial replication, which requires adding one or more dummy factors to obtain

generators. Intermediate to these two types are orthogonal designs that have no

partial replication, but require augmentation in order to obtain generators. This

classification and subsequent insight benefit the construction and characterization

of nonregular designs. Designs of the first type have a defining relation that is

easily produced from the generators. For the other cases, generators are useful

for obtaining the indicator function or the extended word length pattern. Given

familiarity with regular two-level fractional factorial designs, this article can serve

as a bridge to understanding nonregular fractions.

Key words and phrases: Defining relation, extended word length pattern, fractional

factorial, indicator function, orthogonal array, partial replication.

1. Introduction

Let OA(n, 2k) denote an n-run orthogonal array with k two-level factors.

The number of non-isomorphic OA(16, 2k) is known for each k = 3, . . . , 15; the

counts are 3, 5, 11, 27, 55, 80, 87, 78, 58, 36, 18, 10, 5, respectively (Xu and Deng

(2005)). The five OA(16, 215) come from the five Hadamard matrices of order 16

(Hall (1961)) and all 16-run orthogonal arrays for k < 15 can be obtained as a

projection from one or more of these five matrices, where projection means that

some columns are omitted. Johnson and Jones (2011) studied these OA(16, 2k)

in detail for k = 6, 7, and 8, showing how all can be constructed using generators.

This construction is only available for OA(n, 2k) when n is a power of 2; the stan-

dard notation 2k−p will be used to denote orthogonal two-level fractions with such

run sizes. Since Johnson and Jones (2011) have detailed the 26−2, 27−3, and 28−4

designs, this article will emphasize larger designs, where the possible generator
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constructions are more varied. Kharaghani and Tayfeh-Rezaie (2013) determined

that there are 13,710,027 Hadamard matrices of order 32, an astronomical in-

crease over the 16-run case where only five exist. Schoen, Eendebak and Nguyen

(2010) estimated that a complete enumeration of all OA(32, 2k) would require

50,000 years of computing time by their method. Given so many possibilities,

understanding their structure will surely benefit the search for attractive 32-run

and larger designs, according to various metrics. Recently, Eendebak and Schoen

(2017) have succeeded in enumerating all isomorphic classes of OA(32, 27), and

this article will focus much attention on these 27−2 designs.

Each 2k−p design is classified as either regular or nonregular. For regular

2k−p designs, pairs of main effect and interaction contrasts have correlations of

0, 1, or −1. Unreplicated regular 2k−p fractions necessarily project into a full

factorial in b = k−p basic factors. The remaining factors are generated using p in-

dividual basic-factor-interactions. The defining relation is constructed from these

p generators, and represents the 2p − 1 interactions that are identically +1. For

example, consider the 27−2 design where the letters A–E denote the basic factors

and the p = 2 remaining factors are generated as F = ABCD and G = CDE.

The defining relation for this 27−2 is I = ABCDF = CDEG = ABEFG, since

ABCDF ×CDEG = ABC2D2EFG = ABEFG. This design has resolution IV,

with word length pattern wlp = (A3, . . . , A7) = (0, 1, 2, 0, 0), where Aq denotes

the number of q-factor interactions in the defining relation. The 2p − 1 = 3

interactions appearing in the defining relation are identically +1 for all 32 treat-

ment combinations in this quarter fraction. The four-factor interaction CDEG

creates three pairs of aliased two-factor interactions, CD = EG, CE = DG,

and CG = DE. As a result, one cannot estimate the full two-factor interaction

model based only on this design. Let X denote the model matrix for the full

two-factor interaction model, with its r = 1 + k(k+ 1)/2 columns; for k = 7, r =

29. Due to the three singularities caused by CDEG = 1, rank(X) = 26 for this

design. Further details for regular 2k−p designs are described in experimental

design books, such as (Wu and Hamada, 2009, Chap. 4), (Montgomery, 2012,

Chap. 8), and Mee and Dean (2015).

Nonregular 2k−p designs differ from regular fractions in that some pairs of

main effect and interaction contrasts have correlations with magnitude between

0 and 1. Despite this difference, if at least one subset of b factors forms a full 2b

factorial, the full factorial model matrix for this subset of factors forms an n×n
matrix with orthogonal columns and the remaining p factors can be written as

linear combinations of basic-factor-interactions. This implies that all such designs
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can be expressed by a set of p generators and/or by a defining relation. Such

designs are the focus of Section 2. Consider as an example the 27−2 design with

F = 0.5(ABC +ABCD +ABCE −ABCDE) = 0.5ABC(1 +D + E −DE),

G = 0.5(ADE +ABDE + CDE −BCDE) = 0.5DE(A+AB + C −BC).

(1.1)

Just as the defining relation for a regular fraction is constructed from its gener-

ators, the same is possible here. The defining relation for this nonregular design

can be written as:

I = 0.5ABCF (1 +D + E −DE) = 0.5DEG(A+AB + C −BC)

= 0.25FG(A− C −AB −AD −AE −BC + CD + CE + CDE

−ADE +BCE +ABE +BCD +ABD +ABDE +BCDE), (1.2)

where the expression following the last equal sign is the generalized interaction,

0.5ABCF (1 +D + E −DE)× 0.5DEG(A+AB + C −BC).

Providing generators and a defining relation for nonregular 2k−p designs

will help those familiar only with regular 2k−p fractions understand nonregu-

lar designs. For instance, defining relations for 2k−p designs display all the J-

characteristics of a design (Tang (2001)). Inspecting (1.2), we see that this design

has no perfect correlations among the main effect and interaction columns, since

no term in (1.2) has a coefficient of ±1. The presence of 0.25FGA and −0.25FGC

in (1.2) reveals that the design does not project into an equally replicated 23 in

{A,F,G} or {C,F,G}. So this design is only strength 2, while its generalized

resolution, as defined by Deng and Tang (1999), is 3+(1−0.25) = 3.75. Both the

generalized word length pattern (Tang and Deng (1999)) and the extended word

length pattern (Li, Lin and Ye (2003)) can be obtained from (1.2). This design

is inferior to the minimum aberration regular 27−2 in terms of its generalized

resolution, but the two-factor interaction model is estimable from this design;

that is, its rank(X) = 29.

Concatenating smaller orthogonal arrays is another method for constructing

nonregular 2k−p designs. For instance, consider the three designs in Table 1,

which were each constructed by concatenating a 12-run array and a 20-run array.

The 20-run array shared by both Designs I and III is the minimum G-aberration

design found by Xu and Deng (2005), an OA(20, 27) that is not a projection of

any Hadamard design. To this we add different versions of the OA(12, 27). If we

use the first 12 rows in Table 1, we get a design for which the first five columns

form a full 25. So Table 1’s Design I can be constructed by concatenation, or by

using generators for F and G. However, neither Design II nor III projects into



1350 ROBERT W. MEE

Table 1. Three nonregular OA(32, 27) created by concatenation.

Design I: First 32 rows (Type 1)
Design III: Last 32 rows (Type 3) Design II: (Type 2)

−1 −1 1 1 1 −1 1 1 1 1 1 1 1 1
1 −1 −1 1 1 −1 −1 1 1 1 1 1 −1 −1
−1 −1 1 −1 1 1 −1 1 1 −1 −1 −1 1 1
−1 1 −1 1 −1 1 1 1 −1 1 −1 −1 1 −1

1 1 1 1 −1 −1 −1 1 −1 −1 1 −1 −1 1
−1 1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 −1

1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 −1 −1
1 −1 −1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1
−1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 1 −1 1

1 −1 1 1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 −1 1 1 1 −1 −1 1 −1 1 1 1
−1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
−1 −1 1 1 −1 1 −1 −1 −1 −1 −1 −1 −1 1
−1 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1

1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1
1 −1 1 1 1 −1 1 −1 −1 1 1 1 −1 −1
−1 1 1 1 −1 −1 1 −1 1 −1 1 1 −1 1
−1 1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1
−1 −1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1

1 −1 1 −1 1 −1 −1 −1 1 1 1 −1 1 1
−1 −1 1 −1 −1 1 1 −1 1 1 1 1 −1 1
−1 −1 −1 −1 1 −1 −1 1 −1 −1 1 1 1 1

1 −1 −1 −1 1 1 1 1 −1 1 −1 −1 1 1
1 1 −1 1 −1 −1 1 1 −1 1 −1 1 −1 1
−1 −1 −1 1 1 1 1 1 −1 1 1 −1 −1 −1

1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 1 −1
1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1 −1
1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 1
−1 1 −1 −1 1 −1 1 1 1 −1 1 −1 −1 −1

1 1 1 −1 −1 1 −1 1 1 −1 1 −1 1 −1
−1 1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 1
−1 1 −1 −1 −1 1 1

1 1 1 −1 −1 1 −1
−1 1 −1 1 −1 −1 −1
−1 −1 1 −1 1 −1 1

1 −1 −1 −1 1 1 −1
−1 −1 1 −1 −1 −1 −1

1 −1 1 1 −1 1 1
1 1 1 1 1 −1 −1
−1 1 1 1 1 1 1

1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 −1 1
−1 −1 −1 1 1 1 −1
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a full 25. Although Design II has 32 distinct rows, each 5-factor projection has

28 or fewer distinct rows. That Design III contains no 25 factorial projection

is immediately obvious, since the 27−2 only has 30 distinct rows. Design III is

formed by the minimum G-aberration OA(20, 27) plus the last 12 rows, which

were obtained by reversing the sign for columns 2-6 from the first 12 rows. The

last two rows of the OA(20, 27) match the first two rows of the second OA(12,

27). So Design III has 2 degrees of freedom for pure error, yet it still supports

estimation of the two-factor interaction model, which requires a minimum of

r = 29 distinct rows.

We may refer to the 2k−p designs as of one of three types, as illustrated

in Table 1. Type 1 designs can be constructed using generators that are linear

combinations of basic factor interactions. All unreplicated regular fractions and

seemingly most nonregular fractions are Type 1. Generators and the correspond-

ing defining relation provide a basis both for construction and for understanding

these designs. We label as Type 2 all 2k−p designs that have 2b = n distinct

rows, but no b-factor projection has n distinct rows. Type 3 designs are those

with partial replication. We use this numbering because Type 2 designs are in-

termediate to the other two types. Like Type 1 designs, Type 2 designs have no

replication, but like Type 3 designs, they have no subset of b factors to serve as

a basis. When dropping a factor from a Type 1 design, the projection may be

Type 1, 2, 3, or even a fully replicated 2(k−1)−p design; that is, the projection

may or may not have a b-factor basis and if it has no basis, it may or may not

have replication. The reverse is not possible. A Type 3 design cannot project to

Type 1 or 2, since it necessarily has some replication. Similarly, projections of

Type 2 designs cannot be Type 1, but may be Type 3. Design Types 2 and 3 are

discussed separately in Sections 3 and 4, respectively. While for both types it is

necessary to add one or more dummy factors to create an orthogonal basis for

generators, the possible relevance of partial replication (Liao and Chai (2004))

justifies their separate treatment.

All OA(16, 2k) with k ≥ 8 are Type 1. For n = 16 and 5 ≤ k ≤ 7, 78 are

Type 1, 1 is Type 2, 11 are Type 3, while 3 are completely replicated fractions.

Eendebak and Schoen (2017) report enumerating all 530,469,996 isomorphic

classes of 27−2 orthogonal designs, 395,932,754 (75%) of which have rank(X) =

29. The three Table 1 designs are among this number, but their D-efficiencies,

det(XTX/32)1/29, are only 0.7342, 0.5935, and 0.6215, respectively. In contrast,

the top 100 27−2 designs in terms of D-efficiency have 0.8156 ≤ D-eff ≤ 0.8432.

Ninety-seven of these top 100 are Type I designs and the other three are
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Type II; thus, none of the top 100 have partial replication. In the next section,

we discuss several D-efficient Type I designs, as well as 27−2 designs with rank(X)

< 29.

2. Type 1: Nonregular 2k−p Designs with Linear Combination Gener-

ators

2.1. Generators, defining relations, and word length patterns

Let Hn denote the order-n Sylvester-type Hadamard matrix (Hedayat, Sloane

and Stufken, 1999, p. 149), which may be obtained recursively using H1 = [1]

and Hn = [Hn/2, Hn/2; Hn/2, −Hn/2]. The first column of Hn is a column of

1’s. Omitting this, we have the regular OA(n, 2n−1) with columns in Yates order

(Mee, 2009, pp. 190, 485); denote this saturated main effect design as Sn. Let O

denote any (n − 1) × k matrix such that OTO = Ik, the identity matrix. Then

D = SnO is an n × k orthogonal design. However, to guarantee that D is a

two-level design we must impose further conditions on O.

For all unreplicated regular 2k−p designs of resolution III or higher and all

nonregular 2k−p of strength 2 or higher that project to a full factorial in b factors,

where 2b = n, we assume, without loss of generality that the basic columns

correspond to Yates columns 1, 2, 4, 8, . . ., 2b−1 and that each of the first b

columns of O contain a single +1 corresponding to these columns of Sn, with all

remaining elements of those b columns being zero. If we reorder the columns of

Sn by moving all b basic columns to the left, then O may be written as the block

diagonal matrix

O =

[
Ib 0

0 G

]
,

where the matrix G defines the generators for the remaining p = k − b columns.

Table 2 summarizes five different 27−2 designs with simple generators in-

volving either one or four interactions, one regular and four nonregular. For the

regular 27−2 design discussed in Section 1, the columns of G have a single +1 in

the rows corresponding to the interactions ABCD and CDE, respectively.

For nonregular designs having a subset of b columns forming a full unrepli-

cated 2b, the matrix G contains at least one column with four or more non-zero

elements corresponding to interactions of the basic factors, as we saw in (1.1).

The Appendix justifies this assertion. For G to produce an orthogonal design,

we already have that GTG = Ip. We now consider the conditions for G that

ensure levels for D of ±1 exclusively. Choose any column g of G, let h denote
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Table 2. Generators for five Type 1 27−2 designs with simple generators.

.
Design Gen. res.; rank(X)

Description Generators Defining Relation gwlp
1 F = ABCD I = ABCDF 4; 26

Min aber. G = CDE = CDEG (0,1,2,0)
= ABEFG

2 F = ABCD I = ABCDF 4.5; 28
Min G-aber. G = 0.5E(AB +AC = 0.5EG(AB +AC (0,1,2,0)

+BD − CD) +BD − CD)
= 0.5EFG(CD

+BD +AC −AB)
3 F = 0.5ABC(1 +D See Equation (1.2) 3.75; 29

+E −DE)
D-eff=0.7967 G = 0.5DE(A+AB (1/8, 9/8,

+C −BC) 11/8, 3/8)
4 F = 0.5DE(B + C I = 0.5DEF (B + C 4.5; 26

+AC −AB) +AC −AB)
G = 0.5BE(C +D = 0.5BEG(C +D (0, 1.5,

+AD −AC) +AD −AC) 1.5, 0)
= 0.5CFG(B +D

+AB −AD)
5 F = ABCDE I = ABCDEF 3.5; 28

B4 = 0 G = 0.5A(B + C = 0.5AG(B + C (1, 0, 1, 1)
+D −BCD) +D −BCD)

= 0.5EFG(BC
+BD + CD − 1)

Gen. res., Generalized resolution; gwlp, generalized word length pattern = (B3, . . . , Bk)

the non-zero elements of g, and let Sh denote the columns of Sn corresponding

to these elements of h. Define e = [e1, . . . , en]T , where ei = ±1 (i = 1, . . . , n),

e1 + . . . + en = 0, and let E be the set of all such vectors. For the generated

column produced by g (or h) to have levels exclusively ±1 requires that Shh = e

for some e ∈ E . A solution h exists if and only if e lies in the column space of

Sh.

For all OA(16, 2k) that project to a full 24 factorial, every generator involves

either 1 or 4 interactions. This was confirmed by a complete enumeration of

all possible e ∈ E . In every case of four interactions, Sh is a replicated 24−1

design of resolution IV. As in (1.1), each basic factor appears two or four times

and the product of the four interactions is −1 for all n treatment combina-

tions. The eight distinct rows of this 24−1 can be written as [E;−E], where E

= [1, 1, 1,−1; 1, 1,−1, 1; 1,−1, 1, 1;−1, 1, 1, 1]. Clearly, if Eh is a vector of ±1’s,

then so is −Eh. Since E−1 exists, so does h. The solution h is a length-4 vector
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of ±0.5’s with an odd number of +’s and −’s, or it is a single 1 or −1. As is

true for every case, such solutions h sum to ±1 and hTh = 1. The Appendix

lists the classes of four-interaction generators for orthogonal arrays with n = 16

and 32. For n = 32, we will see that other generators h involving more than four

interactions are possible.

Table 2’s Designs 2–5 are nonregular 27−2. Design 2, with F = ABCD and

G = 0.5E(AB + AC + BD − CD), is the minimum G-aberration design (Deng

and Tang (1999)), isomorphic to Schoen and Mee (2012) Design 7.16; see also

Xu (2005). G-aberration is based on the extended word length pattern, which

for nonregular designs in this section can be obtained directly from the defining

relation. The defining relation for this nonregular design is

I = ABCDF = 0.5EG(AB+AC+BD−CD) = 0.5EFG(CD+BD+AC−AB).

This defining relation contains four 4-factor interactions and four 5-factor in-

teractions with coefficients ±0.5, plus ABCDF with coefficient 1. Thus, the

extended word length pattern is

ewlp = {f4.5 = 4; f5.0 = 1, f5.5 = 4}, (2.1)

where ft.s is the number of t-factor interactions summing to ±(1− 0.s)n. Since

the lowest-order count is f4.5, the generalized resolution is 4.5. Minimum G-

aberration is based on sequentially minimizing the lower-order counts in ewlp.

Design 2 has minimum G-aberration because every other 27−2 has either lower

generalized resolution or f4.5 > 4. Even though this design avoids having a 4-

factor interaction with a coefficient of 1, it does not permit estimation of the

two-factor interaction model, since rank(X) = 28. The singularity is revealed in

the defining relation; just multiply I = 0.5EG(AB + AC + BD − CD) by EG.

(Every other strength 3 27−2 has rank(X) ≤ 26.)

Designs 3 and 4 both involve two generators that are linear combinations of 3-

factor and higher-order interactions. For Design 3, with generators given by (1.1),

the generalized interaction appearing in the last two lines of the defining relation

(1.2) has 16 terms, each with coefficient ±0.25. Thus there are 24 interactions

that do not sum to zero, 8 with a coefficient of ±0.5 and 16 with a coefficient of

±0.25. Design 3’s extended word length pattern is

ewlp = (f3.75 = 2; f4.5 = 3, f4.75 = 6; f5.5 = 4, f5.75 = 6; f6.5 = 1, f6.75 = 2).

Just as minimum aberration sequentially minimizes the wlp, minimum G2 aber-

ration (Tang and Deng (1999)) sequentially minimizes a design’s generalized

word length pattern (gwlp), where gwlp is a vector (B3, . . . , Bk), with Bt =
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s ft.s(1− 0.s)2 replacing At. For example,

gwlp = {2(0.25)2, 3(0.5)2 + 6(0.25)2, 4(0.5)2 + 6(0.25)2, 1(0.5)2 + 2(0.25)2}
= (0.125, 1.125, 1.375, 0.375)

for Design 3. Butler (2003) provides a simpler means to compute gwlp using

moments of the row coincidence matrix. While Table 2’s Design 3, with D-eff =

0.7967, is better than all Table 1 designs, this is not among the more D-efficient

designs found by Eendebak and Schoen (2017), which we will study in the next

subsection.

In contrast to Design 3, the product of Design 4’s two 4-interaction gen-

erators produces eight pairs of interactions, four pairs with opposite signs that

cancel and four pairs with matching sign that result in another 4-interaction

combination with coefficients ±0.5. Defining relations for nonregular designs are

not generally unique. Though the individual terms are unique, corresponding to

all the interactions that do not sum to zero, they will appear in different groups

if other factors are chosen as the basic factors. Table 2 shows one representation

for Design 4’s defining relation. However, if we choose {A,B,E, F,G} as the

basic factors, the four terms involving C appear in one group, those involving D

appear in the second group, and those involving CD appear as the third group:

I = 0.5BCG(E −AE + F +AF )

= 0.5BDE(F +G+AG−AF ) = 0.5CDF (E +AE +G−AG). (2.2)

Only nine of Design 4’s 21 five-factor projections produce a full 25. With p

= 2, the defining relation is short enough to see which pairs of factors can be

generators. For example, A cannot be a generated factor, since it appears in only

six of the 12 terms in (2.2), not eight.

Table 2’s Design 5 is akin to a resolution III* design (Draper and Lin (1990))

in that its defining relation involves 3-factor interactions but no 4-factor inter-

actions. Since ABCD = EF , G = 0.5(AB + AC + AD − EF ); this is the only

singularity for the two-factor interaction model, so rank(X) = 28. However,

this design, with all 4-factor interaction contrasts summing to 0, is an excellent

choice for building a small central composite design (Angelopoulos, Evangelaras

and Koukouvinos (2009)).

Which 27−2 design is preferred depends on the model one anticipates needing

to describe the factors’ effects on the response. If the full two-factor interaction

model is to be fit, then one of the strength 2, D-efficient arrays in Table 3 (d1, d2,

or d3) is recommended, or even a non-orthogonal, D-optimal design. If instead,
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one anticipates only a few active two-factor interactions, then the strength 3,

mimimum G-aberration design, with generalized resolution 4.5 and a single linear

dependency in X, is recommended. For a detailed discussion of design choice,

see Mee, Schoen and Edwards (2017).

For 2k−p designs of size 32 or larger, the columns of G may involve more

than four interactions and do not necessarily have all non-zero elements of the

same magnitude. Design I from Table 1 is just such an example, as are all

the more D-efficient Type I 27−2 (Eendebak and Schoen (2017)). We now turn

to examining what generators are possible for n = 32 before examining these

D-efficient designs.

2.2. All possible generators for OA(32, 2k)

To determine all possible generators for OA(32, 2k), I generated every possi-

ble vector e of length 32, fixing only the last element at +1, to find every possible

g satisfying S∗
32g = e for some e ∈ E . Here, S∗

32 is the 32 × 26 matrix obtained

by deleting the five basic columns from S32. Of the 31!/(15!16!) = 300,540,195

e vectors, 403,990 permitted a solution g. This computation verified that only

six varieties of generators g exist for n = 32: (i) 25 zeros and a single ±1; (ii)

22 zeros and four ±0.5; (iii) 18 zeros, seven ±0.25, and one ±0.75; (iv) 16 zeros,

eight ±0.25, and two ±0.5; (v) 13 zeros, 12 ±0.25, and one ±0.5; and (vi) 10

zeros and 16 ±0.25. Variety (v) was the most common by far, accounting for

67% of the generators; varieties (iv)–(vi) together accounted for 98%.

Only 17 of the 530,469,996 isomorphic classes of 27−2 have strength 3 (gen-

eralized resolution of 4 or higher). That this count is so modest, in contrast to

the astronomical number of strength 2 OA(32, 2k) is a reflection that the classes

of generators that involve more than one interaction but no two-factor interac-

tions is very limited (see the Appendix). For 32-run arrays, varieties (iii)–(vi)

cannot be used for strength 3, since they always involve at least one two-factor

interaction.

Generator varieties (i) and (ii) appear in Table 2’s designs, while the 97

Type I designs among the top 100 D-efficient designs have only the generator

varieties (iii)–(vi). The top 100 designs take on 18 different D-efficiency values.

Table 3 lists examples of the first three of these, plus two other cases that involve

the rarer generator varieties. We denote these D-efficient 27−2 designs as d1,

d2, d3, d7, and d13, according to the rank of their D-efficiency value. For each

design, we list D-efficiency, the maximum VIF (= the largest diagonal element
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of (XTX/n)−1), and the generators.

Table 3’s Design d1 has variety (iv) and (v) generators, with the 0.5 coef-

ficients associated with 4- and 5-factor interactions. This design is one of five

D-optimal designs, with D-eff = 0.8432. All five have identical distributions of

VIFs, with a maximum = 2.76; they simply differ on which effects receive the

larger VIFs. This is true even though one of the five designs is a Type 2 design.

The second-best D-efficiency among 27−2 designs is 0.8415; there are four

such designs, and all have maximum VIF = 2.36. There are three designs with

the third-best D-efficiency value of 0.836; these designs have the best maximum

VIF (= 1.96) of all 100 D-efficient designs. Both generators are variety (v) and

nine interactions are shared. No length 3 word contains the factor E, so E’s

main effect has a VIF = 1. The design’s ewlp = (f3.75 = 8, f4.75 = 12, f5.5 = 4,

f5.75 = 8, f6.75 = 4).

Table 3 lists Designs d7 and d13 to show cases with the rarer generator

varieties (iii) and (vi), respectively. Factor E has the largest VIF of 4.89 for

Design d7, because 7 of the 10 three-factor interactions that appear in the defining

relation involve E.

Generator Varieties (iv)–(vi) also appear in a 212−7 design provided by Bu-

lutoglu and Kaziska (2009) as their counterexample refuting two conjectures re-

garding maximal orthogonal arrays. Here, it is impossible to add a 13th two-

level factor that is orthogonal to these 12 columns. Their 212−7 maximal design

projects to a full 25 in just one of its 792 5-factor projections: Columns 1, 2,

7, 11, 12. The generator matrix, which utilizes all 26 interactions for the seven

generators, is provided as supplementary material. Studying the sets of genera-

tors for other maximal designs Bulutoglu and Kaziska (2009) found would likely

provide insights regarding why it is not possible to add additional factors. That

every row of G has a nonzero entry is a necessary but not sufficient condition.

Variety (ii) generators, as in (1.1), involve four interaction columns that

together form a replicated resolution IV 24−1, while the eight interaction columns

in Variety (iii) generators (e.g., Table 3’s design d7) form a replicated resolution

IV 28−4. However, the columns of Sh for Variety (iv)–(vi) generators often form

resolution III fractions, which we illustrate via the 7 generators (Columns 3–6

and 8–10) of Bulutoglu and Kaziska (2009) 212−7 maximal array. Variety (iv):

Sh for Column 9 is a replicated 210−6 fraction with A3 = 8 and A4 = 18; Sh for

Column 3 is a foldover of the 210−6 fraction, so A3 = 0 and A4 = 18. Variety

(v): Sh for Column 4 is a 213−8 fraction with A3 = 14 and A4 = 23; Sh for

Columns 5, 6, and 10 is a 213−8 fraction with A3 = 10 and A4 = 23. Variety (vi):
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Table 3. Generators for five D-efficient Type 1 27−2 designs.

.

Design D-eff. Max VIF Generators
d1 0.8432 2.76 F = 0.25(AB +AC +AD −AE + CD

−ACD +BCD + CDE
+2ACDE −ABCE −ABDE
+BCDE −ABCDE)

G = 0.25B(A−D +AC +AE − CD +DE
+2ADE +ACE + CDE − 2ACDE)

d2 0.8415 2.36 F = 0.25D(2E + C +AC −BC − CE
+2ABE −ABC +ACE −BCE +ABCE)

G = 0.25(AC −AE +BE + CE +DE +ABC
−ACD −ACE + 2ABCE −ABCD
−ABDE +BCDE +ABCDE)

d3 0.8360 1.96 F = 0.25(BD −AB −AC +ABE +ACD
+ACE −BCD +BDE + 2ABDE +ABCD
−ACDE −BCDE +ABCDE)

G = 0.25(AB +AD −BC −ABE +ACD
+ADE −BCD +BCE + 2ABDE −ABCD
+ACDE +BCDE −ABCDE)

d7 0.8265 4.89 F = 0.25E(A−B − C −D − 3ABC
+ABD +ACD −BCD)

G = 0.25(AC +AE −BC −BE + CD
+DE + 3ABCD −ABDE)

d13 0.8181 3.00 F = 0.25(AD −AC −BC −BD − CD − CE −DE
+ACD −BCD + CDE −ABCD −ABCE
+ABDE +ACDE +BCDE −ABCDE)

G = 0.25(AB −AE −BD − CE −DE
−ABC +BCD +BCE − 2ABDE +ABCE
−ACDE +BCDE −ABCDE)

Sh for Column 8 is a 216−11 fraction with A3 = 20 and A4 = 60. For the cases

where generators having similar coefficients correspond to two different designs,

the aliasing among two-factor interactions are equivalent.

The defining relation for Bulutoglu and Kaziska (2009) 212−7 is long, with

27 − 1 = 127 terms. Its ewlp begins as (f3.5 = 9, f3.75 = 98; f4.5 = 16, f4.75 =

216; . . .). Because there are no complete words, the generalized interactions get

longer as more generators are multiplied. For example, the product of all seven

generators cannot have any interactions of length less than 7.

2.3. One 16-run example

For n = 16, all generators involve one or four interactions. This is true for all

OA(16, 2k), not only those considered by Johnson and Jones (2011). For example,
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consider the 28−4 design with basic factors A–D and generators E = 0.5D(C +

B + AC − AB), F = 0.5B(D + C + AD − AC), G = 0.5BC(1 +D + A− AD),

and H = 0.5CD(1 + B + AB − A). From these p = 4 generators, the defining

relation is

I = 0.5DE(C +B +AC −AB) = 0.5BF (D + C +AD −AC)

= 0.5BCG(1 +D +A−AD) = 0.5CDH(1 +B +AB −A)

= 0.5CEF (D +B −AD +AB) = 0.5EG(C +BD −AC +ABD)

= 0.5DFG(1 + C −A+AC) = 0.5BEH(1 + C +A−AC)

= 0.5FH(C +BD +AC −ABD) = 0.5GH(D +B +AD −AB)

= 0.5EFG(1 +B +A−AB) = 0.5EFH(1 +D +AD −A)

= 0.5EGH(C +D +AC −AD) = 0.5FGH(B + C +AB −AC)

= BCDEFGH. (2.3)

This defining relation reveals only three of 21 linear dependencies for the full

two-factor interaction model: 2DE = C+B+AC−AB, 2BF = D+C+AD−AC
and 2GH = D+B+AD−AB. Eighteen more singularities involving main effects

and two-factor interactions are implicit in (2.3). This design projects to a full 24

in 21 different subsets of four factors. If we used a different set of basic factors,

the defining relation would reveal other linear dependencies, but the same 14

3-factor interactions, 28 4-factor interactions, and 14 5-factor interactions would

appear, together with the 7-factor interaction.

2.4. Generators and defining relations for two large strength 4 arrays

Here we examine two strength-4 designs that have higher generalized resolu-

tion than the comparable regular 2k−p designs. The examples are the strength-4

215−8 (Xu (2005); (Mee, 2009, p. 286)) and the strength-4 219−11 ((Hedayat,

Sloane and Stufken, 1999, Sec. 10.4); (Mee, 2009, p. 286f)). Examining the

generators for these designs helps one to appreciate their structure.

Xu (2005) describes the family of designs generated by the Nordstrom-

Robinson codes. The minimum G-aberration OA(32, 27) (see Table 2’s Design

2) is from this family. Here we focus on the remarkable strength-4 215−8; this

design has generalized resolution 5.5, whereas regular resolution V designs with

128 runs can accommodate no more than 11 factors. Mee (2009) describes the

215−8 design as the concatenation of eight regular 215−11 with sign changes to the

generators. Alternatively, the design can be constructed by taking a full factorial

in factors A–G and then using the generator matrix given in the supplementary
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materials. Adding factor H = ABCEFG makes a regular, resolution VII 28−1.

The remaining seven generators use 16 (of 20) four-factor interactions involving

D and 12 (of 15) five-factor interactions involving D, the basic factor not appear-

ing in the generator for H. No interaction appears in more than one generator.

The 4- and 5-factor interactions not appearing in the S128 matrix that involve D

are

ABDE,ACDF,BCDG,DEFG,ABDFG,ACDEG,BCDEF. (2.4)

The coefficients in the defining relation are all ±0.5 for interactions involving 5,

6, 9 or 10 factors and +1 for interactions of length 7, 8, and 15. Note the defining

relation’s symmetry.

A strength-4 219−11 design may be constructed by replicating the strength-4

215−8, adding an 8th basic column Q, and including three more generators as

follows:

R = 0.5(ABFGQ+ACFQ+BCEFQ− EFGQ)

= 0.5FQ(ABG+AC +BCE − EG),

S = 0.5(ACEGQ+BCEFQ−ABEQ+ EFGQ)

= 0.5EQ(ACG+BCF −AB + FG),

T = 0.5(ABEQ+ACFQ−BCGQ+ EFGQ)

= 0.5Q(ABE +ACF −BCG+ EFG). (2.5)

The generators for R, S, and T involve all the basic factors for the 215−8

except D. If one replaces D with Q in each of the interactions in (2.4), one

obtains the seven interactions that appear in (2.5). This 219−11 design has gen-

eralized resolution of only 5, with the first counts in the ewlp being (f5 = 6,

f5.5 = 264). The six words of length 5 in the defining relation are BNPQR,

CLPQS, DHPQT , EMPST , FKPRT , and GJPRS, each of which arises as

the generalized interaction of the generators for P and three other factors.

3. Type 2: 2k−p Designs without Partial Replication and no 2b = n

Projection

Let bmax be the maximum size projection to have equal replication. Thus, for

Type 1 designs, bmax = b, while for Types 2 and 3, bmax < b. Sort the design by

any such set of bmax columns and add d = b− bmax dummy columns to complete

a full 2b. These columns may serve as an orthogonal basis to create generators

for the remaining k − bmax columns. There are 2bmax × (2d)! possible n by d



NONREGULAR 2k−p DESIGNS 1361

augmentations and, while any one of these may complete a set of orthogonal

basis columns, I recommend searching for one that is uncorrelated with all k

columns. When this is not possible, as when the original array is maximal, I

suggest choosing the augmenting column(s) to have correlations of magnitude 0,

8/n or multiples of 8/n with the other factors. We now illustrate these ideas

with three examples.

Design II in Table 1 has 32 distinct rows but bmax = 4; columns D – G

form an equally replicated 24. We need to add a single ±1 column to create an

orthogonal basis, since d = 1. By choosing the dummy column, N , orthogonal

to all k = 7 original columns, we confirm that this Type 2 design is a projection

of a Type 1 orthogonal array. In this way, we obtained the following generators

for the first three columns:

A = 0.25(FG− FN −DG− EN + 2DEF +DEG+DEN −DFN
+DGN + EFG− EGN +DFGN + EFGN),

B = 0.25(2DN − EF + EG− FN +GN + 2DFGN −DEF
+DEG+DFN −DGN),

C = 0.25(2GN +DE −DF + FN −DEG+DEN +DFG− EFN
+ FGN + EFGN +DEGN −DEFN −DEFGN). (3.1)

These generators are similar to those for Bulutoglu and Kaziska’s maximal 212−7.

The defining relation for this 8-factor design, multiplied by 4, is:

4I = A(FG−DG+ 2DEF +DEG+ EFG+N(−E − F +DE −DF +DG

− EG+DFG+ EFG))

= B(−EF + EG−DEF +DEG+N(2D − F +G+DF −DG+ 2DFG))

= C(DE −DF −DEG+DFG+N(F + 2G+DE − EF + FG−DEF
+DEG+ EFG−DEFG))

= AB(−DG+ EF − EG+ FG−DEF + EFG+N(E −G+DE + 2EF

+ EG+DFG− EFG))

= AC(DE +DF −DG− FG+DFG− EFG+N(1−D + F −G+DE

+ EFG+ 2DEFG))

= BC(DE +DF + 2DG+ EF − EG−DEF +DFG+N(1 +D + E − F
− EG−DFG))

= ABC(−1 +D + E − F +G+ 2EFG+DEFG+N(1−D + EFG−DE
+DF −DG)). (3.2)
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Setting N = 0, one obtains the 39 interaction terms of the indicator function

(Li, Lin and Ye (2003)) of the original 27−2. The ewlp = (f3.75 = 7, f4.5 = 2,

f4.75 = 22, f5.75 = 6, f6.5 = 1, f7.75 = 1).

There is only one Type 2 OA(32, 2k) of strength 3; it is a 28−3 design which,

when augmented with the factor N , becomes a 29−4 fraction of strength 2, with

generators

E = 0.5AB(C +D) + 0.5AN(1− CD),

F = 0.5AC(B +D) + 0.5AN(BD − 1),

G = 0.5CD(A+B) + 0.25N(A+D +ACD +ABC −B − C −ABD −BCD),

H = 0.5BD(C −A) + 0.25N(A+B + C +ABC +ABD +BCD −D −ACD).

(3.3)

Dropping N , we have the Type 2, 28−3 fraction with factors A – H. The ewlp

for this design is simply (f4.5 = 28). Incidentally, this 28−3 design is a foldover

of the only 16-run, Type 2 design.

Not all Type 2, 2k−p designs can be imbedded in Type 1 orthogonal arrays.

The Paley OA(32, 231) is a Type 2 nonregular design in that, though it has 32

distinct rows, every five-factor projection has at least four replicated pairs. Since

the design is saturated, any additional factor used to create a 5th basic factor

would necessarily be correlated with some of the original 31 columns. Still,

one may select four columns that form an equally replicated 24 and add a fifth

column that creates a 25, and has a correlation of either 0, ±0.25, or ±0.5 with

the other 27 columns in the Paley design. The supplementary materials show the

27 generators that result: 17 of these have 16 ±0.25, while the other 10 have 12

±0.25 and a single ±0.5. Note that all 10 of the ±0.5 occur with terms involving

the added column, and so do not directly produce aliasing among interaction

terms for the 31-factor design. If, instead, we augment Paley’s array with a

dummy column that has a correlation of ±0.125 with some of the original 31

columns, the generators will differ from the varieties discussed in Section 2.2;

however, the indicator function obtained by dropping all columns involving the

dummy column is not impacted by this choice, as all terms with a coefficient of

±0.125 must disappear.

4. Type 3: Nonregular 2k−p Designs with Partial Replication

Having pure error degrees of freedom can improve the power of tests more

than having additional treatment combinations (Liao and Chai (2009)). However,
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replication increases G2-aberration. For designs with partial replication, the

generalized word length pattern sums to

2p(

U∑
i=1

r2i
n

)− 1, (4.1)

where U is the number of distinct rows and r1, . . . , rU are the frequencies for the

distinct rows; this result is based on Xu and Wu (2001) equation (8) for B0(D).

If 2k−p design has no replication, then U = n and the factor in parenthesis in

(4.1) equals 1, and so the generalized word length pattern sums to 2p−1, just

as it does for unreplicated regular fractions. Thus, 2k−p designs having partial

replication will generally have worse G2-aberration than the designs discussed in

Sections 2 and 3 that have no replication.

For Table 1’s Design III, there are 30 distinct rows and two ri = 2. Thus,

equation (4.1) equals 4(36/32)− 1 = 3.5, an increase of 0.5. In general, if all the

distinct row frequencies are 1 or 2, then the partial replication increases the gwlp

sum by ν2p+1/n, where ν = pure error degrees of freedom. For a given value of ν,

having row frequencies that differ by at most 1 is preferred; this makes intuitive

sense.

OA(n, 2k) with partial replication are created quite easily by concatenating

smaller designs. When combining two arrays, the order of columns for one design

can be fixed, while the second array’s columns are permuted. For each permuta-

tion, every possible subset of columns in the second array may be multiplied by

−1, leading to (k!)2k concatenated designs.

We now use generators to describe Table 1’s Design III, a 27−2 design with

partial replication. Design III can be augmented with an 8th column to form a

28−3 fraction of strength 2 for which there exists a five-factor projection forming

a full 25. To obtain this 8th factor, first we find four columns that form an equally

replicated 24; {B,E, F,G} is one such set. The added column N must have +1

and −1 for each pair of identical rows for these basic columns. Of the 216 such

columns, choose one that is also orthogonal to A, C and D. Labeling this as N ,

we obtain the following three generators:

A = 0.25(BEG+ EFG−BG− FG)

+ 0.25N(BEG+BFG+ 2BE + EG+ FG−BF − EF +B − E),

C = 0.25(2BEFG+BEF + EFG+BE +BF −BG− EF )

+ 0.25N(BEFG−BEG−BFG− EFG+ EF +B),

D = 0.25(BEFG+BEF +BFG+ EFG−BEG+BE + EF −BF )
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+ 0.25N(BEG+ EFG−BEF −BF − EG−B + F +G). (4.2)

Thus, Design III can be constructed by forming a full factorial in B, E, F , G,

and N , adding the generated columns A, C, and D, and then dropping N . So

Design III is also a projection of a Type I 28−3; its defining relation is obtained

in the supplementary materials. Setting N = 0, add 1, and dividing by 2p, one

obtains the indicator function

[1 + 0.25AG(BE + EF −B − F )

+ 0.25C(2BEFG+BE +BF +BEF + EFG−BG− EF )

+ 0.25AC(−BE +BF − EF + FG−BEF +BEG)

+ 0.25D(BE + EF +BEF +BFG+ EFG+BEFG−BF −BEG)

+ 0.25AD(G+BE +BF − EF − EG+BEF −BEG− EFG)

+ 0.25CD(B + E +G−BF +BG− EF + FG+BFG)

+ 0.25ACD(E −B −BF −BG+ EF + EG+ FG− 2EFG+BEFG)]/4.

(4.3)

From this we obtain ewlp = (f3.75 = 13; f4.75 = 22; f5.5 = 1, f5.75 = 12; f6.5 =

1, f7.75 = 1) and gwlp = (13/16, 22/16, 1, 1/4, 1/16), which sums to 3.5 rather

than 3 due to the partial replication.

Pigeon and McAllister (1989) presented a 27−3 design with partial replica-

tion. Take the first, second, and fourth columns as basic with labels A, B, and

D, since they form an equally replicated 23. Then adding a fourth column N

that is orthogonal to all the seven main effects, we generate the 27−3 design for

A–G using the generators C = AB, E = 0.5D(B −N +AB +AN), F = −AD,

and G = −0.5D(B + N + AB − AN). The defining relation for the augmented

design with eight factors has seven terms with coefficient ±1 that do not involve

N ,

I=ABC=−ADF =−AEG=−BCDF =DEFG=−BCEG=ABCDEFG,

(4.4)

plus eight linear combinations, such as −0.5EF (B + AB + N − AN), that all

include a 3-factor and 4-factor interaction not involving N . Now (4.4) is the

defining relation of a regular 27−3, produced by the three generators C = AB,

F = −AD and G = −AE. However, for the 27−3 design with partial replication

considered here, A, B, D, and E do not form a full 24 factorial; E is correlated

with both BD and ABD. The indicator function for the partially replicated de-

sign would include all the terms in (4.4), plus eight 3-factor interactions (−BDG,
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BFG, BDE, −BEF , CDE, −CDG, −CEF , CFG) and eight 4-factor inter-

actions that come from the augmented design’s defining relation, each with a

coefficient of 0.5. Thus, gwlp = (5, 5, 0, 0, 1), which sums to 11, as guaranteed

by (4.1).

If the maximum row frequency exceeds 2, then d = b−bmax > 1, so one would

need to augment the design with more than one column to create a set of basic

columns. However, for designs constructed by concatenating two unreplicated

designs, this would never arise. If the partially replicated design is constructed

using parallel flats of size 4, it is common to have four or eight pairs of replicated

treatment combinations (Liao and Chai (2004)).

5. Discussion

Generators provide a compact means of representing 2k−p designs. They

provide a means for understanding maximal designs, as discussed at the end

of Section 2.2. It is hoped that, with further study, the defining relations for

(nonregular) Type I 2k−p fractions will lead to a convenient characterization of

all relevant linear dependencies involving lower-order terms. In addition, once

the classes of eligible generators are fully characterized, they may provide an

efficient means of enumerating designs using symbolic computations.

Previous literature (Fontana, Pistone and Rogantin (2000); Ye (2003)) for

nonregular designs has made use of indicator functions to characterize nonregu-

lar OA(n, 2k). The indicator function is a polynomial in the factors defined by

all the interaction columns with nonzero sums; (4.3) gives the indicator function

for Table 1’s Design III. The indicator function has been useful for describing

regular designs augmented by semifolding (Balakrishnan and Yang (2009); Ed-

wards (2011)) and for foldover of nonregular designs (Li, Lin and Ye (2003)).

Butler (2008) used it to describe designs with regular fractions either removed

or added. The indicator function exists for any design, but its shortcomings are

that it does not easily show the linear dependencies except those due to com-

plete aliasing, its computation may require one to sum each of the 2k − k − 1

interaction columns, and it may have so many terms that it is not very useful

for understanding the design. The results of this paper show that, when n is a

power of 2, all the column sums can be found using symbolic computation with

the generators. Thus, the computational shortcoming is mitigated. However, the

defining relation is more informative than the indicator function, since it reveals

linear dependencies. Thus, for Type I designs, one should utilize the defining
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relation.

Designs with the best generalized aberration appear to be Type I or Type 2

designs. One approach to proving a general result would be to show that when a

Type 3 design is a projection of a Type 1 design, it is not the minimum aberration

projection.

This article provides much detail regarding 32-run designs. That strength 3,

32-run orthogonal arrays are so rare and strength 2 arrays are so numerous can

be explained in terms of the prevalence of the available generators. All strength

3 OA(32, 2k) arrays with no replication are Type 1 designs, except for the 28−3

design obtained using (3.3). For k ≤ 8, there are strength 3 OA(32, 2k) with

partial replication, three each for k = 7 and 8. For the 100 most D-efficient 27−2

orthogonal arrays, 97 were Type 1 and three were Type 2. Thus, for 27−2 designs

explored here, Type 2 and 3 have been relatively rare. However, there are more

than 530 million other strength 2 27−2 fractions, and the prevalence of the three

types for this vast set of designs is unknown.

A referee suggested that the structure of generators for nonregular 3k−p might

be similarly explored. This is an excellent suggestion that will be investigated

elsewhere.

Supplementary Materials

Supplementary materials available online include generator matrices for Bu-

lutoglu and Kaziska (2009) 212−7, the 215−8 design with generalized resolution

5.5, and the Paley 231−26. Also included is Pigeon and McAllister (1989) 27−3

with partial replication and MATLAB code for all the examples of this article.
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Appendix

A.1. Possible generators for nonregular designs

Each generator for regular 2k−p designs involves a single interaction. For a

Type 1 nonregular 2k−p design, at least one of the generators must involve more

than one interaction. It is simple to show that no generators involve only two or

three interactions. Every pair of basic-factor-interaction columns of a strength-2

orthogonal array contains the four rows E2 = [1, 1; 1,−1;−1, 1;−1,−1]. None

of the solutions g for E2g = e for e ∈ E involve two non-zero entries. For three
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interaction columns, the unique rows are either a full 23 or they form a resolution

III 23−1. Again, complete enumeration shows that the only solutions g have a

single non-zero value. Thus, all generators for Type 1 nonregular 2k−p designs

involve either one interaction or more than 3 interactions.

A.2. Four-interaction generators for nonregular designs

The conditions for a generator with four interactions are that the generator

contains no main effects, lest it produce a factor that is correlated with one of

the basic factors, and that the product of the four interactions equals −1. For

n = 16, there are only four classes of generators:

2.0112 : 0.5CD(1 +A+B −AB)

1.1122 : 0.5D(A+B +AC −BC)

1.1113 : 0.5D(A+B + C −ABC)

0.2222 : 0.5(AB +AC +BD − CD) (A.1)

Each class is identified by a string of counts. For example, 2.0112 indicates that

two factors are common to all four terms and the parenthesis has terms with

0, 1, 1, and 2 factors, respectively. Within each class, one can change the signs

and permute the letters to obtain other generators within its class. Each of these

include at least one two-factor interaction, so every OA(16, 2k) using one or more

of these generators has generalized resolution at most 3.5.

For n = 32, there are the four classes in (A.1), plus 14 additional classes of

generators, for a total of 18 classes of generators involving just four interactions.

3.0112 : 0.5CDE(1 +A+B −AB)

2.1122 : 0.5DE(A+B +AC −BC)

2.1113 : 0.5DE(A+B + C −ABC)

1.2222 : 0.5E(AB +AC +BD − CD)

2.0123 : 0.5DE(1 +A+BC −ABC)

2.0222 : 0.5DE(1 +AB +AC −BC)

1.1223a : 0.5E(A+BC + CD −ABD)

1.1223b : 0.5E(A+AB + CD −BCD)

1.1124 : 0.5E(A+B + CD −ABCD)

1.1133 : 0.5E(A+B +ACD −BCD)

0.2233a : 0.5(AB +BC +ADE − CDE)
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0.2233b : 0.5(AB + CD +ABE − CDE)

0.2233c : 0.5(AB + CD +ACE −BDE)

0.2224 : 0.5(AB + CD +DE −ABCE) (A.2)

The first four generator classes for n = 32 involve no two-factor interactions. For

Type 1 OA(32, 2k) with generalized resolution of 4.5, these are the only eligible

generators, besides the individual 4- and 5-factor interactions.

By complete enumeration for n = 32, it was found that there were four

other linear combination generators that involve between 8 and 16 interactions,

as discussed in Section 2.2. Every one of these involves at least one two-factor

interaction and so leads to a strength-2 array. By directly checking all strength

3 OA(32, 2k), it was confirmed that all Type 1 designs use generators from the

first four in (A.2). There are several Type 2 OA(32, 2k) of strength 3, and one

Type 3. These may involve other classes of generators, such as for G and H

in (3.3) because they involve two-factor interactions containing the augmented

factor, N .
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