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Abstract: Two common concerns raised in analyses of randomized experiments are

(i) appropriately handling issues of non-compliance, and (ii) appropriately adjust-

ing for multiple tests (e.g., on multiple outcomes or subgroups). Although simple

intention-to-treat (ITT) and Bonferroni methods are valid in terms of type I error,

they can each lead to a substantial loss of power; when employing both simulta-

neously, the total loss may be severe. Alternatives exist to address each concern.

Here we propose an analysis method for experiments involving both features that

merges posterior predictive p-values for complier causal effects with randomization-

based multiple comparisons adjustments; the results are valid familywise tests that

are doubly advantageous: more powerful than both those based on standard ITT

statistics and those using traditional multiple comparison adjustments. The op-

erating characteristics and advantages of our method are demonstrated through a

series of simulated experiments and an analysis of the United States Job Training

Partnership Act (JTPA) Study, where our methods lead to different conclusions

regarding the significance of estimated JTPA effects.

Key words and phrases: Causal inference, hypothesis testing, multiple comparisons,

posterior predictive p-value, principal stratification, randomization-based inference.

1. Introduction

The United States Job Training Partnership Act (JTPA) Study was a ran-

domized experiment in the 1980s designed to measure the effects of a national,

publicly-funded training program. Participants randomly assigned to the treat-

ment group were eligible to receive JTPA services, while participants randomly

assigned to the control group were barred from JTPA services for 18 months.

Only about 2/3 of the treatment participants, however, actually enrolled and

received any JTPA services; the other 1/3 failed to comply with their treatment

assignment. Furthermore, because of the fluid nature of the participants’ employ-

ment, researchers were interested in measuring JTPA effects across several time

periods after random assignment, including the in-training period and the first

and second post-program years. Analyzing such data requires addressing two

https://doi.org/10.5705/ss.202016.0116
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substantial concerns: due to non-compliance, the effects of treatment assignment

are not equivalent to the effects of treatment receipt, and conducting tests for

multiple time periods without appropriate adjustments may lead to an inflated

type I error rate. In this paper, we outline an analysis method that addresses

both concerns while maintaining reasonable power to detect treatment effects.

When units in randomized experiments fail to comply with their random

assignment, inference for the effects of treatment receipt, rather than of assign-

ment alone, becomes less straightforward. Intention-to-treat (ITT) analyses,

which ignore treatment receipt, may have low power when assignment alone has

no effect on the experimental outcome. In order to address this loss of power,

Rubin (1998) introduced randomization-based posterior predictive p-values for

the complier average causal effect (CACE) and showed, through simulation, that

they are valid p-values in terms of type I error and that their tests have higher

power than tests using ITT p-values under reasonable alternative hypotheses

(e.g., hypotheses with non-zero treatment effects for units who are assigned to

and receive treatment, but zero treatment effects for units who do not receive

it). This framework follows the general approach for Bayesian causal inference

in randomized experiments with non-compliance outlined by Imbens and Rubin

(1997). Both pieces of work rely on the multiple imputation (Rubin (1987))

of missing compliance statuses; separating the experimental units into principal

strata (Frangakis and Rubin (2002)) based on compliance behavior aids inference

for the desired causal effect. We use these tools in our approach but adapt them

for simultaneous testing of multiple outcomes and subgroups.

Multiple testing issues are common in randomized experiments because mul-

tiple outcomes and subgroups of interest are often measured and analyzed for

possible effects. Traditionally, practitioners have applied Bonferroni corrections

to sets of p-values in order to control their familywise error rate (FWER), i.e.,

the rate at which at least one type I error is made, in a straightforward man-

ner. Bonferroni corrections, however, tend to be overly conservative, especially

when those p-values are correlated (Westfall and Young (1989)). This fact has

led many applied researchers to avoid Bonferroni corrections and abandon mul-

tiple comparisons adjustments altogether (Cabin and Mitchell (2000); Nakagawa

(2004); Perneger (1998); Rothman (1990)). Other avenues exist; randomization-

based procedures can provide greater power while maintaining the FWER by

accounting for correlated tests. Brown and Fears (1981) and Westfall and Young

(1989) first introduced permutation-based multiple testing adjustments, though

they did not explicitly motivate them using randomized assignment mechanisms.
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Randomization-based procedures are additionally appealing because they do not

require any assumptions about the underlying distribution (here, joint) of the

data. Furthermore, recent increases in computational power have helped such

procedures become more tractable and gain popularity (Good (2005)).

In this article, we connect methodological ideas to appropriately handle both

non-compliance and multiple testing in randomized experiments. We build up to

this combined approach in stages. In Section 2, we elucidate the method proposed

by Rubin (1998) for evaluating meaningful causal effects in the presence of non-

compliance. In Section 3, we extend the ideas of Westfall and Young (1989) to

fully randomization-based multiple comparisons adjustments and propose such

adjustments as a straightforward yet more powerful alternative to Bonferroni

corrections. In Section 4, we merge the notions of non-compliance and multiple

testing, and outline a combined method of analysis that demonstrates power

advantages from both perspectives. In each of Sections 2–4, we empirically show

the benefits of the described methods through a series of simulated experiments.

In Section 5, we apply traditional methods and our combined method to JTPA

data to evaluate the program’s effects on employment rate by time period. We

illustrate how the methods lead to different conclusions regarding the significance

of estimated JTPA effects. Section 6 concludes.

2. Experiments with Non-compliance

2.1. Non-compliance as a missing data problem

Suppose we have a randomized experiment with N units, indexed by i, with

observed covariates Xi, randomly assigned to control or active treatment. Let Zi

be a binary indicator for assignment to active treatment, and letDi(z) be a binary

indicator for receipt of active treatment under assignment z. A unit’s compliance

behavior Ci is defined by the pair of potential outcomes (Neyman (1923); Rubin

(1974)) (Di(0), Di(1)); this notation is adequate under the stable unit treatment

value assumption (Rubin (1980, 1986)), which asserts no interference between

experimental units, as well as two well-defined outcomes. Each unit then belongs

to one of four possible compliance strata:

• Compliers (Ci = c), who receive their treatment assignment: (Di(0), Di(1)) =

(0, 1).

• Never-takers (Ci = nt), who never receive the active treatment: (Di(0),

Di(1)) = (0, 0).
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Table 1. Units’ possible compliance strata based on observed treatment assignment and
receipt.

Assignment Receipt Possible Ci Values
Zi Dobs

i One-sided Non-compliance Two-sided Non-compliance
0 0 c, nt c, nt
0 1 – at, d
1 0 nt nt, d
1 1 c c, at

• Always-takers (Ci = at), who always receive the active treatment: (Di(0),

Di(1)) = (1, 1).

• Defiers (Ci = d), who receive the opposite of their treatment assignment:

(Di(0), Di(1)) = (1, 0).

If non-compliance is one-sided — i.e., units assigned to control are prohibited

from receiving the active treatment — then Di(0) = 0 for all i. In such settings,

always-takers and defiers do not exist, and two possible strata are left: compliers

and never-takers. Real-world scenarios involving one-sided non-compliance in-

clude many clinical trials, in which new drugs are unavailable to control patients,

and some job training experiments, in which training programs and additional

services are unavailable to the control group.

In many practical settings, researchers are most interested in the compli-

ers because the effect of treatment assignment is synonymous with the effect of

treatment receipt for those units. Strata membership, however, can never be fully

determined for all units because they depend on the two potential outcomes of

D, one of which is unobserved. Membership can, on the other hand, be partially

determined based on the observed potential outcome, Dobs
i . Table 1 outlines

the possible compliance strata based on units’ observed treatment assignment

and receipt. An example “Science” table (Rubin (2005)) under one-sided non-

compliance and its observed values under a particular assignment are shown in

Table 2.

Because strata memberships are not fully observed, uncertainty with respect

to complier-specific effects stems from the missing compliance statuses (i.e., D

potential outcomes) in addition to the missing Y potential outcomes. One ap-

proach to handling the additional uncertainty is to, in a Bayesian framework,

view the missing compliance statuses as random variables. By multiply imput-

ing the missing compliance statuses, e.g., according to a distributional model,

they can be integrated out, and we can make inference specific to the compliers.
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Table 2. An example Science table under one-sided non-compliance (left) and its corre-
sponding observed and unobserved values under a particular assignment (right).

D(z) Compliance Y (z) Assignment D(z) Compliance Y (z)
Unit Xi Di(0) Di(1) Ci Y (0) Y (1) Zi Di(0) Di(1) Ci Yi(0) Yi(1)

1 X1 0 0 nt Y1(0) Y1(1) 0 0 ? ? Y obs
1 ?

2 X2 0 1 c Y2(0) Y2(1) 1 0 1 c ? Y obs
2

3 X3 0 1 c Y3(0) Y3(1) 1 0 1 c ? Y obs
3

4 X4 0 0 nt Y4(0) Y4(1) 1 0 0 nt ? Y obs
4

. . . . . . . . .
N XN 0 1 c YN (0) YN (1) 0 0 ? ? Y obs

N ?

2.2. Randomization-based posterior predictive p-values

As described by Meng (1994), a posterior predictive p-value can be viewed as

the posterior mean of a classical p-value, averaging over the posterior distribution

of nuisance factors (e.g., missing compliance statuses) under the null hypothesis.

Rubin (1998) introduced a randomization-based procedure, which we expound

on here, for obtaining posterior predictive p-values for estimated complier-only

effects. One posterior predictive p-value is the average of many p-values calcu-

lated from multiple “compliance-complete” datasets with imputed compliance

statuses; for each compliance-complete dataset, the p-value is obtained through

a randomization test (Fisher (1925, 1935)).

Within one randomization test, however, calculations of the test statistic do

not use all of the compliance information from the compliance-complete data;

rather, they use only the compliance information that would have actually been

observed under particular hypothetical randomizations. Though implied, this

step of re-observing the data is not explicitly stated by Rubin (1998); we place it

in Step 5 of our procedure for emphasis because it is an important prerequisite for

conducting a proper test. Unlike discrepancy variables (Meng (1994)), which may

depend on unobserved factors (e.g., missing compliance statuses), test statistics

must be functions of only the observed data. In order to conduct a proper

test, the true observed test statistic value must be measured against the correct

distribution, i.e., the distribution of that same test statistic.

In this section, we assume a single outcome for simplicity. The procedure

for obtaining a randomization-based posterior predictive p-value is as follows.

1. Choose a test statistic and calculate its observed value.

Choose a test statistic, T , to estimate an effect on the outcome, Y . Calculate

T on the observed data to obtain T obs.

Examples include the maximum-likelihood estimate (MLE) of CACE or

the posterior median of CACE, given the observed compliance statuses and
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potential outcomes, under the exclusion restriction (see Angrist, Imbens

and Rubin (1996); Imbens and Rubin (1997)).

for m : 1 to M do

2. Impute missing compliance statuses.

Impute the missing compliance statuses, drawing once from their posterior

predictive distribution according to a compliance model that assumes the

null hypothesis (e.g., of zero effect).

3. Impute missing potential outcomes.

Impute the missing Y potential outcomes under the sharp null hypothe-

sis. Under the typical sharp null hypothesis of zero treatment effect, the

missing potential outcome for unit i is imputed exactly as Y obs
i .

4. Draw a random hypothetical assignment.

Draw a random hypothetical assignment vector according to the assign-

ment mechanism used in the original experiment.

5. Re-observe the data.

Treating the imputed compliance statuses, imputed potential outcomes,

and hypothetical assignment vector from Steps 2–4 as true, create a cor-

responding hypothetical observed dataset by masking the potential out-

comes and compliance statuses that would not have been observed under

the hypothetical assignment.

6. Calculate the test statistic on these data.

Calculate T on the hypothetical observed data to obtain T hyp. Record

whether this statistic is at least as extreme as T obs.

end for

7. Calculate the posterior predictive p-value.

The posterior predictive p-value for the null hypothesis with respect to T

equals the proportion of the M imputation-randomization sets for which

T hyp is as extreme as or more extreme than T obs.

Rubin (1998) discusses several commonly used statistics for evaluating com-

plier causal effects, only some of which tend to estimate the CACE and thus

provide suitable power against appropriate alternative hypotheses. As is com-

monly done in the non-compliance literature, we assume the exclusion restric-

tion (i.e., we assume that treatment assignment has no effect on the outcomes

of never-takers and always-takers) for test statistic calculations throughout this

paper. Such an assumption is not necessary and does not affect the validity of
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the randomization test, but it does facilitate more precise estimation of CACE

when true (see Imbens and Rubin (1997)) and is often reasonable.

The imputation in Step 2 is performed probabilistically, using the missing

statuses’ null posterior predictive distribution, given X,Z,Dobs, and Y obs. (Some

test statistics, such as the posterior median of CACE, may be computed by

multiply imputing the missing compliance statuses. This would be a separate

imputation from the one described in Step 2 above. If the test statistic calculation

itself involves imputation, such imputation does not need to, and usually does

not, assume the null hypothesis.) The repetition of Steps 2–6 is intended to reflect

the uncertainty of estimation resulting from the missing compliance statuses; M

is a large number (e.g., 10, 000) that controls the Monte Carlo integration error.

Under the null hypothesis, Y is not affected by assignment to or receipt of the

active treatment; it is therefore treated like a covariate in the imputation model.

Even in the absence of other covariates (X), Y alone may still be successful in

stochastically identifying the missing compliance statuses, thus providing tests

of CACE with power over ITT tests (see Section 2.3). When additional covari-

ates that affect compliance status supplement Y in the imputation model (e.g.,

in a Bayesian generalized linear model), the compliance identification tends to

sharpen, providing CACE tests with greater power.

In settings with one-sided non-compliance, only the compliance statuses of

units assigned to the control group are missing. Let ωc be the super-population

proportion of compliers, and let η = (ηc, ηn) be the parameters that govern the

outcome distributions of compliers and never-takers, respectively. Note that un-

der the null hypothesis, these are only two outcome distributions; units within

a compliance stratum have the same outcome distributions, regardless of their

treatment assignment. The posterior predictive distribution of the missing com-

pliance statuses can be obtained using a two-step data augmentation algorithm

(Tanner and Wong (1987)). Using the current (or initial, if starting the al-

gorithm) values of the parameters, the missing compliance statuses are drawn

according to Bayes’ rule:

P (Ci=c|Y obs
i , Xi, Zi=0, Dobs

i =0, ωc,η) =
ωcgc(Y

obs
i ; ηc)

ωcgc(Y obs
i ; ηc)+(1−ωc)gn(Y obs

i ; ηn)
,

(2.1)

where gc(y; ηc) and gn(y; ηn) are the outcome probabilities (or densities) of y for

compliers and never-takers, respectively. Once the missing compliance statuses

are drawn, new parameter values are drawn from their compliance-complete-

data posterior distributions. These two steps are alternated until distributional
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Table 3. The observed values of the Science table from Table 2, with the missing Y
potential outcomes imputed under the sharp null hypothesis of zero treatment effect.
Imputed Y potential outcomes are in parentheses.

Assignment D(z) Compliance status Y (z)
Unit Xi Zi Di(0) Di(1) Ci Yi(0) Yi(1)

1 X1 0 0 ? ? Y obs
1 (Y obs

1 )
2 X2 1 0 1 c (Y obs

2 ) Y obs
2

3 X3 1 0 1 c (Y obs
3 ) Y obs

3

4 X4 1 0 0 nt (Y obs
4 ) Y obs

4

. . . . . .
N XN 0 0 ? ? Y obs

N (Y obs
N )

convergence. After convergence, the draws of the missing compliance statuses

can be treated as posterior predictive imputations. Obtaining posterior draws

of parameters — and consequently, posterior predictive draws of the missing

compliance statuses — may be more straightforward if models are conjugate,

e.g., Beta-Binomial or Dirichlet-Multinomial models (see Section 2.3).

For each imputation of the missing compliance statuses, a randomization

test (here involving only one random hypothetical assignment for computational

efficiency) is performed in Steps 3–6. Because p-values are defined as conditional

probabilities given that the sharp null hypothesis is true, the imputation of Y

potential outcomes in Step 3 must occur under this hypothesis. Table 3 shows

the observed values of the Science table from Table 2, with the Y potential

outcomes imputed under the sharp null hypothesis of zero treatment effect. For

computational efficiency, Step 3 can be performed just once (before the loop)

because this imputation is deterministic.

The random draw of a hypothetical assignment vector in Step 4 depends on

the specific assignment mechanism used in the experiment, e.g., complete ran-

domization or block randomization. A seemingly alternative procedure to the one

described above switches the order of Steps 2 and 4, such that the hypothetical

assignment vector is drawn first, and the missing compliance statuses are im-

puted second. This alternative procedure, however, is exactly equivalent to the

one described above because the imputation of the missing compliance statuses

under the null hypothesis is influenced by Z only through Cobs. Because Cobs is

fixed by the actual observed data, reversing the order of Steps 2 and 4 does not

affect the overall inferential procedure. Intuitively, we can consider the posterior

predictive p-value as a double integral over the missing compliance statuses and

the randomization; switching the order of integration does not affect the result.
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2.3. Illustrative simulations with non-compliance

Consider this modified example from Rubin (1998): suppose a completely

randomized double-blind experiment is conducted to investigate the effect of a

new drug (provided in addition to standard care) versus standard care alone on

Y , which measures the severity of patients’ heart attacks in the year following

treatment. Y is ordinal, taking on values of 0, 1, and 2 (no, mild, and severe

attacks, respectively). We assume that all of the patients survive through the

year. We also assume one-sided non-compliance, so our experiment has two

groups of patients: compliers and never-takers.

In our simulation, we randomly selected N = 1, 000 units from a super-

population of 10% compliers and 90% never-takers; the compliers tend to be

healthier than the never-takers. We randomly assigned N/2 = 500 units to con-

trol and N/2 units to active treatment, observing only the compliance statuses

of units assigned to active treatment. For each unit, we generated an observed

Multinomial outcome, Y obs
i , according to the specified treatment effect hypoth-

esis. Simulation details are provided in Appendix A.1.

Using the simulated observed data, we calculated two test statistics: the ITT

statistic, and the MLE of CACE under the exclusion restriction. We then calcu-

lated randomization-based posterior predictive p-values for both test statistics,

as described in Section 2.2, under the null hypothesis of zero treatment effect.

(For the multiple imputation of the missing compliance statuses, we placed conju-

gate Beta(1, 1) priors on the parameters governing the complier and never-taker

outcome distributions.) To evaluate the frequency characteristics of the pos-

terior predictive p-values, we ran 1,000 replications of the data simulation and

p-value procedures. Under the null hypothesis, p-values for the two statistics

both appeared valid in terms of type I error; their empirical distributions were

approximately uniform. At the α = .05 level, tests on ITT and CACE rejected

the null hypothesis in 4.5% and 4.1% of simulations, respectively. Under the al-

ternative hypothesis, tests based on the CACE are more powerful (see Figure 1),

with tests on ITT and CACE rejecting the null hypothesis in 16.7% and 25.2%

of simulations, respectively, at α = .05. In a general setting, the magnitude

of the power gain from the CACE depends on the proportion of compliers, the

magnitude of the treatment effect, and the α level.

3. Experiments with Multiple Testing

3.1. Randomization-based multiple comparisons adjustments

Suppose we have data from a randomized experiment with J estimands and
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Figure 1. Joint distribution of 1,000 posterior predictive p-values for ITT and CACE
estimates under the alternative hypothesis. Tests for CACE are more powerful because
p-values for CACE tend to be lower.

are interested in testing whether the active treatment has any non-null effects.

The desire for J estimands may result, for example, from multiple outcomes per

unit or from multiple, potentially overlapping subgroups of units. Brown and

Fears (1981) and Westfall and Young (1989) first proposed permutation-based

multiple comparisons adjustments, with the latter showing that such adjustments

outperform traditional (e.g., Bonferroni) adjustments in terms of power. They

did not, however, explicitly motivate their methods using randomized assignment

mechanisms and joint randomization distributions. Furthermore, they assumed

specific models that facilitated the calculation of nominal (unadjusted) p-values

and implicitly assumed completely randomized assignments throughout.

Here we extend their ideas to a fully randomization-based procedure for mul-

tiple comparisons adjustments. Our procedure is connected to — and directly

motivated by — the actual randomized assignment mechanism used in the ex-

periment; in addition, both the nominal and adjusted p-values in our procedure

are randomization-based, so we do not require any assumptions about the under-

lying distribution of the data. We calculate fully randomization-based adjusted

p-values as follows.

1. Choose test statistics and calculate their observed values.

Choose test statistics, (T1, . . . , TJ), and calculate (T obs
1 , . . . , T obs

J ) on the
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observed data.

2. Impute missing potential outcomes.

Impute the missing potential outcomes under the sharp null hypothesis.

3. Calculate nominal p-values for the observed test statistics.

For j = 1, . . . , J , calculate the randomization-based p-value for T obs
j by re-

peatedly (i.e., M ′ times) drawing a random hypothetical assignment vector

according to the assignment mechanism, and calculating the test statis-

tic, T hyp
j , for the corresponding hypothetical observed data. The nominal,

marginal randomization-based p-value for T obs
j (j = 1, . . . , J) equals the

proportion of T hyp
j values that are as extreme as or more extreme than

T obs
j . Record the (T hyp

1 , . . . , T hyp
J ) values for use in Step 4.

4. Calculate nominal (marginal) p-values for the hypothetical test

statistics.

Using theM ′ sets of (T hyp
1 , . . . , T hyp

J ) values from Step 3, calculate a nominal

randomization-based p-value for each T hyp
j and record the minimum of the

p-values for each of the M ′ sets.

5. Obtain the joint randomization distribution of the nominal p-

values.

For large M ′, the repetitions of Step 4 appropriately capture the joint ran-

domization distribution of the test statistics and thus, of the nominal p-

values.

6. Calculate adjusted p-values for the observed test statistics.

The adjusted p-value (Westfall and Young (1989)) for T obs
j (j = 1, . . . , J)

equals the proportion of hypothetical observed datasets for which the mini-

mum of the J nominal p-values for (T hyp
1 , . . . , T hyp

J ) is less than or equal to

the nominal p-value for T obs
j .

Steps 4–5 essentially represent a translation, i.e., re-scaling, of hypothetical

test statistics — which may have different scales — into hypothetical p-values,

which share a common 0–1 scale. Our procedure results in individual adjusted

p-values that are corrected for the FWER but are also directly interpretable on

their own.

Equivalently, to determine α-level significance, we can compare each nomi-

nal p-value to the familywise α-level cutoff: the α-th quantile of the minimums

recorded in Step 4. The probability that no type I errors are made (i.e., that
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we fail to reject all J tests under the null hypothesis) is equivalent to the prob-

ability that all J observed marginal p-values are above the cutoff. This equals

the probability that the minimum of the J observed p-values is above the cutoff,

which is 1−α by construction. Thus, the probability of at least one type I error

— the FWER — is α, as desired.

Randomization-adjusted p-values are more powerful than traditional Bon-

ferroni-adjusted p-values, especially when the correlations among the J test

statistics are high, as shown by simulations. Intuitively, suppose the null hy-

pothesis of zero effects is true and that we have a large number of uncorrelated

test statistics; the probability of at least one type I error is quite high because

of the number of tests being conducted. Now suppose instead that those test

statistics are highly correlated; the probability of at least one type I error is

reduced because the tests’ type I errors are likely to occur simultaneously, i.e.,

for the same random assignments. Bonferroni adjustments in these settings are

the same, simply counting the number of p-values being examined. In contrast,

by utilizing the joint distribution of the nominal p-values, the randomization-

based adjustments account for the correlations among test statistics and are less

conservative.

3.2. Illustrative simulations with multiple testing

We follow the experimental setup from Section 2.3, modified to include mul-

tiple outcomes but without non-compliance. Suppose that researchers now want

to investigate the effect of the new drug on three outcomes: Y·1, Y·2, and Y·3 (with

the first subscript denoting the participant), which measure the severity of heart

attacks (defined as before) in the first, second, and third year after treatment,

respectively. We assume that all of the patients survive through the third year,

and we would like to see whether the drug has an effect on heart attack severity

at any of the three time points.

To evaluate the frequency characteristics of the adjusted randomization-

based p-values, we simulated 1,000 datasets under both null and alternative hy-

potheses according to each of three outcome correlation structures: zero, partial

(approximately 0.5), and perfect correlation. The specific data generation pro-

cesses are found in in Appendices A.2 and B. The correlations among Yi1(z),

Yi2(z), and Yi3(z) (z = 0, 1) are important; however, for a fixed j, the correlation

between Yij(0) and Yij(1) is inconsequential to the simulation because we only

ever observe one of the potential outcomes.

For each simulated dataset, we calculated fully randomization-based adjusted
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Table 4. Proportions of multiple testing simulations in which the null hypothesis was
rejected, under various data generation processes. Based on 1,000 replications.

Rejection Rate at α = .05
Null is true Alternative is true

Bonferroni Randomization-based Bonferroni Randomization-based
Zero correlation 0.042 0.046 0.908 0.919
Partial correlation 0.045 0.053 0.787 0.811
Perfect correlation 0.024 0.045 0.557 0.720

p-values and decided whether or not to reject the null hypothesis of zero treatment

effects across the three time periods at α = .05. For comparison, we also decided

whether or not to reject the null hypothesis using Bonferroni-adjusted p-values.

Simulation results under both null and alternative hypotheses are shown in Table

4. Without sacrificing validity under the null hypothesis, the randomization-

based adjustment displays greater power than the Bonferroni adjustment under

the alternative hypothesis, particularly for scenarios with high correlations among

outcomes.

4. Experiments with Both Non-compliance and Multiple Testing

It is natural to merge the analysis methods presented in Sections 2 and 3

— both of which use the randomized assignment mechanism to aid inference

— for experiments involving both non-compliance and multiple testing. The

results are valid familywise tests that are more powerful from both perspectives:

more powerful than both those based on standard ITT statistics and those using

traditional multiple comparison adjustments.

Suppose again that we have data from a randomized experiment with J esti-

mands and that we are interested in testing whether the active treatment has any

non-null effects. However, not all units comply to their treatment assignments;

assume for simplicity that non-compliance is one-sided. In Section 2, Table 2

displays the observed values of a Science table with two Y potential outcomes

— one observed and one missing — for each unit. Here, Table 5 shows the cor-

responding observed values of a Science table with multiple estimands resulting

from J = 3 outcomes of interest. Each unit has six potential outcomes, only

three of which are observed; the other three are missing. Within unit i, we ob-

serve the same member of (Yij(0), Yij(1)) for each outcome j, e.g., if we observe

Yi1(1), then we also observe Yi2(1) and Yi3(1).

In experiments with non-compliance and multiple testing, obtaining valid

and more powerful familywise tests involves (i) calculating (nominal) posterior
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Table 5. Observed and unobserved values of the Science table from Table 2, now with
three outcomes of interest. Missing (unobserved) data are denoted by question marks.

Assignment D(z) Compliance status Y·1(z) Y·2(z) Y·3(z)
Unit Xi Zi Di(0) Di(1) Ci Yi1(0) Yi1(1) Yi2(0) Yi2(1) Yi3(0) Yi3(1)

1 X1 0 0 ? ? Y obs
11 ? Y obs

12 ? Y obs
13 ?

2 X2 1 0 1 c ? Y obs
21 ? Y obs

22 ? Y obs
23

3 X3 1 0 1 c ? Y obs
31 ? Y obs

32 ? Y obs
33

4 X4 1 0 0 nt ? Y obs
41 ? Y obs

42 ? Y obs
43

. . . . . . . . .
N XN 0 0 ? ? Y obs

N1 ? Y obs
N2 ? Y obs

N3 ?

predictive p-values for CACE according to the procedure in Section 2, and (ii)

calculating adjusted posterior predictive p-values using the joint randomization

distribution of the nominal p-values, according to the procedure in Section 3.

Intuitively, this combined method of analysis is preferable because Steps (i) and

(ii) provide power gains through distinct and unrelated mechanisms, and neither

sacrifices validity in terms of type I error. For the J estimands, we expect each

individual (nominal) CACE p-value to be more powerful than its ITT counterpart

based on the arguments in Section 2. Furthermore, given a set of J nominal p-

values, we expect randomization-adjusted p-values using the nominal p-values’

joint randomization distribution to be more powerful than Bonferroni-adjusted

p-values, as argued in Section 3. Naturally, adjusting more powerful nominal

p-values in a more powerful manner results in adjusted p-values that are doubly

advantageous in terms of power. The full procedure is detailed below.

1. Choose test statistics and calculate their observed values.

Choose test statistics, (T1, . . . , TJ), and calculate (T obs
1 , . . . , T obs

J ) on the

actual observed data.

for i : 1 to M do

2. Impute missing compliance statuses.

Impute the missing compliance statuses, drawing once from their posterior

predictive distribution according to a compliance model that assumes the

null hypothesis.

3. Impute missing potential outcomes.

Impute all of the missing (Y1, . . . , YJ) potential outcomes under the sharp

null hypothesis.

4. Draw a random hypothetical assignment.

Draw a random hypothetical assignment vector according to the assign-

ment mechanism.
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5. Re-observe the data.

Treating the imputed compliance statuses and potential outcomes and the

hypothetical assignment vector as true, create a corresponding hypothet-

ical observed dataset by masking the potential outcomes and compliance

statuses that would not have been observed under the hypothetical as-

signment.

6. Calculate test statistics on the hypothetical observed data.

Calculate (T1, . . . , TJ) on the hypothetical observed data to obtain (T hyp
1 ,

. . . , T hyp
J ). For j = 1, . . . , J , record whether T hyp

j is at least as extreme

as T obs
j .

end for

7. Calculate nominal (marginal) posterior predictive p-values for

the observed test statistics.

For j = 1, . . . , J , the nominal (marginal) posterior predictive p-value for

the null hypothesis with respect to the test statistic Tj equals the pro-

portion of the M imputation-randomization sets created by Steps 2–6 for

which T hyp
j is as extreme as or more extreme than T obs

j .

8. Calculate nominal posterior predictive p-values for the hypothet-

ical test statistics and obtain the joint randomization distribu-

tion of the nominal posterior predictive p-values.

For each of the M imputation-randomization sets, translate the hypotheti-

cal test statistics (T hyp
1 , . . . , T hyp

J ) into hypothetical nominal posterior pre-

dictive p-values using proportions similar to the one described in Step 7.

This step is a computationally efficient way of obtaining the joing distribu-

tion of hypothetical test statistics on a common p-value scale, analogous

to Steps 4–5 from the procedure in Section 3. Record the minimum of

each set of nominal p-values.

9. Calculate adjusted posterior predictive p-values for the observed

test statistics.

The adjusted posterior predictive p-value for T obs
j (j = 1, . . . , J) equals

the proportion of the M imputation-randomization sets for which the min-

imum of the J nominal posterior predictive p-values for (T hyp
1 , . . . , T hyp

J )

is less than or equal to the nominal (marginal) posterior predictive p-value

for T obs
j .

Under the null hypothesis, the outcomes Y·1, . . . , Y·J inform the multiple

imputation of the missing compliance statuses. Posterior predictive imputations
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of the missing compliance statuses can be generated using a data augmentation

algorithm similar to the one described in Section 2, with Equation (2.1) modified

to use the joint set of J observed outcomes.

4.1. Illustrative simulations with both non-compliance and multiple

testing

Again consider the heart treatment example from Sections 2.3 and 3.2: we

would like to see whether the active treatment has an effect on heart attack

severity at any of the three time points after treatment. In these simulations,

we assumed one-sided non-compliance, with N = 1, 000 units randomly sampled

from super-populations with 10% and 30% compliers. We also ran simulations

with 50% and 70% compliance rates, but almost all of the tests were able to

detect treatment effects under the alternative hypotheses, so the comparison

tables were less meaningful. Alternative hypotheses 1, 2, and 3, in that order,

assumed treatment effects of increasing size. The data generation processes are

described in Appendices A.3 and B.

For each simulated dataset, a total of 10 familywise tests were conducted.

Five of the tests used the ITT test statistic: one used the Bonferroni correction

and one used the randomization-based multiple comparisons adjustment. The

other three ITT tests used multiple comparisons adjustments proposed as al-

ternatives to the Bonferroni correction, by Holm (1979), Hochberg (1988), and

Hommel (1988). The remaining five tests used the MLE of CACE (under the

exclusion restriction) as the test statistic instead of the ITT test statistic. Table

6 displays proportions of simulations in which the null hypothesis was rejected,

based on 1,000 replications.

Under the null hypotheses, all 10 familywise tests appear valid in terms of

type I error. The randomization-based tests have the rejection rates closest to

the nominal rejection rates. As expected, the Bonferroni-adjusted tests are con-

servative, especially when correlation among outcomes is high. In such settings,

there are, in a sense, fewer possible effects to detect, and randomization-adjusted

rejection rates are much higher relative to their Bonferroni-adjusted counter-

parts. The Holm, Hochberg, and Hommel procedures all perform similarly to

Bonferroni under the null hypotheses.

Under alternative hypotheses, the CACE tests generally have higher power

than the ITT tests. In addition, the randomization-based tests perform very well,

especially when correlation among outcomes is high. The Bonferroni and Holm

tests perform similarly, while the Hochberg and Hommel tests perform slightly
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Table 6. Proportions of simulations in which the null hypothesis was rejected, under
various data generation processes. Based on 1,000 replications.

Compliance Rate = 0.1 Rejection Rate at α = .05
ITT CACE

Null is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.035 0.035 0.037 0.039 0.050 0.033 0.033 0.033 0.034 0.039
Partial correlation 0.025 0.025 0.026 0.030 0.041 0.025 0.025 0.026 0.031 0.039
Perfect correlation 0.012 0.012 0.047 0.047 0.049 0.008 0.008 0.032 0.032 0.033

ITT CACE
Alternative 1 is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.161 0.161 0.167 0.169 0.189 0.209 0.209 0.217 0.226 0.228
Partial correlation 0.113 0.113 0.118 0.123 0.154 0.179 0.179 0.189 0.196 0.228
Perfect correlation 0.062 0.062 0.139 0.139 0.139 0.094 0.094 0.205 0.205 0.207

ITT CACE
Alternative 2 is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.303 0.303 0.306 0.310 0.342 0.357 0.357 0.366 0.369 0.380
Partial correlation 0.204 0.204 0.219 0.225 0.273 0.303 0.303 0.314 0.320 0.357
Perfect correlation 0.137 0.137 0.270 0.270 0.270 0.184 0.184 0.364 0.364 0.369

ITT CACE
Alternative 3 is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.688 0.688 0.702 0.716 0.754 0.710 0.710 0.746 0.756 0.742
Partial correlation 0.370 0.370 0.384 0.398 0.444 0.474 0.474 0.487 0.499 0.518
Perfect correlation 0.297 0.297 0.465 0.465 0.471 0.357 0.357 0.565 0.565 0.570

Compliance Rate = 0.3 Rejection Rate at α = .05
ITT CACE

Null is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.037 0.037 0.037 0.038 0.046 0.031 0.031 0.032 0.033 0.038
Partial correlation 0.033 0.033 0.035 0.036 0.044 0.025 0.025 0.025 0.026 0.035
Perfect correlation 0.010 0.010 0.032 0.032 0.035 0.007 0.007 0.038 0.038 0.039

ITT CACE
Alternative 1 is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.529 0.529 0.549 0.557 0.595 0.617 0.617 0.632 0.642 0.670
Partial correlation 0.482 0.482 0.511 0.532 0.571 0.604 0.604 0.625 0.638 0.671
Perfect correlation 0.309 0.309 0.492 0.492 0.497 0.420 0.420 0.606 0.606 0.611

ITT CACE
Alternative 2 is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.907 0.907 0.914 0.914 0.923 0.969 0.969 0.978 0.979 0.981
Partial correlation 0.859 0.859 0.868 0.872 0.891 0.946 0.946 0.960 0.963 0.968
Perfect correlation 0.752 0.752 0.862 0.862 0.865 0.871 0.871 0.957 0.957 0.957

ITT CACE
Alternative 3 is true Bonferroni Holm Hochberg Hommel Rand-Based Bonferroni Holm Hochberg Hommel Rand-Based
Zero correlation 0.993 0.993 0.995 0.996 0.996 0.999 0.999 0.999 0.999 0.999
Partial correlation 0.984 0.984 0.986 0.987 0.990 0.997 0.997 0.998 0.999 0.999
Perfect correlation 0.966 0.966 0.993 0.993 0.993 0.989 0.989 0.999 0.999 0.999

better. The randomization-based procedure generally outperforms all four of

the other procedures. In our simulations, CACE tests with randomization-based

multiple comparisons adjustments have up to 3.3 times the power of traditional

Bonferroni ITT tests, when treatment effects are difficult to detect. The relative

power gain is less pronounced when treatment effects are larger, though gains

are still apparent in the absolute scale. In a particular experimental setting, the

magnitude of the power gain from the combined analysis method depends on

the compliance rate, the magnitude of the treatment effect, the α level, and the

correlation of the multiple test statistics.

5. The National Job Training Partnership Act Study

Title II of the United States Job Training Partnership Act (JTPA) of 1982



1336 J. J. LEE, L. FORASTIERE, L. MIRATRIX AND N. S. PILLAI

funded employment training programs for economically disadvantaged residents

(Bloom et al. (1997); Abadie, Angrist and Imbens (2002)). To evaluate the

effectiveness of those training programs, the National JTPA Study conducted a

randomized experiment through 16 local administration areas involving a total of

around 20,000 participants who applied for JTPA services from November 1987

to September 1989 (W.E. Upjohn Institute for Employment Research (2013)).

Treatment group participants were eligible to receive JTPA services, while control

group participants were ineligible to receive JTPA services for 18 months. Not

every participant assigned to the treatment group actually enrolled and received

JTPA services.

5.1. The data

Monthly employment outcomes were recorded for 30 months after assign-

ment through follow-up surveys and administrative records from state unem-

ployment insurance agencies. Researchers were interested in measuring JTPA

effects across three time periods representing various stages of training and em-

ployment: months 1–6 (after assignment), the period when most JTPA enrollees

were in the program; months 7–18, approximately the first post-program year;

and months 19–30, approximately the second post-program year (Bloom et al.

(1997)).

Bloom et al. (1997)’s original JTPA report evaluates effects on average in-

come but does not explicitly address the large portion of zero-income partici-

pants. Although the report describes effects by subperiod as well as by various

participant subgroups, it fails to mention or employ any multiple comparisons

adjustments. Here we focus on JTPA’s effects on employment status and use gen-

der as our only background covariate; this facilitates standard, non-controversial

modeling choices (see Section 5.2) and allows us to highlight our methodological

contributions rather than discuss the sensitivity of our results to various, possi-

bly complicated modeling decisions. Our methods can be extended to evaluate

effects on other outcome variables, such as income and wages, provided that we

outline a reasonable imputation model (Zhang, Rubin and Mealli (2009)).

We would like to evaluate whether JTPA had an effect on employment status

for any of the three time periods. Because employment characteristics often differ

by gender, we examined JTPA effects for the three time periods by gender, for a

total of six gender-time groups. For illustrative purposes, we restricted our study

population to adults who had obtained a high school or GED diploma (7,445, or

66.4%, of the 11,204 total adults in the original JTPA study) and assumed com-
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plete randomization (with an approximate 2 : 1 treatment-to-control assignment

ratio) of the participants, ignoring the local administration structure because of

the limitations of the available data.

Of the 5,009 participants assigned to the treatment group, 3,316 (66.2%)

subsequently received JTPA training. Although the study protocol barred partic-

ipants assigned to the control group from receiving JTPA services for 18 months,

41 (1.7%) of 2,436 adults in the control group did in fact receive services within

that time frame. To create a simpler setting with true one-sided non-compliance,

we discarded these 41 participants (0.6% of the 7,445 total adults in our study)

with the belief that their inclusion would have a negligible influence on the re-

sulting inference.

Given two genders and three time periods, we have six complier-focused es-

timands in total, each one representing the difference in employment proportions

within a particular gender-time group when receiving versus not receiving JTPA

services. Two summaries of the observed data are provided in Figure 2 and Table

7. Figure 2 shows observed employment proportions across the six gender-time

groups by observed compliance status. Within every group, observed compliers

are employed at a higher rate than observed never-takers. Participants with un-

observed compliance statuses are a mixture of compliers and never-takers, and

tend to be employed at a rate in between the rates for observed compliers and

observed never-takers.

Table 7 displays observed employment proportions across the gender-time

groups according to both treatment assignment and treatment receipt, with the

corresponding compliance compositions. We see that participants who received

JTPA services, all of whom are compliers, tend to be employed at a higher rate

than participants who were merely assigned to the treatment group (a mixture of

compliers and never-takers), corroborating the findings in Figure 2 and suggesting

that CACE statistics may lead to more significant estimated effects. In addition,

we observe that participants who did not receive JTPA services — including any

participants assigned to control as well as the never-takers assigned to JTPA —

are employed at a lower rate than just the participants assigned to control. This

inequality is intuitive because the observed never-takers are shown in Figure 2

to be employed at a lower rate than the assigned control group.

5.2. Imputation model for CACE

To test the null hypothesis of zero effects using the CACE statistic specified

in Section 2, we need to specify an imputation model for the missing compliance
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Figure 2. Observed employment proportions for JTPA participants by compliance status
across the six gender-time groups.

Table 7. Observed employment proportions across the six gender-time groups according
to both assignment to and receipt of JTPA services.

Observed Employment Proportions
Assigned Control Assigned Treatment
Ci ∈ {c, nt}, Zi = 0 Ci ∈ {c, nt}, Zi = 1

Female, Months 1–6 0.709 0.723
Female, Months 7–18 0.767 0.800
Female, Months 19–30 0.694 0.714
Male, Months 1–6 0.765 0.785
Male, Months 7–18 0.798 0.789
Male, Months 19–30 0.715 0.712

Received Control Received Treatment
(Ci ∈ {c, nt}, Zi = 0) or (Ci = nt, Zi = 1) Ci = c, Zi = 1

Female, Months 1–6 0.708 0.730
Female, Months 7–18 0.764 0.818
Female, Months 19–30 0.677 0.743
Male, Months 1–6 0.740 0.828
Male, Months 7–18 0.769 0.823
Male, Months 19–30 0.683 0.753

statuses. Let Xi and Yi denote the gender and the length-3 vector of employment

outcomes (across the three time periods) of participant i. The three elements of

Yi are binary, so there are 23 = 8 possible values of Yi; we model Y as a Multi-
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nomial random variable with eight categories. Let ωc be the super-population

proportion of compliers, and let η = (ηfc, ηfn, ηmc, ηmn) be the parameters that

govern the outcome distributions of female compliers, female never-takers, male

compliers, and male never-takers, respectively. Under the null hypothesis, these

are the only four outcome distributions because we disregard treatment assign-

ment. We placed a conjugate Beta(1,1) prior on ωc and independent conjugate

Dirichlet(1) priors on the four η parameters, where 1 is a length-8 vector of 1’s.

Conditional on η and a participant’s gender and compliance status, the nat-

ural outcome distribution under the null hypothesis is:

Y obs
i |Xi = x,Ci = q,η ∼ Multinomial(1, ηxq).

Note that we do not assume that the three employment outcomes are inde-

pendent; this model is fully non-parametric for the joint distribution of the

three outcomes. The posterior distributions of ωc and η are informed by the

outcomes of the participants with observed compliance statuses, i.e., those as-

signed to active treatment, and remain Beta and Dirichlet, respectively. For each

gender x and compliance status q, write the Multinomial probability vector as

ηxq = (πxq1, . . . , πxq7, 1− πxq1 − . . .− πxq7). Let

gxq(y; ηxq) = π
I{y=(0,0,0)}
xq1 π

I{y=(0,0,1)}
xq2 . . . (1− πxq1 − . . .− πxq7)I{y=(1,1,1)}

denote the probability of outcome y for participants of gender x and compliance

status q. Then, given a posterior draw of (ωc,η), the missing compliance statuses

were imputed probabilistically according to Bayes’ rule:

P (Ci = c|Y obs
i , Xi=x, Zi=0, ωc,η) =

ωcgxc(Y
obs
i ; ηxc)

ωcgxc(Y obs
i ; ηxc)+(1−ωc)gxn(Y obs

i ; ηxn)
.

(5.1)

5.3. Results and analysis

The observed values of the ITT and CACE statistics — i.e., the estimated

effects of JTPA assignment and of receipt, respectively — are shown in the

second column of Table 8. As we expect, the observed CACE values have larger

magnitudes; the estimated ITT effects are diluted toward zero by the never-

takers, who do not receive any treatment benefit. Because ITT = ωc ∗ CACE +

(1 − ωc) ∗ 0, the estimated ITT effects are diluted by a proportion equal to one

minus the compliance rate. Due to the random treatment assignment, we expect

the overall compliance rate to be approximately equal to the compliance rate

observed in the treatment group (66.2%).

Using randomization tests and the methods described in Section 4, we ob-
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Table 8. Observed values, nominal p-values, and Bonferroni- and randomization-adjusted
p-values for the six JTPA gender-time groups. Nominal p-values are obtained through
randomization tests using 10,000 randomizations.

Adjusted p-values
ITT Estimated Effect Nominal p-value Bonferroni Randomization
Female, Months 1–6 0.014 0.351 1.000 0.895
Female, Months 7–18 0.020 0.199 1.000 0.685
Female, Months 19–30 0.033 0.014 0.085 0.077
Male, Months 1–6 −0.008 0.582 1.000 0.991
Male, Months 7–18 0.020 0.175 1.000 0.636
Male, Months 19–30 −0.003 0.874 1.000 1.000

Adjusted p-values
CACE Estimated Effect Nominal p-value Bonferroni Randomization
Female, Months 1–6 0.020 0.130 0.778 0.302
Female, Months 7–18 0.034 0.009 0.055 0.026
Female, Months 19–30 0.049 0.0002 0.001 0.001
Male, Months 1–6 −0.010 0.462 1.000 0.804
Male, Months 7–18 0.028 0.028 0.169 0.076
Male, Months 19–30 −0.001 0.967 1.000 1.000

tained one set of nominal ITT p-values and a second set of nominal CACE p-

values, listed in the third column of Table 8. Each set contains six p-values, one

for each gender-time group. We also applied Bonferroni and randomization ad-

justments to both sets of nominal p-values, resulting in four total sets of adjusted

p-values, listed in the rightmost columns of Table 8.

The nominal ITT p-value for the “Female, Months 19–30” group indicates

statistical significance at the α = .05 level. However, after adjusting for mul-

tiple comparisons, neither the Bonferroni- nor randomization-adjusted ITT p-

values for this group meets the .05 threshold. Across the six gender-time groups,

the randomization-adjusted p-values tend to be smaller than their Bonferroni-

adjusted counterparts; the adjusted p-values are tempered less when controlling

the FWER via the statistics’ joint randomization distribution because of the

correlations among the six nominal p-values.

Overall, the CACE p-values are smaller — more sensitive to complier-only

effects — than the ITT p-values. In particular, the CACE p-values for the “Fe-

male, Months 7–18” and “Female, Months 19–30” groups indicate a much greater

level of significance for the estimated effects of JTPA on employment. Applying

randomization-based instead of Bonferroni adjustments to the CACE p-values

further increases the indicated significance of these estimated effects. The small

randomization-adjusted CACE p-values for these groups suggest that either an
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event has occurred that is a priori rare under the sharp null hypothesis of zero

effects, or the sharp null hypothesis is not true — receipt of JTPA services did

have an effect on the employment statuses of females with high school or GED

diplomas in their first and second post-program years. The corresponding ITT

p-values, although smallest among the six groups, are larger and do not have suf-

ficient power to detect an effect on employment status for any of the gender-time

groups.

This increase in power is general. We observed similar p-value trends when

comparing our methods to ITT and Bonferroni analyses on JTPA data without

the high school/GED diploma restriction as well as on other JTPA subgroups

analyzed in Bloom et al. (1997).

6. Conclusion

We have detailed a randomization-based procedure for analyzing experimen-

tal data in the presence of both non-compliance and multiple testing that is more

powerful than traditional ITT and Bonferroni analyses. As shown through simu-

lations and analyses of the National JTPA Study data, a combined randomization-

based procedure can be doubly advantageous, offering gains in power from both

perspectives.

The ITT tests for the JTPA Study suggest that the training program had

no real effects in increasing employment for either gender at any time point. The

Bonferroni-adjusted CACE tests suggest that JTPA only increased employment

for females in the long term (months 19–30). From a policy perspective, this

initiative may be deemed too costly based on the time delay, as well as the

fact that all five other subgroups had insignificant effects. Once we look at the

randomization-adjusted CACE tests though, we conclude that JTPA actually had

a positive effect on employment for females as soon as they finish the training

program, and that the effect sustained into the longer term. Thus, it seems

reasonable for policymakers to fund similar job training programs targeted for

women.

Westfall and Young (1989) assumed Binomial data that facilitated closed-

form calculations of nominal p-values, which were then adjusted using a permu-

tation test. Here we propose fully randomization-based p-values ?- we exploit the

randomization test to calculate both nominal and adjusted p-values. In addition,

Westfall and Young (1989) described the adjusted p-values as “permutation-

style,” not explicitly motivated by the assignment mechanism in a randomized
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experiment. In its exploration of non-compliance, Rubin (1998) required the ran-

domization test to follow the randomized assignment mechanism actually used

in the original experiment, an approach we advocate.

A number of other multiple comparisons procedures aim to address the false

discovery rate (FDR) (Benjamini and Hochberg (1995)), rather than the FWER.

These two error metrics are conceptually different; the choice of metric should be

decided by the researcher depending on the field and specific research setting and

goals. FDR is often preferred in settings with a large number of tests, such as

genetic studies, in which finding one true genetic link may outweigh finding a few

spurious links. In such cases, attempting to make exactly zero type I errors can

be quite restrictive. On the other hand, FWER is often used in social science and

pharmaceutical settings, in which governmental and regulatory agencies place the

onus on the researcher to show that the treatment provides a beneficial effect.

In these cases, the number of tests tends to be smaller, and type I errors can

be extremely costly in terms of dollars to taxpayers and health risks to patients.

For these reasons, we focused our discussion on the FWER.
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Appendix

A. Marginal Distributions for Simulations

A.1. Non-compliance

For unit i = 1, . . . , N , the control potential outcomes for compliers and

never-takers have the marginal distributions

Yi(0)|Ci = c ∼ Multinomial(.45, .45, .10); (A.1)

Yi(0)|Ci = nt ∼ Multinomial(.02, .02, .96). (A.2)

Under the null hypothesis, Yi(1) has the same marginal distribution as Yi(0)

regardless of compliance status. Under the alternative hypothesis, the complier

treatment potential outcomes follow:

Yi(1)|Ci = c ∼ Multinomial(.80, .10, .10), (A.3)
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while the never-taker treatment potential outcomes follow (A.2).

A.2. Multiple testing

For unit i = 1, . . . , N and outcome j = 1, 2, 3, the marginal distributions of

the control potential outcomes are

Yij(0) ∼ Multinomial(.45, .45, .10). (A.4)

Under the null hypothesis, Yij(1) has the same marginal distribution as Yij(0).

Under the alternative hypotheses, the marginal distributions of the treatment

potential outcomes are

Yij(1) ∼ Multinomial(.50, .45, .05). (A.5)

A.3. Non-compliance and multiple testing

Under the null hypothesis, the potential outcomes follow the marginal dis-

tributions at (A.1) and (A.2) in Appendix A.1. Yi(1) has the same marginal

distribution as Yi(0) regardless of compliance status.

Under alternative hypothesis 1, the complier potential outcomes marginally

follow

Yi(0)|Ci = c ∼ Multinomial(.45, .45, .10);

Yi(1)|Ci = c ∼ Multinomial(.80, .10, .10). (A.6)

Under alternative hypothesis 2, the complier potential outcomes marginally

follow

Yi(0)|Ci = c ∼ Multinomial(.30, .60, .10);

Yi(1)|Ci = c ∼ Multinomial(.80, .10, .10). (A.7)

Under alternative hypothesis 3, the complier potential outcomes marginally

follow

Yi(0)|Ci = c ∼ Multinomial(.25, .55, .20);

Yi(1)|Ci = c ∼ Multinomial(.80, .10, .10). (A.8)

B. Correlation Structure Generation

To simulate correlation structures among multiple outcomes, we used the

following processes utilizing the marginal distributions described in Appendix A.

For units i = 1, . . . , N and treatment assignment z = 0, 1,

• Zero correlation: all Yij(z) (j = 1, 2, 3) were drawn independently according
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to their marginal distributions.

• Partial correlation: Yi1(z) was drawn according to its marginal distribution.

With probability 1/2, Yi2(z) was set equal to the drawn value of Yi1(z);

otherwise, Yi2(z) was drawn independently according to its marginal dis-

tribution. Yi3(z) was set equal to Yi1(z) with probability 1/3, set equal

to Yi2(z) with probability 1/3, or drawn independently according to its

marginal distribution.

• Perfect correlation: Yi1(z) was drawn according to its marginal distribution.

Then both Yi2(z) and Yi3(z) were set equal to the drawn value of Yi1(z).
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