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Supplementary Material

The supplementary material here includes the detailed proofs of Theorems 1-4 and

Proposition 1 in the paper.

S1 Detailed proofs

Proof of Theorem 1. Without loss of generality, we assume p, = 0.
Condition Al indicates that P{|S,(i,j) — Xo(i,J)| > 6} < Cexp(—cd?n) for i,j =
1,...,pn with an arbitrarily small constant § € (0, c0) (see, for example, (11) and Lemma

A3 of Bickel and Levina (2008)), and hence
W2 — W33 = Op{log(pa)/n} = W~ — Wy |3, (SL.1)

Under Condition A2, we have P{|S,(i,j) — Zo(i,7)| > 0} < Cn=P/468/2 for i,j =
1,...,p, with a constant 6 € (0,00) (see, for example, Lemma 2 of Ravikumar et al.

(2011)), which implies
[W2 = W3 = O (py/?/m) = W' — Wi 3. (51.2)
It’s easy to see that Condition A3 implies
W2 = W13 = Op(pn/m) = W~ = W 3.
Therefore, under either Condition Al or A2 or A3,
W2 = W13 = op(1) = W — W5 3.

To prove ||@prop_1 —0O¢|l2 L0, it suffices to show that H(NZ,M — Qoll2 5o
Under Condition Al or A2, 3, being diagonal induces I'y = I,,. From (2.2),
Q. = {pn/tr(R,)},, =1, due to k, = 1. Hence, ||, — Qoll2 5o.
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Under Condition A3, we first prove ||S,, — 3o||2 20 for 3o=1,,. Fori=1,...,n,
define X = (X7,Y])T € RP» with p! > p, an integer and Y,...,Y, € RPn=Pr
i.i.d. random vectors, such that {eJTan: ci=1,...,n;5=1,...,p:} are i.i.d. random
variables. Let Si =n~'3"" | X: X7,

From Theorem 2 of Bai and Yin (1993), if lim, . p}/n = y with a constant

€ (0,1), then Apax(S%) 5 (1+/7)? and Apin(S}) 5 (1—/9)% We know Ayin(S;) <
Amin( X0 X XT) < Ana (R0 X XT) < Amax(S%). Thus, if y is arbitrarily
close to 0, then we have Apax (™' 320 | X, X7) 21 and Amin(n 10 X X)) 5.

From

1Sy — Zol|2 < Hn—l > X XT - EOH FIXX |y =1+11,
2
=1

I = max{Amax (™' X0, XoXT) = 1, Pain(n ' 0, XoXT) = 1]} 5 0 and 1 =
x'x 5 0, we have ||S,, — Xo||2 2.
: 1/2 —1/2 —1/2
For ¥y not necessarily equal to I, , [|S, — Zolla < ||y [2|2g " “SnXy '~ —

I, ||2||E(1)/2H2 50, since Eal/ZSnEal/Q is the sample covariance matrix of {Eal/zXh

o 251/2Xn} which are i.i.d. with covariance matrix I,,, and

Pn
—1/2 —1/2
{(B(el,, =g XY < S {E(lel,, B0 ey, Xua )}

1,pn
i=1

Pn
q4y\1/4 T -1/2 _ 4\11/4 ) 52— 1/2
< mas (B0 D el B e | = mas (E(X) 120
< C<oo.
Therefore, |R,, —I'o||2 5 0, which implies that ||, — Q0|2 5 0 since lim inf, yoo{kn —
cond ()} > 0.
The result ||©

Bpll2). W

-1
prop—1

-1
prop—1

— S/l2 = 0 comes from ||© — Soll2 = Op(||®prop_1 —

Proof of Theorem 2. Suppose the eigendecomposition of R, is Qdiag(xl, e 7Xp" )QT,
where Xl > e > Xpn are the eigenvalues of R,,. From Won et al. (2013), ﬁ;ﬂl =
Qdiag(\1, . .. ,X]I,H)QT7 where \; = min{max(7*, \;), k,7*} with 7* € (0, 00) depending
on /):1, e ,Xp" and k,. Hence, ﬁ;l truncates the eigenvalues of R,,. From Stewart and

Sun (1990) (Corollary 4.10, p. 203),

Ro- Al <070 -1
max (%= A <951 = Toll,
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where Ay > --- > X, are the eigenvalues of T'g. If ||§;}—F0H2 L0, then maxi<i<p, X —
Adl L 0 which implies that F, converges weakly to Fj in probability. Therefore, to
prove Héprop,1 — Og|l2 - 0 in probability, we only need to show ||S~2;n1 —Toll2 = 0 in
probability, and it suffices to show that F2 doesn’t converge weakly to Fp in probability.

Under Condition B1, if lim,— .o pn/n = o0, then the rank of R, is at most n
when p, > n, and hence, the proportion of the 0 eigenvalues among /):1, e ,Xp" is
at least (p, — n)/p, which converges to 1 as n — co. Therefore, FR» will converge
weakly to Ijp o) in probability. Since X\ = min{max(TﬁXi), KnT*}, if Fn converges
weakly in probability, then the limit is I ) for some ¢ € [0,00). Since Fy # Ijo )
for any C' € [0,00), F2%. doesn’t converge weakly to Fp in probability. Therefore,
||(:)prop,1 — Og||2 = 0 in probability.

Under Condition B2, we will show that |Cond(§;j) — cond(Ty)| - 0 in probability
which implies that Hﬁgj — Toll2 = 0 in probability. From Theorem 1 in Won et al.
(2013), cond(ﬁ;:) = min{s,, cond(R,)}. Since | min{x,, cond(R,)} — cond(I'g)| - 0
in probability, we have |Cond(§;"1) — cond(T'g)| - 0 in probability as n — oo.

Under Condition B3, we will show that F2%. does not converge weakly to Fy in
probability. We truncate FR» in order to obtain ]Fﬁz'i, ie., Fﬁf;{ = FBn Ljre popre) +

min

Lkpreo0). If Fn converges weakly to Fpy in probability, then Fy = Flj . ..+

+,00)» Which contradicts Condition B3.

[lna

Therefore, we have demonstrated that ||(:)pr0p,1 — Ogl|2 » 0 in probability under
-1

either Condition B1 or B2 or B3. Next, we will show that ||©,.,,_; — Zoll2 + 0
~—1 ~

in probability. If [[©,,,, 1 — Zoll2 = op(1), then [|Opop—1 — Ogll2 = op(1) because

~ ~—1
[©prop-1 — Ooll2 = Op(||©

prop—1 —
—1

prop—1

%o]l2). Since [[©prop—1 — Ogll2 + 0 in probability,
we can claim ||@ 3|2 - 0 in probability. B
Proof of Theorem 3. Following the proofs of Corollaries 1 and 2 in Ravikumar et al.

(2011), we have that, with probability tending to 1,
[QrBLz — Q0l2, < Cr),

with 7} = log(p,)/n under Condition C1, and r} = pff/ﬁ/n under Condition C2, where
| - |oo is the matrix elementwise Lo, norm defined as |A|w = max; ; |A(4, j)| for a generic

matrix A. The proof of Theorem 1 in Ravikumar et al. (2011) indicates that {(,7) :
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OrpLz (4,7) 0} C{(i,4) : Qo(¢,7) # 0} with probability tending to 1.
Forn =1,2,..., let A,, denote the event that |§RBLZ — Q|2 < Cry and {(i,7) :
Qrirz(i,§) # 0} € {(i,5) : Qo(4,j) # 0}. Hence, lim,_,oc P(A,) = 1. Then, conditional

on event A,, we have

||§RBLZ -l < ||§RBLZ - Q%
Pn

= ) Qrprz(id) — Q)2+ YD [Qrerz(i.j) — Q(i,4)* (S1.3)
i=1 i#5:Q0(1,5)#0

and

1QrBLz — Qol12 < [|QrBLZ — Q% < ti|§RBLZ — Qo2 (S1.4)

If p, < sp, then (S1.3) and (S1.4) indicate ||§AZRBLZ — Q3 < Cmin(p, + s,,t2)r) <
Cr, under Condition C1 or C2. Next, we consider the case p, > s,. Define t; =
{j = 1,...,pn : Og(i,j) # 0}]. For any i € {1,...,p,} such that ¢/ = 1, we know
Qoe; p, = €ip,, which means that the diagonal element is the only nonzero element in
the ith column of Qq. Since p, > s, we have |{i = 1,...,p, : t!, = 1} > p, — sp.
Because {(i,5) : Qrprz(i,j) # 0} C {(i,5) : Qo(i,j) # 0}, from the definition of
(AZRBLZ, we have (AZRBLZeLpn =e;p, foranyie {1,...,p,} with Qoe;,, = e;,,. Hence,
|§RBLZ(i,i) — Qo(i,i)| =0 for i € {1,...,p,} with t{, = 1. Therefore, (S1.3) indicates
|QrBLz — Q12 < C(1+s,)r7, which together with (S1.4) implies that ||[Qrsrz — Qo2 <
Cmin(1 + s,,t2)r: < Cry,.

Hence, under Condition C1 or C2, HQRBLZ —Qo|2 = Op(ry). Therefore, from (S1.1)
and (S1.2),

H(:)RBLZ —0¢l2 = ||W71§RBLZW71 — Wyt QoW 2
< W = Wy ol €rBLz — Qo2 = Wt

HIW = W5 2 (1 mbuz W iz + W 12]190]12)

HI2rLz — Qoll2|[W 2] Wy |2 = Op(ry/?).

et 2 ~ o ! 2 o 2
We obtain [|@gpp; — X053 = Op(ry), since [|@gpyy — Xoll3 = Op([|@Orprz — O9l|3). B

Proof of Theorem 4. Following the proof of Theorem 3, under Condition C1 or
C2, |QrBLz — Q|2 = Op(r,). Now that cond(Qrprz) — cond(€) = op(1), from
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liminf, o {kn — cond(Qp)} > 0, we have cond(ﬁRBLz) < Ky with probability tend-
ing to 1, which means that (Alﬂm,in = (AZRBLZ with probability tending to 1, and hence
lim,, oo P(@prop,g = (:)RBLZ) = 1. Therefore, from the conclusion in Theorem 3,

~ ~—1
||®prop—2 - @OH% = OP(TTL) = ”@ - EOH% u

prop—2

Proof of Proposition 1. From (3.2) and (3.3), suppose the eigendecomposition of
variable Q is RMRT, where R is orthogonal and M = diag(my,...,m,,) with m; <
- <myp, . For Step 1 in Section 3,

argmin  L,(Q, 207D, yli-1)
Q>0, cond(Q) <k,

= argmin  — log{det()} + tr(R, Q) + B||Q —z0=D L -2
Q>0, cond(Q)<rp 2

= argmin  — log{det()} + tr(R, Q) + Btr{QQT +2(—20=Y L yti-HoT)
Q>0, cond(Q) <k, 2

= argmin  — log{det(Q)} + Btr(QQT) + ptr{(R,/p — 20~V + U=D)aT}
Q>0, cond(Q)<rn, 2

= argmin  — log{det(Q)} + 2tx(QQ7) + ptr{(VDVT)QT}
0, cond(Q) <rn 2

= arg min — log{det(M)} + Btr(MMT) + ptr{(VDVT)(RMRT)T}
Q=RMRT:M»0, cond(M)<k,, 2

= arg min — log{det(M)} + gtr(MMT) + ptr(DMT).  (S1.5)

Q=RMRT:R=V, M =0, cond(M)<r,
The last equation in (S1.5) is true since tr{(VDVT)(RMRT)T} > tr(DMT) with equal-
ity if R =V (Theorem 14.3.2 in Farrell (1985)). Therefore, to prove Q) = VDVT it

suffices to show that

D= argmin  —log{det(M)} + Ltr(MMT) + ptr(DMT),
M:M >0, cond(M)<rn 2

which is equivalent to

Pn Pn Pn
D = arg min {—Zlog(mj)+82m?+p2djmj}
M:0<m1<---<my, ,mp, /m1<knp =1 2 = =
Pn
= arg min Z { —log(m;) + B(mj + dj)Q}. (51.6)
M:37,0<r<mi <o Smy, Skt 577 2
Define
p
9(my; d;) = —log(my) + 5 (m; + dj)*.
Then, g(mj;d;) is strictly convex in m; € (0,00) for any j = 1,...,p,, and has a

unique minimizer §; = —d;/2 + \/d3/4+41/p. Noting that 0 < & < --- < 4, if
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8y, /01 < K, then D = diag(dy,...,d,,) coincides with the solution to problem (S1.6)
with any 7 € [9,, /Kn, 61].

For case 0, /01 > ky, we first consider minimizing the objective function in (S1.6)

with respect to mq,...,mp, separately. For any 7 > 0 and j =1,...,py, it follows that
Pn
mj(r) := argmin Zg (my;d) = argmin g(mj;d;) = min{max(, d;), kn7}
T<Mm;<knT b1 T<Mm;<knT
T, if 0; <,

= 05, if 7 <65 < Ry,
KnT, if §; > Kk,T.

Since 7 <mj(1) < --- <my (1) < K, for any 7 > 0, problem (S1.6) amounts to

arg min E g(myj;d;) = arg min E g(m
M:37>0,m;= =mj} T)j 1 M:37>0,m;= =mj} T)j 1

Therefore, to prove that D is the solution to the optimization problem in (S1.6), we only

need to show that 79 is the minimizer of

Pn

)= gmi(ridy) = > g(mdi)+ Y gOpdi)+ Yo glkaTidy).

jio; <t J:T<6;<knT Ji0; > KT
We can verify that g(m}(7);d;) is a convex function of 7 € (0, 00) and has a continuous
first-order derivative with respect to 7 € (0,00), for any j = 1,...,p,. Therefore,
f(7) is convex and continuously differentiable for 7 € (0,00). For a € {1,...,p,} and

Be{l,...,p,} such that § — 1 > «, define

Rop = {7:0a <7 <da41 and dg_1 < K, 7 < I3},
a B—1 Pn
fap(r) = D amd)+ D g(5d) + > g(karsdy).
j=1 j=atl =B

Then, f(7) = fa,5(7) for 7 € Ry p. Since f 5(7) > 0 for 7 € Ry 5, we know f'(7) is
strictly monotone increasing on [01,0,, /kn]. It’s also easy to see that f(7) is decreasing
for 7 € (0,61] and increasing for T € [d,, /kn,00). Then, the unique minimizer of f(r) is
the value of 7 € [01, 0, /ky] such that f/'(7) = 0.

The solution to f/, 5(7) =0 for 7 € (0,00) is

Ta g = [p(édernn:Z;dj)Jr{ <Zd +/£7,Zd) +4p(a + Kn’py
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1/2
k2Bt )t pu = B0} | {2000+ ku®pn = k0?8 + K},

Then, 74,3 is also the solution to f'(7) = 0 if and only if 7, g € R, g. This value of 74 3
is the same as 7.

In practice, we can search over {Rn, 3 : o, 8 = 1,...,p,} to find ap and By such
that Tag.8, € Ray.8,- Start the selection procedure from (a*,*), where o* = 1 and
f* is the smallest index in {1,...,p,} such that dg« > Kpda-. If Tox g« & Ro= g+, then
move on to Ryx41.g+, Ra*41,8++1 OF Rox g«41 for the selection of oy and By. Specifically,
if Kpdax41 < d-, then move on to Ryx41,8+; if kKpdaxy1 > dg+, then go to Rox g-41;
otherwise, continue searching a and Sy within R,«41,3+4+1. Repeat the above procedure

until condition 7, 3 € R, g is satisfied. The procedure requires O(p,,) operations. l



