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Abstract: Estimation of large precision matrices is fundamental to high-dimensional

inference. An important issue is to deal with ill-conditioning of the precision matrix

estimate, typically encountered in finite-samples, but rarely studied in the litera-

ture. In this paper, we focus on estimating the precision matrix by imposing a

bound on the condition number of the estimate, which effectively ensures well-

conditioning. Specifically, we propose a correlation-based estimator, constrained

with both the condition number and the L1 penalty, yielding a precision matrix

estimator with theoretically guaranteed rate of convergence. This result further en-

ables us to demonstrate that incorporating the L1 penalty is necessary for achieving

consistency of the resulting estimator in typical high-dimensional settings, while in-

consistency will occur when the L1 penalty is absent. An algorithm based on the

alternating direction method of multipliers is developed to implement the proposed

method, which reveals the satisfactory performance in simulation studies. An ap-

plication of the method to a call center data is illustrated.

Key words and phrases: Condition number, covariance matrix, penalization, preci-

sion matrix, sparsity.

1. Introduction

Estimation of a large precision matrix has been an important and challeng-

ing problem with applications in many scientific fields. For example, in linear

discriminant analysis, optimal portfolio selection, recovery of the structure of

undirected Gaussian graphical model, and detection of activated brain regions

for neuroimaging data estimation of the precision matrix is needed. Given n i.i.d.

pn-variate random vectors, the inverse of the sample covariance matrix, S−1
n , is

commonly used for estimating the precision matrix Σ−1
0 , where Σ0 is the true

covariance matrix. When the dimension pn is fixed, Sn is consistent for Σ0,

but when pn > n, the singularity of Sn makes its inverse unavailable. Even if

pn ≤ n, S−1
n may be inconsistent when limn→∞ pn/n = c for a constant c ∈ (0, 1]
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(Marčenko and Pastur (1967)). Besides the potential issue of inconsistency asso-

ciated with precision matrix estimator, another issue is that its condition number

is large, or inflated in practice.

In the literature, several approaches for estimating the covariance matrix

have been developed. See Bickel and Levina (2008), Cai and Liu (2011), Cai

and Zhou (2012), Liu, Wang and Zhao (2014), Rothman (2012), Rothman, Lev-

ina and Zhu (2009), and Xue, Ma and Zou (2012), among others. The inverses

of these estimators are consistent for the precision matrix. At the same time,

regularization schemes have been proposed to estimate the precision matrix di-

rectly. For example, Meinshausen and Bühlmann (2006) proposed an L1 pe-

nalized regression approach, which was extended by Peng et al. (2009). Other

works utilizing the penalized log-likelihood approach include Banerjee, El Ghaoui

and d’Aspremont (2008), Friedman, Hastie and Tibshirani (2008), and Lam and

Fan (2009). These methods simultaneously recover the sparsity structure of the

precision matrix. Although the aforementioned estimators are consistent, the

problem of ill-conditioning was not taken into consideration. To protect the con-

dition number of the precision matrix estimate from being inflated, a natural

way is to shrink the eigenvalues of the estimator. For example, Won et al. (2013)

developed an estimator of Σ0 by imposing a bound on the condition number of

the estimator, but did not address the issue of inconsistency.

In this work, we focus on estimating the precision matrix with a condition

number constraint. We consider a correlation-based estimator of the precision

matrix with the condition number constraint, and study its asymptotic proper-

ties. We incorporate the L1 penalty with the proposed estimator and examine

its effect on the consistency of the condition number constrained estimator. We

show that if the L1 penalty is absent, the estimator is consistent only in restric-

tive cases and inconsistent in many circumstances. Under regularity conditions,

we find the convergence rate of our estimator with the L1 penalty incorporated

in high-dimensional cases, allowing limn→∞ pn/n > 0.

Our estimator with the L1 penalty is asymptotically equivalent to the corre-

lation-based SPICE estimator developed in Rothman et al. (2008), but has an

advantage in that it possesses a constrained condition number and enjoys better

finite-sample performance. To implement our estimation method, we develop an

algorithm based on the alternating direction method of multipliers (Boyd et al.

(2010)). Simulations and data analyses reveal the satisfactory performance of

our proposed estimator with the L1 penalty included.

The rest of this paper is organized as follows. Section 2 proposes the condi-
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tion number constrained estimator of the precision matrix, details situations in

which consistency and inconsistency take place and derives the convergence rate

of the estimator with the L1 penalty incorporated. Section 3 develops the algo-

rithm for the estimator Θ̂prop−2 defined at (2.5) and (2.6). Section 4 discusses

data-driven choices of the tuning parameters. Section 5 presents simulations and

Section 6 analyzes data. The supplementary material includes the proofs of the

results.

We introduce some notation here. For any set G, denote by |G| the cardi-

nality of G. For matrices A and B of size m ×m, λmin(A) and λmax(A) denote

the smallest and largest eigenvalues of A, respectively, A � 0 means that A is

positive definite, and A ⊗ B is the Kronecker matrix product. We write A(i, j)

for the element of A in the ith row and jth column. The trace of A is denoted

by tr(A) and det(A) is the determinant of A. The off-diagonal elementwise L1

norm of A is

|A|1 =
∑∑

1≤i 6=j≤m
|A(i, j)|. (1.1)

The L2, L∞, and Frobenius norms of A are ‖A‖2 = {λmax(ATA)}1/2, ‖A‖∞ =

max1≤i≤m
∑m

j=1 |A(i, j)|, and ‖A‖F = {tr(ATA)}1/2, respectively. Denote by Im
the m × m identity matrix and by eq,m the qth column of Im. The empirical

spectral distribution of A is FA(x) = m−1|{j ≤ m : λj ≤ x}|, where {λj}mj=1 are

the eigenvalues of A. For a sequence of random distribution functions {Fn}n≥1

and a deterministic distribution function F0, we write Fn(x)
P→ F0(x) as n→∞

at any continuous point x of F0 to denote that Fn converges weakly to F0 in

probability. For a vector v = (v1, . . . , vm)T , the L1 norm is ‖v‖1 =
∑m

i=1 |vi|.
For two sequences of positive real numbers {an}∞n=1 and {bn}∞n=1, an � bn denotes

that an = O(bn) and bn = O(an). In the following, C and c are generic finite

constants that may vary from place to place and do not depend on n.

2. Condition Number Constrained Estimator of Σ−1
0

Throughout, X1, . . . ,Xn are i.i.d. pn-variate random vectors, with Xi =

(Xi,1, . . . , Xi,pn)T . We write µ0 = E(Xi) ∈ Rpn and Σ0 = cov(Xi,Xi) and

assume Σ0 is positive definite. If X1, . . . ,Xn are normally distributed, the log-

likelihood is

`n(µ0,Σ0) = −npn
2

log(2π)
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− 1

2

[
− n log{det(Σ−1

0 )}+

n∑
i=1

(Xi − µ0)TΣ−1
0 (Xi − µ0)

]
.

Write the maximum likelihood estimators (MLEs) of µ0 and Σ0 as X and Sn.

If we replace µ0 with X, the Gaussian log-likelihood function is

`n(X,Σ0) = −npn
2

log(2π)− n

2
[− log{det(Σ−1

0 )}+ tr(SnΣ
−1
0 )].

Let Θ0 = Σ−1
0 be the precision matrix of Xi. We focus on estimating Θ0.

It is known that, when pn is fixed, S−1
n is a well-behaved estimator of Θ0.

However, when limn→∞ pn/n = c with a constant c ∈ (0, 1], S−1
n may be ill-

conditioned (Marčenko and Pastur (1967)), i.e. the condition number is in-

flated where condition number of a positive-definite matrix Σ is defined as

cond(Σ) = λmax(Σ)/λmin(Σ). Particularly, if pn > n, then Sn is not invert-

ible. When the dimension is large, S−1
n is either numerically unavailable or ill-

conditioned.

We consider estimating Θ0 by imposing a condition number constraint while

minimizing the negative Gaussian log-likelihood function. Although the underly-

ing distribution of X1, . . . ,Xn may not be Gaussian, its log-likelihood still per-

forms well as a loss function in both theoretical and practical aspects. Sections

2.1 and 2.2 study the properties of the condition number constrained estimators

of Θ0, in the absence and presence of an L1 penalty, respectively. Proofs of the

results are given in the supplementary material.

2.1. Condition number constrained estimator: without L1 penalty

Let Σ0 = W0Γ0W0, where Γ0 is the true correlation matrix and W0 is the

diagonal matrix of the true standard deviations. If Ω0 = Γ−1
0 , then Θ0 =

W−1
0 Ω0W

−1
0 . Let Sn = ŴRnŴ , where Ŵ 2 is the diagonal matrix with the

same diagonal as Sn and Rn is the sample correlation matrix.

We propose an estimator of the precision matrix

Θ̂prop−1 = Ŵ−1Ω̃κn
Ŵ−1, (2.1)

where Ω̃κn
is the solution tominimize

Ω�0
− log{det(Ω)}+ tr(RnΩ),

subject to cond(Ω) ≤ κn,
(2.2)

with a tuning parameter κn ≥ 1.

Won et al. (2013) developed a well-conditioned estimator Σ̂WLKR of Σ0. The

inverse of their estimator, Θ̂WLKR = Σ̂−1
WLKR, is also well-conditioned and can
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be obtained by solvingminimize
Θ�0

− log{det(Θ)}+ tr(SnΘ),

subject to cond(Θ) ≤ κn,
(2.3)

where κn ≥ 1 is a tuning parameter. The difference between Θ̂prop−1 in (2.1) and

Θ̂WLKR in (2.3) is that Θ̂prop−1 is a correlation-based estimator while Θ̂WLKR

regularizes the precision matrix directly.

From Won et al. (2013), Ω̃−1
κn

in (2.2) truncates the eigenvalues of Rn. How-

ever, because of the condition number constraint, Ω̃−1
κn

and Rn have different

asymptotic behaviors. We examine the asymptotic properties of Θ̂prop−1. The

following conditions will be involved.

A1. limn→∞ log(pn)/n = 0, max1≤j≤pn E[et{X1,j−E(X1,j)}2 ] < C for |t| < c, Σ0 is

diagonal, and κn = 1, where C ∈ (0,∞) and c ∈ (0,∞).

A2. limn→∞ p
4/β
n /n = 0, max1≤j≤pn E{|X1,j − E(X1,j)|β} < C, Σ0 is diagonal,

and κn = 1, where β ∈ [4,∞) and C ∈ (0,∞).

A3. limn→∞ pn/n = 0, max1≤j≤pn E{|X1,j − E(X1,j)|4} < C, ‖Σ−1/2
0 ‖∞ < C

with constant C ∈ (0,∞), and lim infn→∞{κn−cond(Ω0)} > 0. For any i =

1, . . . , n, {eTj,pnΣ
−1/2
0 (Xi − µ0) : j = 1, . . . , pn} are i.i.d. random variables.

Theorem 1 (consistency of Θ̂prop−1). Suppose X1, . . . ,Xn ∈ Rpn are i.i.d. with

mean vector µ0 and covariance matrix Σ0, and 0 < c ≤ λmin(Σ0) ≤ λmax(Σ0) ≤
C < ∞. For Θ̂prop−1 in (2.1), under Condition A1 or A2 or A3, we have

‖Θ̂prop−1 −Θ0‖2
P→ 0 and ‖Θ̂−1

prop−1 −Σ0‖2
P→ 0 as n→∞.

The results of Theorem 1 also hold for Θ̂WLKR if we replace Conditions A1,

A2, and A3 respectively by the following.

A1∗. limn→∞ log(pn)/n = 0, max1≤j≤pn E[et{X1,j−E(X1,j)}2 ] < C for |t| < c, Σ0 =

Ipn , and κn = 1, where C ∈ (0,∞) and c ∈ (0,∞).

A2∗. limn→∞ p
4/β
n /n = 0, max1≤j≤pn E{|X1,j − E(X1,j)|β} < C, Σ0 = Ipn , and

κn = 1, where β ∈ [4,∞) and C ∈ (0,∞).

A3∗. limn→∞ pn/n = 0, max1≤j≤pn E{|X1,j − E(X1,j)|4} < C, ‖Σ−1/2
0 ‖∞ < C

with constant C ∈ (0,∞), and lim infn→∞{κn−cond(Θ0)} > 0. For any i =

1, . . . , n, {eTj,pnΣ
−1/2
0 (Xi − µ0) : j = 1, . . . , pn} are i.i.d. random variables.

Condition A3 has been considered by Bai and Yin (1993) and El Karoui (2009),

and holds when X1, . . . ,Xn are, for example, normal. Comparing Conditions A1
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and A2 with A1∗ and A2∗, in high-dimensional settings, Θ̂prop−1 is consistent

for Θ0 when Σ0 is diagonal, while the consistency of Θ̂WLKR requires Σ0 = Ipn .

Conditions A1–A3 are restrictive. Theorem 2 details situations in which Θ̂prop−1

is inconsistent.

Denote by FΓ0 the empirical spectral distribution of Γ0. Suppose FΓ0 con-

verges to a probability distribution function F0 weakly as n→∞, and let

lmin = inf{x : F0(x) > 0}, lmax = sup{x : F0(x) < 1},
cmin = inf{F0(x) : F0(x) > 0}, cmax = sup{F0(x) : F0(x) < 1}.

(2.4)

Denote by FRn the empirical spectral distribution of Rn. From Theorem 1 of El

Karoui (2009), if X1, . . . ,Xn are i.i.d. random vectors, {eTj,pnΣ
−1/2
0 (Xi − µ0) :

j = 1, . . . , pn} are i.i.d. random variables for any i = 1, . . . , n, FΓ0 converges to F0

weakly, max1≤j≤pn E{|X1,j − E(X1,j)|β} < C, ‖Σ−1/2
0 ‖∞ < C, ‖Γ0‖2 < C, and

limn→∞ pn/n = y with constants β ∈ (4,∞), C ∈ (0,∞), and y ∈ (0,∞), then

FRn converges weakly to a distribution function F in probability. We provide

regularity conditions that are needed in Theorem 2.

B1. ‖Ŵ 2 −W 2
0 ‖2 = oP(1), limn→∞ pn/n = ∞, and F0 6= I[C,∞) for any C ∈

[0,∞).

B2. ‖Ŵ 2 −W 2
0 ‖2 = oP(1) and |min{κn, cond(Rn)} − cond(Γ0)| 9 0 in proba-

bility as n→∞.

B3. {eTj,pnΣ
−1/2
0 (Xi − µ0) : j = 1, . . . , pn} are i.i.d. random variables, for any

i = 1, . . . , n. 0 < lmin < lmax < ∞, max1≤j≤pn E{|X1,j − E(X1,j)|β} < C,

‖Σ−1/2
0 ‖∞ < C, limn→∞ pn/n = y, limn→∞ κn = lmax/lmin, and F0 6=

F I[lmin,lmax) + I[lmax,∞), where lmin and lmax are defined in (2.4), β ∈ (4,∞),

C ∈ (0,∞), and y ∈ (0,∞) are constants and F is the limit that FRn

converges weakly to in probability.

Theorem 2 (inconsistency of Θ̂prop−1). Suppose X1, . . . ,Xn ∈ Rpn are i.i.d.

with mean vector µ0 and covariance matrix Σ0, 0 < c ≤ λmin(Σ0) ≤ λmax(Σ0) ≤
C < ∞. If FΓ0 converges to a probability distribution function F0 weakly, for

Θ̂prop−1 in (2.1), under Condition B1 or B2 or B3, we have ‖Θ̂prop−1−Θ0‖2 9 0

and ‖Θ̂−1
prop−1 −Σ0‖2 9 0 in probability.

From Condition B1, F0 6= I[C,∞) for any C ∈ [0,∞) excludes the case of

Σ0 being diagonal. In this situation, if pn is much larger than n, then Θ̂prop−1

is not a consistent estimator. Condition B2 implies that a well-selected tuning

parameter κn is very important for the consistency of Θ̂prop−1. For Condition
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B3, F0 6= F I[lmin,lmax) + I[lmax,∞) is satisfied in many situations. For example,

from Silverstein and Choi (1995), if X1, . . . ,Xn
i.i.d.∼ N(µ0,Σ0), FΓ0 converges

to F0 weakly, limn→∞ pn/n = y ∈ (0, 1) and some other regularity conditions

hold, then F has a continuous density function on (0,∞). If F0 does not have

a continuous density, for example, F0 is discrete, and cmin + cmax < 1 with cmin

and cmax defined in (2.4), then condition F0 6= F I[lmin,lmax) + I[lmax,∞) holds. In

this situation, Θ̂prop−1 is not consistent for Θ0 in high-dimensional cases.

The results of Theorem 2 also hold for Θ̂WLKR if we replace Ω0, Γ0, Rn,

and Θ̂prop−1 with Θ0, Σ0, Sn, and Θ̂WLKR, respectively, in the conditions of

Theorem 2.

2.2. Condition number constrained estimator: with L1 penalty

To obtain consistent estimators of the precision matrix in high-dimensional

cases, several estimation methods have been developed (see, e.g., Lam and Fan

(2009) and Rothman et al. (2008)). The commonly used approach is the penalized

log-likelihood method. In this section, we develop an estimator of Θ0 with the

condition number constraint and L1 penalty, and study its asymptotic property.

By adding the L1 penalty of Ω to the objective function in (2.2), we propose

the estimator,

Θ̂prop−2 = Ŵ−1Ω̂µn,κn
Ŵ−1, (2.5)

where Ω̂µn,κn
solves the optimization problem,minimize

Ω�0
− log{det(Ω)}+ tr(RnΩ) + µn|Ω|1,

subject to cond(Ω) ≤ κn,
(2.6)

with µn > 0 and κn ≥ 1 the tuning parameters and | · |1 the matrix off-diagonal

elementwise L1 norm defined in (1.1). From the proof of Lemma 3 in Ravikumar

et al. (2011), since the objective function in (2.6) is strictly convex for Ω � 0

(Ravikumar et al. (2011)) and {Ω � 0, cond(Ω) ≤ κn} is a convex constraint,

there exists a unique solution to (2.6).

A similar estimator without the condition number constraint developed in

Rothman et al. (2008) is given by

Θ̂RBLZ = Ŵ−1Ω̂RBLZŴ
−1, (2.7)

where

Ω̂RBLZ = arg min
Ω�0

[− log{det(Ω)}+ tr(RnΩ) + µn|Ω|1],
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with a tuning parameter µn > 0. The convergence rate of Θ̂RBLZ has been

demonstrated in Rothman et al. (2008) under normal X1, . . . ,Xn. In Theorem

3, we re-examine the consistency of Θ̂RBLZ under the exponential tail assump-

tion. The convergence rate of Θ̂RBLZ is also established under the polynomial

tail condition. In the following, for sets T, T ′ ⊆ {1, . . . , pn} × {1, . . . , pn}, let

(Γ0 ⊗ Γ0)TT ′ denote the |T | × |T ′| submatrix of Γ0 ⊗ Γ0 with rows and columns

indexed by T and T ′, respectively (see Section 3.1 in Ravikumar et al. (2011)).

Specifically, if T = {(iu, ju) : u = 1, . . . , h} and T ′ = {(i′v, j′v) : v = 1, . . . , h′},
then eTu,h(Γ0⊗Γ0)TT ′ev,h′ = Γ0(iu, i

′
v)Γ0(ju, j

′
v) for u = 1, . . . , h and v = 1, . . . , h′.

For the next result, let sn = |{(i, j) : i 6= j and Θ0(i, j) 6= 0}| and tn =

maxi=1,...,pn |{j = 1, . . . , pn : Θ0(i, j) 6= 0}| and consider the following conditions

C1. (exponential tail condition) max1≤j≤pn E[et{X1,j−E(X1,j)}2 ] < C for |t| < c

with certain constants C ∈ (0,∞) and c ∈ (0,∞), µn � {log(pn)/n}1/2 and

rn = o(1) where rn = min(1 + sn, t
2
n) log(pn)/n.

C2. (polynomial tail condition) max1≤j≤pn E{|X1,j−E(X1,j)|β} < C for certain

constants β ∈ [4,∞) and C ∈ (0,∞), µn � p2τ/β
n /n1/2 and rn = o(1) where

rn = min(1 + sn, t
2
n)p

4τ/β
n /n and τ ∈ (2,∞) is a constant.

Theorem 3. Suppose X1, . . . ,Xn ∈ Rpn are i.i.d. random vectors with covari-

ance matrix Σ0 such that λmin(Σ0) ≥ c > 0 and ‖Σ0‖∞ ≤ C < ∞. Let

S = {(i, j) : Θ0(i, j) 6= 0} and assume ‖{(Γ0 ⊗ Γ0)SS}−1‖∞ ≤ C < ∞ and

maxe∈{{(i,j)}:Θ0(i,j)=0}‖(Γ0⊗Γ0)eS{(Γ0⊗Γ0)SS}−1‖1 ≤ c with constant c ∈ (0, 1).

For Θ̂RBLZ in (2.7), if either C1 or C2 holds, we have ‖Θ̂RBLZ − Θ0‖22 =

OP(rn) = ‖Θ̂−1
RBLZ −Σ0‖22.

Rothman et al. (2008) demonstrated that the convergence rate of Θ̂RBLZ

under the L2 norm is {(1 + sn) log(pn)/n}1/2 by assuming that X1, . . . ,Xn are

multivariate normal and the eigenvalues of Σ0 are bounded away from 0 and ∞.

If, in Θ0, the maximum number of non-zeros per row is large relative to the to-

tal number of non-zero off-diagonal elements, sn = O(t2n), then the convergence

rate of Θ̂RBLZ in Theorem 3 under the exponential tail condition is equivalent

to that in Rothman et al. (2008). However, when t2n = o(sn), our result pro-

vides a faster convergence rate while requiring stronger conditions than that in

Rothman et al. (2008). Particularly, conditions ‖{(Γ0 ⊗ Γ0)SS}−1‖∞ ≤ C < ∞
and maxe∈{{(i,j)}:Θ0(i,j)=0} ‖(Γ0 ⊗ Γ0)eS{(Γ0 ⊗ Γ0)SS}−1‖1 ≤ c in Theorem 3 are

adopted from Ravikumar et al. (2011), the latter of which is regarded as the

mutual incoherence or irrepresentability condition.
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We now study the asymptotic properties of Θ̂prop−2.

Theorem 4 (consistency of Θ̂prop−2). For Θ̂prop−2 in (2.5), under the conditions

in Theorem 3 and lim infn→∞{κn − cond(Ω0)} > 0,

lim
n→∞

P(Θ̂prop−2 = Θ̂RBLZ) = 1,

‖Θ̂prop−2 −Θ0‖22 = OP(rn) = ‖Θ̂−1
prop−2 −Σ0‖22.

Comparing the results of Theorems 1, 2, and 4, we can see the effect of the L1

penalty. Under the condition that max(rn, pn/n) = o(1), Θ̂prop−1 and Θ̂prop−2

are consistent. In high-dimensional cases with limn→∞ pn/n > 0 and rn = o(1),

if Σ0 is not diagonal, then, under some regularity conditions, Θ̂prop−2 converges

to Θ0 but Θ̂prop−1 may not. The L1 penalty of Ω in the objective function of

(2.6) is necessary for the convergence of Θ̂prop−2 in high-dimensional settings.

Although Θ̂prop−2 is asymptotically equivalent to Θ̂RBLZ, we find in numer-

ical studies in Sections 5 and 6 that our proposed method performs better in

finite-sample situations while effectively controlling the condition number of the

estimate.

Another competitive estimator is the graphical lasso estimator (Friedman,

Hastie and Tibshirani (2008)) defined as

Θ̂GLasso = arg min
Θ�0

[− log{det(Θ)}+ tr(SnΘ) + µn|Θ|1], (2.8)

with a tuning parameter µn > 0. Consistency of Θ̂GLasso has been demonstrated

by Rothman et al. (2008) and Ravikumar et al. (2011) under different conditions.

The convergence rate of Θ̂GLasso under the L2 norm derived in Rothman et al.

(2008) is {(pn+sn) log(pn)/n}1/2 under normality. Comparing the rate of Θ̂GLasso

in Rothman et al. (2008) with that of Θ̂prop−2 in Theorem 4 under Condition

C1, we find that the two rates are equivalent if pn = O(sn) and sn = O(t2n), while

Θ̂prop−2 converges faster if t2n = o(pn + sn) or sn = o(pn). In Ravikumar et al.

(2011), the derived convergence rate of Θ̂GLasso is {min(pn+sn, t
2
n) log(pn)/n}1/2

under the exponential tail assumption and {min(pn+sn, t
2
n)p

4τ/β
n /n}1/2 under the

polynomial tail assumption. Under either the exponential tail or polynomial tail

assumption, the convergence rate of Θ̂prop−2 is equivalent to that of Θ̂GLasso in

Ravikumar et al. (2011) if pn = O(sn) or t2n = O(sn), while the rate of Θ̂prop−2 is

sharper if sn = o(t2n) and sn = o(pn). To sum up, compared with the convergence

rates of Θ̂GLasso obtained in past work (Rothman et al. (2008); Ravikumar et al.

(2011)), the rate of convergence for Θ̂prop−2 is faster under certain situations,

for example, in cases where Θ0 is sparse and the total number of non-zero off-
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diagonal elements in Θ0 is small relative to the maximum number of non-zeros

per row. Under some other situations, where sn dominates pn or t2n, Θ̂prop−2 and

Θ̂GLasso converge to Θ0 at the same rate.

3. Algorithm for Solving (2.6)

Numerically solving the optimization problem (2.6) is a non-trivial task.

Different algorithms for penalized sparse precision matrix estimation have been

developed (Boyd et al. (2010); Friedman, Hastie and Tibshirani (2008)). For

example, Boyd et al. (2010) proposed an ADMM (alternating direction method of

multipliers) algorithm, which can be used to solve the optimization problems for

Θ̂RBLZ and Θ̂GLasso. Based on the ADMM algorithm, we develop an algorithm

for our estimator. The problem (2.6) is equivalent to the optimization problemminimize
Ω�0, Z

− log{det(Ω)}+ tr(RnΩ) + µn|Z|1,

subject to cond(Ω) ≤ κn, Ω = Z.
(3.1)

To deal with (3.1), we minimize the corresponding scaled augmented Lagrangian,minimize
Ω�0, Z

Lρ(Ω, Z;U),

subject to cond(Ω) ≤ κn, Ω = Z,
(3.2)

where

Lρ(Ω, Z;U) = − log{det(Ω)}+ tr(RnΩ) + µn|Z|1

+
ρ

2
‖Ω− Z + U‖2F −

ρ

2
‖U‖2F , (3.3)

is the scaled augmented Lagrange function, ρ ∈ (0,∞) is an arbitrary constant,

and U is the Lagrange multiplier. The objective functions and constraints in

both (3.1) and (3.2) are convex, and therefore there exist unique solutions to the

two optimization problems (see, e.g., the proof of Lemma 3 in Ravikumar et al.

(2011)). The problems (2.6), (3.1), and (3.2) are equivalent, so we use (3.2).

Motivated by the ADMM algorithm (Boyd et al. (2010)), we calculate the

limit of Z(i) as the solution to (3.2) by iterations (with i = 1, 2, . . .) of three steps

until convergence

Step 1 : Ω(i) ← arg min
Ω�0, cond(Ω)≤κn

Lρ(Ω, Z
(i−1);U (i−1)),

Step 2 : Z(i) ← arg min
Z

Lρ(Ω
(i), Z;U (i−1)),

Step 3 : U (i) ← U (i−1) + Ω(i) − Z(i).
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The criterion for declaring algorithmic convergence is∑pn
j=1

∑pn
k=1 |Ω

(i+1)(j, k)− Ω(i)(j, k)|∑pn
j=1

∑pn
k=1 |Ω(i)(j, k)|

≤ 10−4.

Issues on the global convergence of the ADMM algorithm can be found in Boyd

et al. (2010) (see Section 3.2 therein for details). In practice, we use the zero

matrix as the initial values for Z(0) and U (0), and set ρ = 1 for each iteration to

control the step size.

From Boyd et al. (2010), the optimization problem for Θ̂RBLZ can be solved

using the ADMM algorithm by iterations of three steps with an explicit solution

for each step. The ADMM algorithm for Θ̂prop−2 here differs from that for Θ̂RBLZ

in the sense that we consider the constraint {Ω � 0, cond(Ω) ≤ κn} in Step 1

while they use Ω � 0.

Next, we calculate the solutions for Steps 1 and 2 in our algorithm. For

Step 2, from (3.3),

Z(i) = arg min
Z

Lρ(Ω
(i), Z;U (i−1))

= arg min
Z

{
µn|Z|1 +

ρ

2
‖Ω(i) − Z + U (i−1)‖2F

}
= arg min

Z

[1

2
‖Z − {Ω(i) + U (i−1)}‖2F +

µn
ρ
|Z|1

]
. (3.4)

The last optimization problem in (3.4) is similar to problem (1) in Xue, Ma and

Zou (2012), which has a closed-form solution by soft-thresholding (see Paragraph

2 of Section 1 in Xue, Ma and Zou (2012) for details). By arguments similar to

those in Xue, Ma and Zou (2012), we can show that there also exists a closed-form

solution to (3.4) based on soft-thresholding: for j, k = 1, . . . , pn,

Z(i)(j, k) =

{
A(i)(j, k), if j = k,

sign{A(i)(j, k)}max{|A(i)(j, k)| − µn/ρ, 0}, otherwise,

where A(i) = Ω(i) + U (i−1). For Step 1, the solution is not straightforward due

to the constraint {Ω � 0, cond(Ω) ≤ κn}. To obtain Ω(i), we now propose a

method, the proof of which is available in the online supplementary material.

Proposition 1. For the optimization problem in Step 1, let V DV T be the eigen-

decomposition of Rn/ρ − Z(i−1) + U (i−1) with D = diag(d1, . . . , dpn) and d1 ≥
· · · ≥ dpn. Let δj = −dj/2 +

√
d2
j/4 + 1/ρ for j = 1, . . . , pn,
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D̃ =

{
diag(δ1, . . . , δpn), if δpn/δ1 ≤ κn,
diag(d̃1, . . . , d̃pn), if δpn/δ1 > κn,

where d̃j = min{max(τ0, δj), κnτ0} and

τ0 =

[
− ρ
(∑α0

j=1 dj + κn
∑pn

j=β0
dj

)
+
{
ρ2
(∑α0

j=1 dj + κn
∑pn

j=β0
dj

)2

+4ρ(α0 + κn
2pn − κn2β0 + κn

2)(α0 + pn − β0 + 1)
}1/2]

2ρ(α0 + κn2pn − κn2β0 + κn2)
,

with α0 the largest index in {1, . . . , pn} such that τ0 > δα0
and β0 the smallest

index in {1, . . . , pn} such that κnτ0 < δβ0
. Then, the solution to Step 1 is Ω(i) =

V D̃V T . The quantities α0 and β0 can be found in O(pn) operations.

Since Step 1 also requires the eigendecomposition of Rn/ρ−Z(i−1) +U (i−1)

which takes O(p3
n) operations, the number of operations for each iteration of the

algorithm is O(p3
n). To calculate Θ̂RBLZ or Θ̂GLasso, the ADMM algorithm also

needs O(p3
n) operations.

4. Tuning Parameter Selection

This section illustrates a data-driven method to select the tuning parameters

for Θ̂prop−2. In practice, we choose κn and µn in an iterative way. At each step,

one of them is fixed and the other one is updated, with cross validation used for

choosing κn and BIC for µn. Specifically, for a fixed µn, we divide the data into

k folds and choose κn by minimizing

CV(κn;µn) =

k∑
i=1

n

2k
[− log{det(Ω̂[−i]

µn,κn
)}+ tr(R[i]

n Ω̂[−i]
µn,κn

)],

where R
[i]
n is the sample correlation matrix based on the ith fold and Ω̂

[−i]
µn,κn is

the estimate of Ω0 calculated with all observations except those in the ith fold.

Given κn, we choose µn that minimizes the BIC function

BIC(µn;κn) = −n log{det(Ω̂µn,κn
)}+ ntr(RnΩ̂µn,κn

)

+ log(n)
∑∑

1≤i≤j≤pn

I{Ω̂µn,κn
(i, j) 6= 0}.

The details for selecting κn and µn are as follows.

Step I : Initialize κ0
n.

Step II : Repeat the following steps (with i = 1, 2, . . .) until convergence:
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µin = arg min
µn

BIC(µn;κi−1
n ),

κin = arg min
κn

CV(κn;µin),

where the optimization problems are solved by grid search.

In the numerical studies in Sections 5 and 6, the initial value in Step I is

κ0
n =∞. We also observe that the averaged number of iterations for the numerical

convergence of the algorithm in Step II is moderate in each situation, and does

not increase as pn increases.

5. Simulation Evaluation

Simulation studies were conducted to compare estimators Θ̂prop−1 in (2.1),

Θ̂prop−2 in (2.5), Θ̂WLKR in (2.3), Θ̂RBLZ in (2.7), Θ̂GLasso in (2.8), and Θ̂banded,

with n = 300 and pn ∈ {100, 200, 400}, where Θ̂banded is the banded estimate

of Θ0 by Cholesky decomposition as defined in Bickel and Levina (2008) (see

Section 2.2 therein). To generate data, we considered the following schemes

I. X1, . . . ,Xn
i.i.d.∼ N(0,Σ0), where Σ0 = diag(10, . . . , 10, 0.01, . . . , 0.01). The

proportion of the “high” eigenvalues is 80% among the pn eigenvalues. Sim-

ilar schemes were used in Won et al. (2013).

II. X1, . . . ,Xn
i.i.d.∼ t3(0,Σ∗) with (Σ∗)−1 = diag(3K,K, . . . ,K) where K is a

50×50 matrix such that K(i, j) = I(i = j)+0.1 I(|i−j| = 1)+0.4 I(|i−j| =
3) for i, j = 1, . . . , 50.

III.X1, . . . ,Xn
i.i.d.∼ t3(0,Σ∗) with eTi,pn(Σ∗)−1ej,pn = {3 I(i = j)+1.49 I(|i−j| =

1)}{1− 1/2 I(i ≤ pn/2)}{1− 1/2 I(j ≤ pn/2)} for i, j = 1, . . . , pn.

Here, tν(0,Σ∗) denotes the multivariate t distribution with degree of freedom ν,

location vector 0 ∈ Rpn , and scale matrix Σ∗. Specifically, if random quantities

Y ∼ N(0,Σ∗) and w ∼ χ2
ν are independent, then Y /(w/ν)1/2 ∼ tν(0,Σ∗) (see,

for example, Section 5.6 in DeGroot (2004)). Thus Σ0 = 3Σ∗ in schemes II and

III. For schemes I–III, the structures of Θ0 are diagonal, block diagonal, and

banded, respectively.

Monte Carlo simulations were replicated 400 times in each setting. For a

generic estimator Θ̂ of Θ0, we calculated the averaged losses ‖Θ̂ − Θ0‖F and

‖Θ̂ −Θ0‖2. The selection performance was measured by the false positive rate

(FPR) and false negative rate (FNR):
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Table 1. Comparison of Θ̂prop−1, Θ̂prop−2, Θ̂WLKR, Θ̂RBLZ, Θ̂GLasso, and Θ̂banded with
data generated by scheme I. Each metric is averaged over 400 replications with the
standard error shown in the bracket.

pn Θ̂ ‖Θ̂−Θ0‖F ‖Θ̂−Θ0‖2 FPR FNR

100

Θ̂prop−1 36.96 (0.31) 18.81 (0.23) 0.00 (0.00) 0.00 (0.00)

Θ̂prop−2 36.96 (0.31) 18.81 (0.23) 0.00 (0.00) 0.00 (0.00)

Θ̂WLKR 140.22 (0.15) 31.46 (0.03) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 36.97 (0.31) 18.82 (0.23) 0.00 (0.00) 0.00 (0.00)

Θ̂GLasso 36.96 (0.31) 18.81 (0.23) 0.00 (0.00) 0.00 (0.00)

Θ̂banded 49.92 (1.07) 24.66 (0.56) 0.02 (0.00) 0.00 (0.00)

200

Θ̂prop−1 52.64 (0.31) 21.42 (0.25) 0.00 (0.00) 0.00 (0.00)

Θ̂prop−2 52.64 (0.31) 21.42 (0.25) 0.00 (0.00) 0.00 (0.00)

Θ̂WLKR 631.40 (0.00) 99.83 (0.00) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 52.65 (0.31) 21.42 (0.25) 0.00 (0.00) 0.00 (0.00)

Θ̂GLasso 52.64 (0.31) 21.42 (0.25) 0.00 (0.00) 0.00 (0.00)

Θ̂banded 72.62 (1.75) 28.26 (0.72) 0.01 (0.00) 0.00 (0.00)

400

Θ̂prop−1 74.40 (0.31) 23.48 (0.21) 0.00 (0.00) 0.00 (0.00)

Θ̂prop−2 74.40 (0.31) 23.47 (0.21) 0.00 (0.00) 0.00 (0.00)

Θ̂WLKR 892.90 (0.00) 99.83 (0.00) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 74.41 (0.31) 23.48 (0.21) 0.00 (0.00) 0.00 (0.00)

Θ̂GLasso 74.40 (0.31) 23.48 (0.21) 0.00 (0.00) 0.00 (0.00)

Θ̂banded 113.92 (2.85) 33.39 (0.81) 0.01 (0.00) 0.00 (0.00)

FPR =
|{(i, j) : Θ0(i, j) = 0, Θ̂(i, j) 6= 0}|

|{(i, j) : Θ0(i, j) = 0}|
,

FNR =
|{(i, j) : Θ0(i, j) 6= 0, Θ̂(i, j) = 0}|

|{(i, j) : Θ0(i, j) 6= 0}|
.

For Θ̂prop−2, the tuning parameters were selected as described in Section 4

with k = 5. To calculate Θ̂prop−1 and Θ̂WLKR, we solved (2.2) and (2.3) using

the algorithm in Won et al. (2013) (see (8), Lemma 1, and Theorem 1). The

tuning parameter κn of Θ̂prop−1 and Θ̂WLKR were selected by the 5-fold CV

as illustrated in Won et al. (2013). The graphical lasso algorithm in Friedman,

Hastie and Tibshirani (2008) was applied to calculate Θ̂RBLZ and Θ̂GLasso, where

µn was selected by the 5-fold cross validation illustrated in Rothman et al. (2008).

For these methods, κn was chosen from {1.4226i : i = 0, 1, . . . , 29} and µn from

{0.02 × 1.2390i : i = 0, 1, . . . , 29}. The banding parameter for Θ̂banded was

selected by the random splitting method in Bickel and Levina (2008).

The averaged losses, FPR, and FNR of different precision matrix estimators

are presented in Tables 1–3 corresponding to schemes I–III, respectively. For
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Table 2. Comparison of Θ̂prop−1, Θ̂prop−2, Θ̂WLKR, Θ̂RBLZ, Θ̂GLasso, and Θ̂banded with
data generated by scheme II. Each metric is averaged over 400 replications with the
standard error shown in the bracket.

pn Θ̂ ‖Θ̂−Θ0‖F ‖Θ̂−Θ0‖2 FPR FNR

100

Θ̂prop−1 4.49 (0.02) 1.40 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂prop−2 2.59 (0.03) 0.84 (0.01) 0.20 (0.00) 0.09 (0.00)

Θ̂WLKR 4.76 (0.02) 1.25 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 2.93 (0.04) 0.94 (0.01) 0.13 (0.00) 0.10 (0.00)

Θ̂GLasso 2.94 (0.04) 0.89 (0.01) 0.15 (0.00) 0.11 (0.00)

Θ̂banded 5.06 (0.09) 1.62 (0.04) 0.07 (0.00) 0.15 (0.01)

200

Θ̂prop−1 5.10 (0.02) 1.37 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂prop−2 2.91 (0.03) 0.87 (0.01) 0.11 (0.00) 0.08 (0.00)

Θ̂WLKR 6.11 (0.03) 1.55 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 3.31 (0.05) 0.97 (0.01) 0.08 (0.00) 0.10 (0.00)

Θ̂GLasso 3.84 (0.04) 1.07 (0.01) 0.09 (0.00) 0.11 (0.00)

Θ̂banded 5.76 (0.14) 1.77 (0.05) 0.05 (0.00) 0.10 (0.01)

400

Θ̂prop−1 6.14 (0.02) 1.38 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂prop−2 3.57 (0.03) 0.91 (0.01) 0.06 (0.00) 0.08 (0.00)

Θ̂WLKR 7.33 (0.03) 1.69 (0.00) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 3.91 (0.05) 0.97 (0.01) 0.05 (0.00) 0.09 (0.00)

Θ̂GLasso 4.65 (0.04) 1.20 (0.01) 0.06 (0.00) 0.11 (0.00)

Θ̂banded 7.17 (0.22) 1.94 (0.06) 0.03 (0.00) 0.06 (0.01)

scheme I, where Σ0 is diagonal, Θ̂prop−1, Θ̂prop−2, Θ̂RBLZ, and Θ̂GLasso perform

comparably well and outperform Θ̂WLKR and Θ̂banded. The results for Θ̂prop−1,

Θ̂prop−2, Θ̂RBLZ, and Θ̂GLasso are similar in Table 1, since the calculated esti-

mates are all close to Ŵ 2. From Table 2, by comparing the losses of the precision

matrix estimators, we see that Θ̂prop−2 outperforms the other estimators. From

Table 3, Θ̂prop−2 has smaller averaged losses than Θ̂prop−1, Θ̂WLKR, Θ̂GLasso,

and Θ̂banded. Compared with Θ̂RBLZ, when pn = 400, Θ̂prop−2 has a slightly

larger loss under the L2 norm. In the other cases, Θ̂prop−2 performs better than

Θ̂RBLZ.

As suggested by one referee, the averaged condition numbers of Θ̂prop−2 and

Θ̂RBLZ were also compared under the same amount of L1 regularization. After

calculating Θ̂prop−2 with the tuning parameters κn = κ̂n and µn = µ̂n selected by

the data-driven method in Section 4, we calculated Θ̂RBLZ with µn equal to µ̂n
instead of selected by CV, and denote the resulting estimator by Θ̂∗RBLZ. Hence,

Θ̂prop−2 and Θ̂∗RBLZ have the same amount of L1 regularization. However, for

scheme I where Ω0 = Ipn , the data-driven choice of κn for Θ̂prop−2 is exactly 1
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Table 3. Comparison of Θ̂prop−1, Θ̂prop−2, Θ̂WLKR, Θ̂RBLZ, Θ̂GLasso, and Θ̂banded with
data generated by scheme III. Each metric is averaged over 400 replications with the
standard error shown in the bracket.

pn Θ̂ ‖Θ̂−Θ0‖F ‖Θ̂−Θ0‖2 FPR FNR

100

Θ̂prop−1 4.22 (0.03) 1.48 (0.02) 1.00 (0.00) 0.00 (0.00)

Θ̂prop−2 2.34 (0.04) 0.84 (0.01) 0.22 (0.00) 0.00 (0.00)

Θ̂WLKR 5.44 (0.03) 1.32 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 3.02 (0.05) 0.95 (0.01) 0.14 (0.00) 0.00 (0.00)

Θ̂GLasso 3.63 (0.05) 1.01 (0.01) 0.18 (0.00) 0.00 (0.00)

Θ̂banded 4.28 (0.12) 1.46 (0.04) 0.04 (0.00) 0.09 (0.01)

200

Θ̂prop−1 6.67 (0.05) 1.60 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂prop−2 3.86 (0.06) 0.97 (0.01) 0.13 (0.00) 0.00 (0.00)

Θ̂WLKR 8.91 (0.04) 1.54 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 4.58 (0.08) 1.03 (0.01) 0.10 (0.00) 0.00 (0.00)

Θ̂GLasso 5.93 (0.07) 1.14 (0.01) 0.12 (0.00) 0.00 (0.00)

Θ̂banded 6.90 (0.26) 1.91 (0.08) 0.04 (0.00) 0.06 (0.01)

400

Θ̂prop−1 11.34 (0.05) 1.58 (0.01) 1.00 (0.00) 0.00 (0.00)

Θ̂prop−2 6.69 (0.06) 1.14 (0.01) 0.07 (0.00) 0.00 (0.00)

Θ̂WLKR 13.92 (0.04) 1.67 (0.00) 1.00 (0.00) 0.00 (0.00)

Θ̂RBLZ 7.00 (0.10) 1.11 (0.01) 0.06 (0.00) 0.00 (0.00)

Θ̂GLasso 9.43 (0.08) 1.25 (0.01) 0.07 (0.00) 0.00 (0.00)

Θ̂banded 9.81 (0.39) 2.08 (0.09) 0.02 (0.00) 0.03 (0.01)

in many replications, and hence Ω̂µn,κn
= Ipn for any µn > 0. In this situation,

Θ̂prop−2 is not sensitive to µn at all. The performance of Θ̂RBLZ depends on the

choice of µn. Therefore, it is difficult to make a fair comparison of Θ̂prop−2 and

Θ̂RBLZ under the same amount of L1 regularization for scheme I. In Table 4,

the condition number of the true precision matrix and the averaged condition

numbers of Θ̂prop−2 and Θ̂∗RBLZ are presented for schemes II and III only. Table

4 reveals that the averaged condition numbers of Θ̂∗RBLZ are larger than the true

values and have relatively large standard errors.

6. Data Application

To illustrate the applicability of the proposed method, we applied the preci-

sion matrix estimator to call center data (available at http://iew3.technion.

ac.il/serveng2012S/callcenterdata/index.html). The data recorded the

time of the phone calls entering the call center of “Anonymous Bank” in Israel

every day in 1999. Because of the difference of the arrival patterns between the

weekdays and weekends, we discarded the data for the weekends (Friday and

http://iew3.technion.ac.il/serveng2012S/callcenterdata/index.html
http://iew3.technion.ac.il/serveng2012S/callcenterdata/index.html
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Table 4. Comparison of the averaged condition numbers of Θ̂prop−2 and Θ̂∗
RBLZ for

schemes II and III. Results are averaged over 400 replications with the standard errors
shown in the brackets.

Scheme pn cond(Θ0) cond(Θ̂prop−2) cond(Θ̂∗
RBLZ)

II
100 453.34 309.51 (4.59) 491.00 ( 29.70)
200 453.34 344.18 (4.43) 645.07 ( 22.85)
400 453.34 383.53 (4.42) 914.96 ( 47.99)

III
100 992.11 741.21 (9.50) 1,247.41 ( 41.03)
200 1,127.59 862.59 (9.17) 1,710.53 ( 71.18)
400 1,176.39 982.94 (9.23) 2,360.38 (132.83)

Saturday), and only used those on the weekdays (258 days). Since there are rela-

tively fewer calls before 7:00am, we only considered the time period from 7:00am

to midnight. On each day, we divided the 17-hour period into 3-minute intervals

and counted the number of calls Xi,j for the ith day and jth time period with

i ∈ {1, . . . , 258} and j ∈ {1, . . . , 340}.
We aimed to use the arrival counts in the first half of the day to predict those

in the second half of the day. Take Xi = (Xi,1, . . . , Xi,340)T to be the vector of

observations on the ith day, for i = 1, . . . , 258, and let X
(1)
i = (Xi,1, . . . , Xi,170)T

andX
(2)
i = (Xi,171, . . . , Xi,340)T be the observations in the first and second halves

of the day, respectively. We partitioned the mean vector and covariance matrix

of Xi correspondingly by

µ0 =

(
µ1

µ2

)
, Σ0 =

(
Σ11 Σ12

Σ21 Σ22

)
.

The best linear predictor of X
(2)
i is expressed as

X̂
(2)
i = µ2 + Σ21Σ

−1
11 (X

(1)
i − µ1). (6.1)

We used {X1, . . . ,X100} as the training set and {X101, . . . ,X258} as the testing

set. The estimates of µ0 and Σ0, calculated based on the training data, were

plugged into (6.1) for prediction. The sample mean 100−1
∑100

i=1Xi was used to

estimate µ0 while the inverses of different precision matrix estimates were applied

to estimate Σ0. Specifically, we calculated Θ̂prop−1, Θ̂prop−2, Θ̂WLKR, Θ̂RBLZ,

Θ̂GLasso, and Θ̂banded as the estimates of Θ0 first, and took their inverses to

estimate Σ0. For the precision matrix estimation problem, (n, pn) = (100, 340)

and the tuning parameters were selected in the same way as that in Section 5

with grid points κn ∈ {1.2143i : i = 0, 1, . . . , 19} and µn ∈ {0.1 × 1.1708i :

i = 0, 1, . . . , 19}. The performance of different methods for estimating Θ0 was

compared by the averaged absolute forecast error (AFE) based on the testing
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Table 5. Comparison of the AFE based on Θ̂prop−1, Θ̂prop−2, Θ̂WLKR, Θ̂RBLZ, Θ̂GLasso,

and Θ̂banded for the call center data, with SE denoting the standard error.

Θ̂ Θ̂prop−1 Θ̂prop−2 Θ̂WLKR Θ̂RBLZ Θ̂GLasso Θ̂banded

AFE 1.83 1.76 1.83 1.81 1.84 1.82
SE 0.01 0.01 0.01 0.01 0.01 0.01

data. Specifically,

AFE =
1

158× 170

258∑
i=101

170∑
j=1

|eTj,170(X̂
(2)
i −X

(2)
i )|.

Table 5 presents the AFE of the best linear predictor calculated with Θ0 esti-

mated by different methods. From Table 5, it is clear that Θ̂prop−2 corresponds

to a smaller averaged absolute forecast error than the other estimators.

Supplementary Materials

The detailed proofs of Theorems 1–4 and Proposition 1 are relegated to the

Supplementary Material.
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