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S1 Numerical studies

S1.1 Simulation Studies

In this subsection we examine the finite sample behaviors of the newly proposed estimators by simulation studies.

To obtain thorough comparisons, in addition to the new PMLS estimator, we comprehensively consider the OLS

estimators that ignore the distribution randomness in the sense before. Mean squared error (MSE), prediction

error (PE) and boxplots are used to evaluate the performances of the involved estimators and models. Also the

simulation results for estimation bias are reported to emphasize the influence from the distribution randomness,

especially from expectation uncertainty. In the following, we design 4 experiments. The first experiment is to

compare the PMLS with the overall average Y for estimating the upper expectation of Y , the second and third

experiments are designed for examining the performances of PMLS and OLS when estimating the parameter β

and µ in simple linear and multiple linear models. The fourth experiment is used to investigate the usefulness of

PMLS for prediction.

Experiment 1. Consider the simplest case with β = 0:

Yi = εi, i = 1, · · · , N,
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where εi, i = 1, · · · , N, are independent and follow the distributions in the class F =
{
N(µ, σ2) : (µ, σ2) ∈ T

}
.

In the following, we respectively consider two cases of the distribution randomness:

Case 1. T = {k/2 : k = 1, · · · , 10} ×
{
0.202, 0.252

}
and T = (µ, σ2) is uniformly distributed on T .

Case 2. T = {k : k = 1, · · · , 10} ×
{
0.252

}
and T = (µ, σ2) is uniformly distributed on T .

For each k, the size of the sample from N(µk, σ
2
k) is designed as [N/10].

Before performing the simulation, we first use the histograms of Yi in the two cases to observe what pattern

of the data appears to show the distribution randomness. It is very clear from Figure 1 that the distributions in

the two cases look like multimodal although every distribution is unimodal. It shows that when we have a data

set showing multimodal pattern, we may not simply believe the multimodality of an underlying distribution, the

distribution randomness would also be a possibility. Under this situation, the classical statistical inferences such

as the estimation of population expectation, have less accuracy. Instead, our goal is to consistently estimate the

upper expectation µ = E[ε] = E[Y ].
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Figure 1: Histograms for Experiment 1 with N = 500.

To examine the consequence of ignoring the distribution randomness in estimation, we compare the PMLS

estimator with the OLS estimator that is the overall average Y of all of observations in this experiment. For the

total sample sizes N = 100, 500 and 1000, the empirical bias and MSE, and the boxplots of the estimators with

500 replications are reported respectively in Table 1, and Figures 2 and 3. Note that for this very simple model,
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we cannot have a constant intercept term because of the distribution randomness. Therefore, theoretically, the

intercept term for every observation is not identifiable, which is absorbed in the error term in the upper expectation

of error term. The OLS estimator estimates nothing as its limit is in between, from the description in Section 1,

the upper and lower expectation: µ ≤ Ȳ ≤ µ with a probability going to one.

Table 1: Estimation bias and MSE for cases 1 and 2 in Experiment 1

N 100 500 1000

case criterions Bias MSE Bias MSE Bias MSE

1 PMLS -0.0842 0.0319 0.0640 0.0113 0.1210 0.0187

OLS -2.2517 5.0707 -2.2501 5.0631 -2.2493 5.0595

2 PMLS -0.0408 0.0157 0.0562 0.0062 0.0920 0.0108

OLS -4.4980 20.2330 -4.4999 20.2497 -4.5000 20.2509
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Figure 2: The boxplots of the PMLS estimator and the OLS estimator in case 1 with the true µ = 5 in

Experiment 1.

The simulation results can verify that our PMLS estimator is clearly superior to the OLS estimator. More

precisely, we have the following findings:

(1) From Table 1, the distribution randomness mainly results in the estimation bias of the OLS estimator,

and the estimation bias almost obliterates the effect of variance in the MSE of the estimator. However,

this distribution randomness has no significant impact for the PMLS estimator for the upper expectation
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Figure 3: The boxplots of the PMLS estimator and the OLS estimator in case 2 with the true µ = 10 in

Experiment 1.

µ. The estimation bias of the PMLS estimator are very obviously smaller than those of the OLS estimator

in both cases. The centerlines of the boxplots of the PMLS estimator in Figures 2 and 3 are just located

respectively at the true values 5 and 10 of the upper expectations. But the centerlines of the boxplots of

the OLS estimator are far below the true values.

(2) From Figures 2 and 3, we can see that although the boxplots of the PMLS estimator are nearly centralized

around the centerlines, the values have more dispersion than those of the OLS estimator, implying the new

estimator has larger variance and a slow convergence rate. It is because the new method only uses a part of

the data. However, this enlarged variance is negligible compared with the significant estimation bias from

which the OLS estimator suffers.

Experiment 2. Consider the following univariate linear regression:

Yi = β1Xi + εi, i = 1, · · · , N,

where Xi, i = 1, · · · , N , are independent and identically distributed as N(1, 1). Suppose that εi, i = 1, · · · , N,

are independent and follow the distributions in the class F =
{
N(µ, σ2) : (µ, σ2) ∈ T

}
with T = {k : k =

1, · · · , 10} × {(0.05k)2 : k = 1, · · · , 10}. As we commented in Section 2, the model cannot contain a nonzero

constant intercept term because even an intercept term, β0, is imposed, it is impossible to be identified and
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consistently estimated. In fact, the intercept is absorbed in µ. Hence, we do not report the simulation result for

β0. The histograms of Yi and the residuals ε̂i derived from the OLS are multimodal to present the distribution

randomness (the histograms are not reported herewith for saving space).

In the simulation, we set β1 = 2, and let (µ, σ2) be uniformly distributed on T . For each k, the size of

the sample from N(µk, σ
2
k) is designed as [N/10]. For total sample sizes N = 100, 500 and 1000, the empirical

bias and MSE, and the boxplots of the estimators over 500 replications are reported respectively in Table 2, and

Figures 4 and 5. Although the model used here is totally different from that in Experiment 1, a conclusion from

the simulation results is similar to the finding (1) obtained in Experiment 1. That is to say, PMLS can accurately

estimate the regression coefficient and the upper expectation of the error, while OLS gets the estimators that are

far away from the true values. Unlike that in the finding (2) in Experiment 1, the variance of the OLS estimator

is larger than that of the PMLS estimator in this experiment. The PMLS estimator of β1 performs better than

the PMLS estimator of µ with smaller bias and MSE particularly when the sample size is large. Perhaps it is

because the two-step estimation procedure for µ introduces more estimation error.

Table 2: Estimation bias and MSE in Experiment 2

parameters N 100 500 1000

criterions Bias MSE Bias MSE Bias MSE

β1 PMLS -0.07497 0.03101 -0.01854 0.00341 -0.00449 0.00063

OLS 2.75808 7.66282 2.74548 7.55041 2.74865 7.56090

µ PMLS 0.00636 0.13711 0.16631 0.05203 0.26512 0.08386

We note that the OLS estimator of β1 has a significant bias. One may expect to centralize data to reduce

the bias. As we explained before, for every observation, the center Efti
(εi) is a conditional expectation when

T = ti is given, and such a center is actually a random variable because of the distribution randomness defined

in Section 2. Thus, in theory, using the overall average of Yi’s as the center of every Yi is not meaningful and it is

also not estimable. On the other hand, in practice, when we use it as if the distribution randomness did not exist,

its practical performance can be promoted because εi is not centered. We now pretend that the observations do

not have the distribution randomness. If only Yi’s in the above regression are centered, it can be easily verified
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Figure 4: The boxplots of the PMLS estimators and the OLS estimators for β1 in Experiment 2 with the

true β1 = 2.
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Figure 5: The boxplots of the PMLS estimators for µ in Experiment 2 with the true µ = 10.

that, in this example, β̂1LS = 1
2
β1 + Op

(
1√
N

)
, which is also biased. If both Xi’ and Yi’ are centered, it can be

seen that β̂1LS = β1 + Op

(
1√
N

)
. The simulation result in Table 3 shows that when we blindly use OLS with

centered data, the estimation efficiency does be promoted. However, even for the latter, the estimation bias is

slightly larger than that of the PMLS estimator, and the MSE of the centered LS estimator is about 5 times of

that of the the PMLS estimator although in the case without the distribution randomness, the bias-reduced LS

estimator should have a variance achieving Fisher information bound.

Experiment 3. Consider the multiple linear regression:

Yi = β1X1i + β2X2i + εi, i = 1, · · · , N,
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Table 3: Estimation bias and MSE for bias-reduced LS estimator in Experiment 2

N = 500 only Yi’s centralized both Xi’ and Yi’s centralized

Bias MSE Bias MSE

β̂1LS -1.00689 1.02000 -0.01953 0.01569

where β1 = 3, β2 = 2, X1i ∼ N(1, 1) and X2i ∼ N(2, 1), the other settings are designed as those in Experiment

2. The simulation results are reported in Table 4 and Figures 6-8 and further indicate that the PMLS estimator

is consistently superior to the OLS estimator in estimation bias, MSE and variance. Again we can see that

OLS overestimates regression coefficients because the distribution randomness makes it impossible to remove the

bias which is absorbed in the error terms. The effect of the overestimated regression coefficients by OLS is to

compensate the loss of ignoring the positive error. Then, a new problem emerges naturally: Is OLS able to give

a proper prediction? We discuss this issue in the following experiment.

Table 4: Estimation bias and MSE in Experiment 3

parameters N 100 500 1000

criterion Bias MSE Bias MSE Bias MSE

β1 PMLS 0.05841 0.03646 0.01916 0.00362 0.01247 0.00169

OLS 0.90110 0.92334 0.91106 0.85260 0.91335 0.84461

β2 PMLS 0.12348 0.05200 0.03135 0.00495 0.02113 0.00282

OLS 1.85004 3.45390 1.83649 3.38013 1.83498 3.37050

µ PMLS −0.33971 0.34478 0.05134 0.04601 0.18741 0.06053

Experiment 4. The model and experiment conditions are completely identical to those in Experiment 3, but

the purpose is to examine the prediction behavior. Before comparing the predictions derived by OLS and PMLS,

we give a definition of prediction under the situation with the distribution randomness. Because the classical

methods ignore the distribution randomness, a natural prediction of Y based on OLS that is blindly used is given

as

ŶLS = β̂⊤
LSX0



8 Lu Lin, Ping Dong, Yunquan Song and Lixing Zhu

2
.5

3
.0

3
.5

4
.0

4
.5 OLS estimator

PMLS estimator

N=100

2
.5

3
.0

3
.5

4
.0

4
.5

PMLS estimator

OLS estimator

N=500

2
.5

3
.0

3
.5

4
.0

4
.5

PMLS estimator

OLS estimator

N=1000

Figure 6: The boxplots of the PMLS estimators for β1 in Experiment 3 with the true β1 = 3.
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Figure 7: The boxplots of the PMLS estimators for β2 in Experiment 3 with the true β2 = 2.
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Figure 8: The boxplots of the PMLS estimators for µ in Experiment 3 with the true µ = 10.
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for a given predictor X0. In contrast, the main goal of the upper expectation regression is to predict maximum

values of Y conditional on predictorX0. Thus, under the framework of upper expectation regression, the prediction

is defined by

ŶM = β̂⊤X0 + µ̂,

where both β̂ and µ̂ are the MPLS estimators proposed in the previous sections. On the other hand, if our goal is

to predict all the values Yi, not merely the maximum values, based on PMLS, a reasonable prediction is defined

as

ŶPMLS = β̂⊤X0 + µM ,

where µM is a suitable value in the interval [µ̂, µ̂]. Here the estimator µ̂ of the lower expectation of ε can be

obtained by the similar argument proposed in the previous sections. If without additional information about

expectation uncertainty of ε, we simply choose the middle point µM = (µ̂ + µ̂)/2. It is worth pointing out that

although the overall average of Y − β̂⊤X can also be between µ̂ and µ̂, it does not converge to a fixed value under

the distribution randomness and thus, its use makes no theoretical ground.

We first consider the performances of the predictions for some larger values of Y . For n values Y1, · · · , Yn, we

rearrange them in descending order as Y(1) ≥ Y(2) ≥ · · · ≥ Y(n). In this case, average prediction error (APEm) of

predicting the first m largest values of Y is defined by

APEm =
1

m

m∑
i=1

(Y(i) − Ŷ(i))
2,

where Ŷ(i) is a prediction value of Y(i). When m = n, APEm is actually the standard average prediction error;

when m is small, APEm mainly evaluates the behaviors of prediction for the large values of Y . The simulation

results are presented in Figure 9, in which the curves are the medians of APEms of 500 replications. It clearly

shows that the upper expectation regression can relatively accurately predict the larger values of Y . More precisely,

for 100 values of Y , the upper expectation regression gives relatively successful prediction for the first 34 largest

values of Y . However, if ignoring the distribution randomness, the OLS-based prediction behaves poorly for

predicting the larger values of Y .

Finally, we investigate the behaviors of the predictions ŶLS and ŶPMLS for all the values of Y . The APEms

of the two predictions are reported in Table 5. It is clear that the APEm of ŶPMLS is significantly smaller than
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that of ŶLS . Because of the distribution randomness, however, both the two predictions have relatively large

APEm even for large sample size. It shows that it is impossible to improve the predictions if without further

information about the distribution of ε, in other words, we can not completely characterize the regression under

the situation with the distribution randomness.
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Figure 9: The medians of APEms for the first m largest values of Y in Experiment 4.

Table 5: The APEm of predicting all the values of Y in Experiment 4

N 100 500 1000

PMLS 8.49825 8.48973 8.49585

OLS 12.47704 12.49915 12.49017

S1.2 Real data analysis

In this subsection we use a real data example to show how the upper expectation regression works under the

setting with the distribution randomness. Consider the data set of the Fifth National Bank of Springfield based

on data from 1995 (see examples 11.3 and 11.4 in Albright et al. (1999)). This data set has been analyzed by

such as Fan and Peng (2004). The bank, whose name has since changed, was charged in court with paying its

female employees substantially lower salaries than its male employees. For each of its 208 employees, the data set

includes the following variables:

• EduLev: education level, a categorical variable with categories 1 (finished high school), 2 (finished some
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college courses), 3 (obtained a bachelors degree), 4 (took some graduate courses), 5 (obtained a graduate

degree).

• JobGrade: a categorical variable indicating the current job level, the possible levels being 1-6 (6 highest).

• YrHired: year that an employee was hired.

• YrBorn: year that an employee was born.

• Gender: a categorical variable with values “Female” and “Male”.

• YrsPrior: number of years of work experience at another bank prior to working at the Fifth National Bank.

• PCJob: a dummy variable with value 1 if the empolyee’s current job is computer related and value 0

otherwise.

• Salary: current (1995) annual salary in thousands of dollars.

Fan and Peng (2004) fitted the data by a linear model as

Salary = β0 + β1Gender + β2PCJob +

4∑
i=1

β2+iEdui +

5∑
i=1

β6+iJobGrdi + ε. (S1.1)

Figure 1 in Section 1 presents the histogram, scatter plot and a nonparametric fit of the residuals via the above

model, showing that the errors may not be identically distributed. It would be because some other factors, such

as the years of working experience and the age of an employee, may affect the salary. Therefore, we regard these

potential factors as unobserved factors in an upper expectation regression with the distribution randomness. The

model still has a linear regression function as follows:

E(Salary) = β1Gender + β2PCJob +

4∑
i=1

β2+iEdui +

5∑
i+1

β6+iJobGrdi + µ. (S1.2)

It is worth pointing out that the differences from the model (S1.1) are that the error ε in (S1.2) is supposed to

be of the distribution randomness, and the model (S1.2) does not have the intercept term, which is absorbed into

the upper expectation of ε. Moreover, if the model actually has distribution randomness, the upper expectation

µ is not the same as the intercept β0 in the OLS fitting of (S1.1). In fact, the so-called “intercept”, say β0, is

not identifiable, and the OLS fitting, it is determined by minimizing least squares. Thus, the “intercept” has on

a unique true value and is different from µ because µ is the largest one among all the different “intercepts”.
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We use 170 data to estimate the model parameters and then use the obtained models to fit the rest of the

data (to predict 38 values of “Salary”). The predictions and prediction errors are defined in Experiment 4. The

results of parameter estimation and the APEm are listed in Table 6. Compared with the OLS regression (S1.1),

the upper expectation regression (S1.2) has the following interesting features:

(1) The absolute values of the estimators of the coefficients of JobGrdi are significantly reduced, but the others,

especially the coefficients of Gender and Edu2, are largened. The phenomenon could be explained as follows.

As JobGrdi may be related to the years of working experience and the age of the employee, when these

factors are not included in model (S1.1), the model requires larger coefficients of JobGrdi to draw the

information of these factors. On the other hand, the effect of JobGrdi is absorbed into the error term of

model (S1.2).

(2) The difference of the APEms between the two models is not significant.

Table 6: Parameter estimation and APEm for real data

parameters OLS PMLS

β1 (Gender) -1.314 -3.115

β2(PCJob) 4.532 5.082

β3(Edu1) 1.523 1.969

β4(Edu2) 0.086 0.474

β5(Edu3) -0.335 0.387

β6(Edu4) -1.439 -1.692

β7(JobGrd1) -36.191 -34.143

β8(JobGrd2) -34.304 -31.574

β9(JobGrd3) -29.392 -27.046

β10(JobGrd4) -24.341 -22.201

β10(JobGrd5) -17.579 -17.210

µ – 68.832

µ – 63.628

β0 (Intercept) 68.814 –

APEm 32.615 32.544
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On the other hand, as shown in Experiment 4, the upper expectation regression is more concerned about the

maximum information. Figure 10(a) presents the medians of the APEms for the m largest values of “Salary” via

100 replications. From this figure, we can get the following finding:

(3) The upper expectation regression can relatively accurately predict the larger values of “Salary”. For exam-

ple, for the first 15 largest values of “Salary”, the APEm of the upper expectation regression is 10.6892;

and for the first 24 largest values of of “Salary”, the APEm of the upper expectation regression is 6.5338.

Both are smaller than the corresponding values that are based on the OLS regression.

Finally, we examine the R2 values of the two models, which is defined by

R2
m = 1−

∑m
j=1(Y(j) − Ŷ(j))

2∑m
j=1(Y(j) − Y m)2

for m ≤ N,

where Y m =
∑m

j=1 Y(j)/m with Y(j) given in Experiment 4. When m = N , the value of R2
m defined here is

equivalent to the standard R2 value. As stated above, for the case of distribution randomness, we mainly focus

the relatively large values of Yi, implying that the relatively small values of m are used to evaluate the behaviors

of the fitting. That is to say that we use the values of R2
m of the first m largest values of “Salary” to check if

the upper expectation regression can capture the information on relatively large values. The result is reported in

Figure10(b). It suggests the following conclusion:

(4) For the two models, most values of R2 are larger than 0.79, while the upper expectation regression has a

relatively high R2 for the larger values of “Salary”.

All the numerical results aforementioned are coincident with the theoretical conclusions.



14 Lu Lin, Ping Dong, Yunquan Song and Lixing Zhu

0 10 20 30

50
10

0
15

0
20

0

A
P

E

APE of PMLS
APE of OLS

m

(a) Medians of APEms.

0 50 100 150 200

0.
76

0.
77

0.
78

0.
79

0.
80

R
−s

qu
ar

e

R−square of PMLS
R−square of OLS

m

(b) Values of R2.

Figure 10: Figures in real data analysis.
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S2 Proof of Lemma 1

It can be easily proved that

β̂LS − β = E−1[XXT ]
1

n

n∑
j=1

E[Xjµj ] +Op

(
1√
n

)
,

where β̂LS is the least squares estimator of β. The result leads to

1

n

n∑
j=1

E[Xjµj ] = E[XXT ](β̂LS − β) +Op

(
1√
n

)
.

Note that

1

n

n∑
j=1

(Yj − µ)2 =
1

n

n∑
j=1

(Yj −XT
j β − µ+XT

j β)2

= C +
1

n

n∑
j=1

E[Gj(β, µ)] +
2

n

n∑
j=1

E[µjX
T
j ]β +Op

(
1√
n

)
,

where C = βTE[XXT ]β − 2µE[XT ]β. Then, we have

1

n

n∑
j=1

(Yj − µ)2 = C +
1

n

n∑
j=1

E[Gj(β, µ)] + 2(β̂LS − β)TE[XXT ]β +Op

(
1√
n

)
.

The relation above leads to the conclusion of the lemma. �

S3 Proof of Theorem 1

It can be see from Lemma 1 and (S3.4) given below that for the asymptotic property of parameter estimation

that for the asymptotic property of parameter estimation, the objective functions in (3.3) and (3.4) respectively

have the following equivalent forms:

1

2
γ′V γ + Unτ γ and

1

2
γ′V γ + Unλγ + rnλ(γ),

where γ is a parameter vector, V is a positive definite matrix, Un is stochastically bounded and rn(γ) goes to zero

in probability for each γ. Thus, by the basic corollary of Hjørt and Pollard (unpublished report, 1993), we have

that the objective functions in (3.3) and (3.4) are equivalent for parameter estimation with respect to asymptotic

property. We thus only investigate the asymptotic properties of the estimator defined by (3.3).

For simplicity, here we only consider the case when n is a even number: n = 2m. As shown in Section 3,

1
n

n∑
j=1

G(j)(β, µ) is a decreasing function of n. On the other hand, the first condition in C4 implies λ∆n = o(1)
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if n ≤ n0, and the condition in C0 shows ∆n will be increasing when n exceeds n0. These lead to that the

selected n should satisfy n ≥ n0. Suppose without loss of generality that, for n ≥ n0, only the last dn elements

G(n−dn+1)(β, µ), · · · , G(n)(β, µ) in the set Gn do not come from f∗, with n−dn being an even number: n−dn = 2l.

Then, using the original indices, we have

∆n =
1

n

(
l∑

j=1

E[Gkj (β, µ)]−
l∑

j=1

E[Gkj (β, µ)]

)

+
2

n

m−l∑
j=1

E[Gkl+j (β, µ)]−
1

n

dn∑
j=1

E[Gk2l+j (β, µ)]

=:
1

n
I1 +

1

n
I2 −

1

n
I3.

It can be seen that

I1 = 0, I2 = dnEf∗(Y − βTX − µ)2.

By the treatments above, we have

λ∆n =
1

n1−ϵ
I2 −

1

n1−ϵ
I3.

By the above results and the conditions in C4, it is clear that if n = O(n0), then λ∆n = o(1). If n/n0 is diverging,

then (n∗ + dn)/n0 → ∞, implying dn/n0 → ∞. Note that n1−ϵ/n0 is supposed to be bounded and

dn
n0

=
dn
n1−ϵ

n1−ϵ

n0
.

It implies dn
n1−ϵ → ∞. Moreover,

1

n1−ϵ
I2 −

1

n1−ϵ
I3 ≥ dn

n1−ϵ

[
Ef∗(Y − βTX − µ)2 − max

j=1,··· ,dn
E[Gkl+j (β, µ)]

]
,

in which

Ef∗(Y − βTX − µ)2 > max
j=1,··· ,dn

E[Gkl+j (β, µ)].

Thus

1

n1−ϵ
I2 −

1

n1−ϵ
I3 → ∞.

In this case, λ∆n is diverging as well and, consequently, the minimum value of the objective function 1
n

n∑
j=1

G(j)(β, µ)+

λ∆n does not exist. We then need only to consider the objective function 1
n

∑n
j=1 G(j)(β, µ) + λ|∆n| with

n = O(n0) for the asymptotic properties of the estimation.
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Furthermore, because n = O(n0), the objective function can be further expressed as

1

n

n−dn∑
j=1

G(j)(β, µ) + op(1) =
1

n

n∗∑
j=1

G(j)(β, µ) + op(1). (S3.1)

Denoted by β0 and µ0
∗ the true values of β and µ∗, respectively, and let β and µ satisfy ∥β − β0∥ = O(1/

√
n)

and |µ − µ0
∗| = O(1/

√
n). Because n = O(n0), we can assume n∗/n → 1, without loss of generality. Then, the

objective function (S3.1) can be replaced by

1

n∗

n∗∑
j=1

G(j)(β, µ) + op(1)

=
1

n∗

n∗∑
j=1

(
εkj + β0′Xkj − β′Xkj − µ

)2
+ op(1)

=
1

n∗

n∗∑
j=1

{
(εkj − µ0

∗)
2 − 2[(β − β0)′Xkj + (µ− µ0

∗)](εkj − µ0
∗)

+[(β − β0)′Xkj + (µ− µ0
∗)]

2}+ op(1) (S3.2)

Because
∑n∗

j=1(εkj − µ0
∗)

2 is free of β and µ, the objective function in (S3.2) is equivalent to

1

n∗

n∗∑
j=1

{
−2[(β − β0)′Xkj + (µ− µ0

∗)](εkj − µ0
∗)

+[(β − β0)′Xkj + (µ− µ0
∗)]

2}+ op(1). (S3.3)

By the basic corollary of Hjørt and Pollard (unpublished report, 1993), the term of order op(1) can be ignored

for the asymptotic property of the estimation. We then rewrite the above objective function as

Zn(γ) =

n∗∑
j=1

{
−2√
n∗

[εkj − µ0
∗][X

′
kj
, 1]γ +

1

n∗
γ′Φ(Xkj )γ

}
. (S3.4)

The objective function Zn(γ) is obviously convex and is minimized at

Γn =
√
n∗[(β̂ − β0)′, µ̂− µ0

∗]
′.

Note that εkj , j = 1, · · · , n∗, are identically distributed with the common mean µ0
∗ by the condition C2. It follows

from the Lindeberg-Feller central limit theorem that

Zn(γ)
d−→ Z0(γ) = −2W ′γ + γ′E[Φ(X)]γ,

where W ∼ N(0, u2
∗E[Φ(X)]). The convexity of the limiting objective function, Z0(γ), assures the uniqueness of

the minimizer and consequently, that

√
n∗

[
(β̂ − β0)′, µ̂− µ0

∗

]′
= γ̂n = argmin Z̃n(γ)

d−→ γ̂0 = argminZ0(γ).
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(See, e.g., Pollard (1991), Hjørt and Pollard (unpublished report, 1993), Knight (1989)). Finally, we see γ̂0 =

E−1[Φ(X)]W and (n∗)/n → 1. Then the result follows. �

S4 Proof of Theorem 2

By the same argument as used in the proof of Theorem 1, nτ̃ can be replaced by the sample size ñ. Let

{H0
(j) = Ysj − βTXsj : j = 1, · · · , N} be the order statistic of {H0

j = Yj − βTXj : j = 1, · · · , N}, satisfying

H0
(1) ≥ H0

(2) ≥ · · · ≥ H0
(n). Write the corresponding index decomposition as C0

n = U0
n ∪ L0

n and let

Γ0
n
λ̃
=

1

[nλ̃/2]

∑
j∈U0

n

H0
j − 1

ñ− [nλ̃/2]

∑
j∈L0

n

H0
j .

It follows from Theorem 1 that Γn
λ̃
= Γ0

n
λ̃
+ Op(1/

√
nλ̃). Denoted by β0 and µ0 the true values of β and µ,

respectively, and let β and µ satisfy ∥β−β0∥ = O(1/
√
nλ̃) and |µ−µ0| = O(1/

√
nλ̃). Thus, the objective function

in (3.6) can be expressed as

1

nλ̃

n
λ̃∑

j=1

(
[εsj − µ0]− (β0 − β̂)TXsj − [µ− µ0]

)2
− λ̃Γn

λ̃
+Op(1/

√
nλ̃).

Note that {εkj , j = 1, · · · , n∗} and {εsj , j = 1, · · · , nλ̃} are independent, and β̂ depends only on {εkj , j =

1, · · · , n∗}. By the conclusion of Theorem 1 and the same argument as used in the proof of Theorem 1, we can

prove the theorem. �

S5 Proof of Theorems 3-5

The proofs are similar to that of Theorem 1. �
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Härdle, W., Liang, H. and Gao, J.(2000). Partially Linear Models. Springer, Berlin.

Lam, C. and Fan, J. (2008). Profile-kernel Likelihood Inference with Diverging Number of Parameters. Ann.

Statist. 36, 2232-2260.

Lin, L., Zhu, Lixing and Gai, Y. (2016). Inference for Biased Models: a Quasi-instrumental Variable approach.

Journal of Multivariate Analysis, 145, 22-36.

Peng, S. (1997). Backward SDE and Related g-expectations. Pitman Research Notes in Mathematics Series, 364,

141-159.



20 Lu Lin, Ping Dong, Yunquan Song and Lixing Zhu

Peng, S. (2007). G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Itôs type. Stochastic
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