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Abstract: This paper studies sparse linear regression analysis with outliers in the

responses. A parameter vector for modeling outliers is added to the standard linear

regression model and then the sparse estimation problem for both coefficients and

outliers is considered. The `1 penalty is imposed for the coefficients, while various

penalties including redescending type penalties are for the outliers. To solve the

sparse estimation problem, we introduce an optimization algorithm. Under some

conditions, we show the algorithmic and statistical convergence property for the

coefficients obtained by the algorithm. Moreover, it is shown that the algorithm

can recover the true support of the coefficients with probability going to one.
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1. Introduction

Linear regression with a large number of covariates is a general and funda-

mental problem in recent data analysis. A standard method to overcome this

problem is the least absolute shrinkage and selection operator (Lasso) proposed

by Tibshirani (1996). For a large number of covariates, it is natural to assume

sparsity, which means that many of the covariates are not relevant to the re-

sponses. The Lasso can draw relevant covariates automatically and simultane-

ously estimate the remaining coefficients to be zero. The Lasso has been studied

by, for instance, Bickel, Ritov and Tsybakov (2009), Meinshausen and Yu (2009)

and Wainwright (2009) with giving the convergence rate under several norms and

showing that the Lasso estimates can recover the true support of the coefficients.

See also Efron et al. (2004), Zhao and Yu (2006), Zou (2006), and van de Geer

and Bühlmann (2009).

Recent linear regression analysis requires some complex structures in addi-

tion to a large number of covariates. One of them is the outlier structure. That

appears in such applications as signal detection, image and speech processing,
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communication networks, and so on. A popular way for robustifying against out-

liers is to use the M-estimation procedure that replaces the `2 loss by an other

loss with a bounded influence function; e.g., Huber’s, the skipped-mean, and

Hampel’s robust loss (see, for instance, Huber and Ronchetti (2009) for more

details). However, optimizing such a robust loss function with a sparse penalty

requires much computational cost. Recently, She and Owen (2011) proposed a

novel approach for robust parameter estimation, adding a parameter vector for

modeling outliers to the standard linear regression model. The corresponding `2
loss function with a sparse penalty for the outlier parameter vector is optimized.

This paper studies sparse and robust linear regression based on their outlier

model from a theoretical point of view, which was not treated in She and Owen

(2011). Some theoretical analyses were discussed by Nguyen and Tran (2013),

but only the `1 penalty was used for the outlier parameters. Their results were

derived from the fact that the resulting estimate is a global optimum. As She

and Owen (2011) showed, many penalties having good robustness are non-convex

and the resulting estimate is often a local optimum. A general theory including

non-convex penalties is thus of interest.

We consider a larger class of penalties for outlier parameters including non-

convex penalties and derive some statistical properties. To avoid the problem of

local optima, we directly analyze the estimated coefficients that an optimization

algorithm outputs. We provide an upper bound for its `2 error, and show that

the algorithm can recover the true support of the coefficients.

The remainder of this paper is organized as follows. We introduce the model

and the optimization algorithm in Section 2. In Section 3, theoretical analyses for

the estimated coefficients which the algorithm outputs are provided. We report

numerical performances in Section 4. The proofs are in Section 5.

Throughout the paper, a bold symbol denotes a matrix or a vector, e.g.,

A = (aij) for A ∈ Rm×n and a = (a1, . . . , am)T for a ∈ Rm. For any vector

a ∈ Rm and 1 ≤ q < ∞, ‖a‖q = (
∑m

i=1 |ai|q)1/q, ‖a‖0 = |{i| ai 6= 0}|, and

‖a‖∞ = max1≤i≤m |ai|. Given a set S ⊂ {1, . . . ,m}, aS = {ai| i ∈ S}. For any

two vectors a, b ∈ Rm, 〈a, b〉 denotes the standard inner product. The matrix `1
norm is ‖A‖`1 = max1≤j≤n

∑m
i=1 |aij | and, for any symmetric matrixB ∈ Rm×m,

the largest eigenvalue is ξmax(B). For two positive sequences an, bn depending on

n, the notation an = O(bn) means that there exists a finite constant C > 0 such

that an ≤ Cbn for a sufficiently large n, while an = Ω(bn) means that an ≥ Cbn.

The notation an = o(bn) means that an/bn → 0 as n goes to infinity.
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2. Sparse and Robust Linear Regression

2.1. Model and parameter estimation

Consider the linear regression model with outliers

y = Xβ∗ +
√
nγ∗ + ε, (2.1)

where y = (y1, . . . , yn)T is an n dimensional response vector, X = (xij) =

(x1, . . . ,xn)T is an n × p covariate matrix, β∗ is a p dimensional unknown co-

efficient vector, γ∗ is an n dimensional unknown vector whose nonzero elements

correspond to outliers and ε is an n dimensional random error vector. At (2.1),

we assume that the `2 norms of columns of X are
√
n. Correspondingly, the

coefficient of γ∗ is assumed to be
√
n to match its scale with the columns of X.

The model (2.1) can be found also in She and Owen (2011) and Nguyen and

Tran (2013). Our purpose is to estimate β∗ accurately even when the number

of covariates is large. We suppose that β∗ has many zero elements (sparse), and

also that γ∗ is sparse since the number of outliers is usually not large. For this

setup, we introduce sparse penalties for coefficients and outliers. The parameters

are estimated by solving the optimization problem

argmin
β∈Rp,γ∈Rn

1

2n
‖y −Xβ −

√
nγ‖22 + λβ

p∑
j=1

wβ,j |βj |+
n∑
i=1

P

(
γi;

λγwγ,i√
n

)
, (2.2)

where λβ > 0 and λγ > 0 are tuning parameters for β and γ, respectively, and P

is a penalty function that encourages sparsity. We often use a redescending P ,

since it can yield a small bias against strong outliers. We consider the adaptive

Lasso (Zou (2006)) type optimization problem. In (2.2), wβ,i and wγ,j are known

weights. Suppose that we have the preliminary estimators β̃ = (β̃1, . . . , β̃p)
T and

γ̃ = (γ̃1, . . . , γ̃n)T . The weights are given, with constant Rw > 0, by

wβ,j = max

(
1

|β̃j |
,

1

Rw

)
, wγ,i = min

(
1

|γ̃i|
, Rw

)
(2.3)

for j ∈ S̃ and i ∈ G̃, where S̃ and G̃ are the support of β̃ and γ̃, respectively,

and by wβ,j = 1/|β̃j | and wγ,i = 1/|γ̃i| for the rest. These restrictions have

minj∈S̃ wβ,j ≥ R−1w and maxi∈G̃wγ,i ≤ Rw. The same results hold if different

constants Rw,β and Rw,γ are used in (2.3). For the details of the preliminary

estimators used in this paper, see Section 3.3.

2.2. Optimization algorithm

Let L(β,w) be the objective function in (2.2). To solve (2.2), we introduce

Algorithm 1. Here L(β,w) depends on the choice of preliminary estimators (β̃, γ̃)
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Algorithm 1

Step 1. Initialize k ← 0, βk ← βinit and γk ← argminγL(β0,γ).
Step 2. Update k ← k + 1,

βk ← argminβL(β,γk−1), (2.4)

γk ← argminγL(βk,γ). (2.5)

Step 3. If they converge, then output current (βk,γk) and stop the algorithm, oth-
erwise return to Step 2.

and Algorithm 1 requires an initial value βinit. A typical example of βinit is β̃.

The preliminary estimators and the initial value must satisfy certain properties,

later in Section 3, to ensure good behavior of the algorithm. The algorithm

converges since

L(β0,γ0) ≥ L(β1,γ0) ≥ L(β1,γ1) ≥ · · · ≥ 0

from its construction. The optimization problem at (2.4) can be solved by such

as the coordinate descent algorithm (Friedman, Hastie and Tibshirani (2010)).

The optimization problem in (2.5) can be rewritten as

argmin
γ∈Rn

n∑
i=1

{
1

2

(
yi − xTi βk√

n
− γi

)2

+ P

(
γi;

λγwγ,i√
n

)}
.

If the problem argminx(z − x)2/2 + P (x;λ) has the explicit solution Θ(z;λ)

satisfying cΘ(z;λ) = Θ(cz; cλ) for c > 0, then (2.5) can be written as

γki ←
1√
n

Θ(yi − xTi βk;λγwγ,i), i = 1, . . . , n,

where γki is the ith element of γk. Let this expression be denoted by γk ← h(βk).

Then, step 2 can be expressed with only the update of β as

βk ← argmin
β∈Rp

L
{
β, h(βk−1)

}
.

The function Θ(z;λ) is often called the thresholding function. As seen in

Antoniadis and Fan (2001), many sparse penalties, including the `1, `0, and

smoothly clipped absolute deviation (SCAD; Fan (1997)) penalties, have an ex-

plicit solution Θ(z;λ). The `1 penalty leads to the soft thresholding function

Θ(z;λ) = sgn(z) max(|z| − λ, 0) where sgn(·) denotes the sign function, and the

`0 penalty leads to the hard thresholding function Θ(z;λ) = zI(|z| > λ), where

I(A) denotes the indicator function on the event A. For the SCAD penalty, the

corresponding thresholding function is given by
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Θ(z;λ) =


sgn(z)(|z| − λ) if |z| ≤ 2λ,
(a− 1)z − aλsgn(z)

a− 2
if 2λ < |z| ≤ aλ,

z if |z| > aλ,

where a = 3.7 is recommended by Fan and Li (2001).

2.3. Connection to robust M-estimators

As in She and Owen (2011), our procedure has a close connection to robust

M -estimators.

Proposition 1. Let β̂ be the coefficient output of Algorithm 1 and let ψ(z;λ) =

z−Θ(z;λ), where Θ(·;λ) is a thresholding function yielded from a penalty function

P (·). Then, for j = 1, . . . , p,

1

n

n∑
i=1

xijψ(yi − xTi β̂;λγwγ,i) + λβwβ,j∂|β̂j | = 0, (2.6)

where ∂|β̂j | = sgn(β̂j) if β̂j 6= 0, ∂|β̂j | ∈ [−1, 1] otherwise.

Proposition 1 shows that the output β̂ satisfies the estimating equations (2.6)

with the ψ function and the `1 penalty. Thus, our algorithm is closely related to

the optimization problem

argmin
β∈Rp

1

2n

n∑
i=1

Ψ(yi − xTi β;λγwγ,i) + λβ

p∑
j=1

wβ,j |βj |, (2.7)

where (dΨ)/(dt)(t;λ) = ψ(t;λ). The output β̂ and any local solution to (2.7)

share the same first-order KKT condition. It may take much computation to di-

rectly solve (2.7), particularly when Ψ(·;λ) is non-convex. For fast computation,

we can use the first-order approximation of Ψ(·;λ), but it loses the information

of the original function. Thus, we use Algorithm 1 instead of solving (2.7).

The relationship between sparse penalties and robust loss functions is stated

through the equation ψ(z;λ) = z − Θ(z;λ). For instance, the `1 penalty cor-

responds to the Huber’s loss, the `0 penalty to the skipped-mean loss, and the

SCAD penalty to the Hampel’s loss. She and Owen (2011) gave illustrations and

more details. One measure to characterize a robust loss function is the redescend-

ing property; |z−Θ(z;λ)| goes to 0 as |z| goes infinity. The soft thresholding func-

tion that corresponds to the `1 penalty does not have the redescending property,

but the hard and SCAD thresholding functions that correspond to non-convex

penalties have it. Some other non-convex penalties, including the non-negative

garrote penalty (Garrote; Gao (1998)) and the minimax concave penalty (MCP;
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Zhang (2010)), also lead to that property.

3. Theoretical Analysis

The optimization problem (2.2) with a non-convex penalty P suffers from

local minima, so we directly analyze the output of Algorithm 1. Some analyses of

computable solutions in linear regression model without outliers were provided

by Zhang and Zhang (2012), Fan and Lv (2013), and Fan and Lv (2014), but our

analysis is essentially different from theirs. They first derived some properties

for a global minimum and then showed that a computable solution shared those

properties under additional conditions on the solution.

3.1. Notations

Let S∗ = supp(β∗) = {i|β∗i 6= 0} ⊂ {1, . . . , p} and G∗ = supp(γ∗) ⊂
{1, . . . , n}. These support sizes are written s∗ = |S∗| and g∗ = |G∗|. For pre-

liminary estimators, let S̃ = supp(β̃) and G̃ = supp(γ̃) with sizes s̃ = |S̃| and

g̃ = |G̃|. We define a restricted smallest eigenvalue δmin as

δmin(u) = inf
‖δ‖0≤u

‖Xδ‖22
n‖δ‖22

(3.1)

and a (doubly) restricted largest eigenvalue δmax as

δmax(u, u′) = sup
‖δ‖0≤u

sup
|G|≤u′

‖X(G)δ‖22
n‖δ‖22

, (3.2)

where X(G) = {xij | i ∈ G, 1 ≤ j ≤ p}. The restricted eigenvalue is popular in

the analysis of the Lasso (see, e.g., Bickel, Ritov and Tsybakov (2009)), but our

δmax is slightly different from the existing one. The restriction is imposed on

rows of X in addition to columns, corresponding to the outliers. We provide an

asymptotic analysis as n goes to infinity. In our theory, p, s∗ and g∗ may go to

infinity depending on n. Notice that the restricted eigenvalues also depend on n.

3.2. Properties of Algorithm 1 output

To derive a convergence property of Algorithm 1, we require conditions on

the random error vector ε = (ε1, . . . , εn)T , the thresholding function Θ(·;λ), and

the preliminary estimator (β̃, γ̃).

Condition 1. The errors ε1, . . . , εn are independently and identically distributed

as a zero mean sub-Gaussian distribution with a parameter σ > 0; E(εi) = 0 and

E{exp(tεi)} ≤ exp(t2σ2/2) for all t ∈ R.
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Condition 2. The thresholding function Θ(·;λ) satisfies Θ(x;λ) = 0 if |x| ≤ λ

and |Θ(x;λ)− x| ≤ λ for all x ∈ R.

Condition 3. There exist a sequence an,1 → 0 and a constant κ > 0 such that

‖β̃ − β∗‖2 + ‖γ̃ − γ∗‖2 ≤ C̃an,1 and δmin(s̃) ≥ κ with probability going to one,

where C̃ is some positive constant.

The sub-Gaussian distribution family, see Vershynin (2012), covers the Gaus-

sian, Bernoulli, and any distribution with a bounded support. Condition 2 de-

cides a class of thresholding functions that include the soft, hard, non-negative

garrote, SCAD, and MCP thresholding functions. The first part of Condition

3 implies consistent preliminary estimators at the rate an,1. We find a2n,1 =

{(s∗ + g∗) log max(n, p)}/n when we use the preliminary estimators in Section

3.3. Then we have |β̃j | ≥ |β∗j |− |β̃j−β∗j | ≥ |β∗j |− C̃an,1 for j ∈ S∗ by the triangle

inequality. Hence, if minj∈S∗ |β∗j | > C̃an,1, then |β̃j | > 0 for j ∈ S∗. Similarly, we

can show that if mini∈G∗ |γ∗i | > C̃an,1 then |γ̃i| > 0 for i ∈ G∗. Thus, Condition

3 leads to the screening property that S∗ ⊂ S̃ and G∗ ⊂ G̃ if

min
{

min
j∈S∗
|β∗j |,min

i∈G∗
|γ∗i |
}
> C̃an,1. (3.3)

The second part of Condition 3 is the sparse Riesz condition (Zhang and Huang

(2008)) if s̃ is non-random. When we use a preliminary estimator that has a non-

random upper bound su, it reduces to δmin(su) ≥ κ. In Section 3.3, we clarify

the order of an,1 and the non-random upper bound of s̃ for some preliminary

estimators.

Theorem 1. Assume Conditions 1–3 and (3.3). Let

λβ ≥ 2CRw

√
σ2 log p

n
, λγ ≤

Cn

Rw maxj∈S̃
∑

i∈G̃ |xij |

√
σ2 log p

n

for a constant C >
√

2 and Rw > 0 used in (2.3). Then, for any iteration k ≥ 1

and any initial value βinit in Algorithm 1,

‖βk − β∗‖2 ≤ ρk‖βinit − β∗‖2 + 2κ−1
√
s∗λβ

(
R−1w + max

j∈S∗
wβ,j

) k−1∑
i=0

ρi, (3.4)

with probability going to one, where ρ = 2κ−1δmax(s̃, g̃).

The first term of the right side of (3.4) can be regarded as the algorithmic

error. It represents the effect of an initial value βinit in Algorithm 1. This shows

that if ρ < 1 then the effect vanishes from the bound exponentially as the number

of iterations increases. Since |ξmax(M)| ≤ ‖M‖`1 for any symmetric matrix M ,
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we have

δmax(s̃, g̃) ≤ max
1≤i≤n;1≤j≤p

x2ij
s̃g̃

n
. (3.5)

Thus, if maxij x
2
ija

2
n,2 = o(n), we have ρ < 1 for sufficiently large n with probabil-

ity going to one, where the rate an,2 is to be found in Condition 4. When we use

the preliminary estimators defined in Section 3.3, an,2 = ξmax(ZTZ/n)(s∗ + g∗)

or s∗+ g∗ where Z = (X,
√
nIn). Thus, Algorithm 1 can remove the effect from

βinit if maxij x
2
ij [ξmax(ZTZ/n)(s∗ + g∗)]2 = o(n) or maxij x

2
ij(s
∗ + g∗)2 = o(n).

Thus, we need an n sufficiently larger than (s∗ + g∗)2 to hold ρ < 1. The sec-

ond term can be regarded as the statistical error. The rate an,1 in Condition 3

affects the rate of maxj∈S∗ wβ,j and maxj∈S∗ wβ,j = O(1) with probability going

to one if an,1 = o(1) and minj∈S∗ |β∗j | = Ω(1). In this case, the second term has

O(
√
s∗λβ), which is equivalent to the order of the standard Lasso excluding the

term
√
nγ∗ from (2.1) in advance.

Theorem 1 shows only the convergence result for the output. Next, we shall

show that the output can recover the true support. We need an extra condition

and a corollary.

Condition 4. There exist a constant C > 0 and a sequence an,2, which may

diverge, such that max(s̃, g̃) ≤ Can,2 with probability going to one.

Corollary 1. Assume Conditions 1–4, (3.3), maxij |xij | = O(1), minj∈S∗ |β∗j | =
Ω(1), and a2n,2 = o(n). Let λβ ≥ Cβ{(log p)/n)}1/2 and λγ ≤ Cγ(n/an,2){(log p)/

n}1/2 with some constants Cβ > 0 and Cγ > 0. If there exist some k0 ≥ 1 and

C0 > 0 such that P(‖βinit − β∗‖2 ≤ C0ρ
−k0
√
s∗λβ) → 1, then it follows that

P(‖βk − β∗‖2 ≤ C
√
s∗λβ)→ 1 for any k ≥ k0 for some constant C > 0.

When maxi,j |xij | = O(1) and a2n,2 = o(n), we have ρ = o(1). Consequently,

Corollary 1 can be obtained from Theorem 1. The requirement P(‖βinit−β∗‖2 ≤
C0ρ

−k0
√
s∗λβ)→ 1 is not so restrictive since ρ = o(1). If we use β̃ for the initial

value βinit, then the condition (a2n,2/n)k0an,1 = O(
√
s∗λβ) is required. From

Corollary 1, we can show a theorem about support recovery. For this we only

need to analyze the elements of βk on S̃∩S∗c since the screening property S∗ ⊂ S̃
holds.

Theorem 2. Assume the conditions of Corollary 1. If
√

log n=o(
√
nmini∈G∗ |γ∗i |),

an,2s
∗ log p = o(n log n), and an,1 max

(√
an,2s∗, g

∗/
√
n
)

= o(1), then we have

P
(
βk
S̃∩S∗c = 0

)
→ 1 for any k ≥ k0 + 1, where k0 is as in Corollary 1.

The proof is given in Section 5.3. As seen in the proof, an explicit convergence

rate for ‖βk − β∗‖2 is required to derive the conditions involving (s∗, g∗) in
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Theorem 2. This means that the rate need not be
√
s∗λβ, and hence the condition

minj∈S∗ |β∗j | = Ω(1) can be weakened. Instead, the conditions involving (s∗, g∗)

become stronger. There exists a trade-off between the conditions for minj∈S∗ |β∗j |
and (s∗, g∗). To keep conditions simple, we only report the case where the rate√
s∗λβ is attained.

3.3. Preliminary estimator and its properties

In this section, we give an example, and specify the orders an,1 and an,2
in Conditions 3 and 4. Consider the Lasso type preliminary estimators of θ̃ =

(β̃T , γ̃T )T , given by

θ̃ = argmin
θ∈Rnp

1

2n
‖y −Zθ‖22 + λθ‖θ‖1, (3.6)

where λθ > 0 is the tuning parameter and Z = (X,
√
nIn). The estimator θ̃ is

a simple variant of that proposed in Nguyen and Tran (2013). Using different

tuning parameters for β and γ may improve the accuracy of estimates. However,

even if the preliminary estimates do not have the high accuracy, we can improve

accuracy by calculating (2.2) with different tuning parameters. For this reason,

it would be enough to use the single tuning parameter in (3.6).

After Bickel, Ritov and Tsybakov (2009) and Wainwright (2009), for exam-

ple, the following can be shown.

Proposition 2. Assume Condition 1 and that there exists a constant κ̃ > 0 such

that

min
θ 6=0;‖θU∗c ‖1≤3‖θU∗‖1

‖Zθ‖22
n‖θ‖22

≥ κ̃, (3.7)

where U∗ = supp(θ∗) with θ∗ = (β∗T ,γ∗T )T . Let λθ = Cθ{(log max(n, p))/n}1/2

for sufficiently large Cθ > 0. Then, it follows that

‖θ̃ − θ∗‖2 ≤ C
√

(s∗ + g∗) log max(n, p)

n
, (3.8)

|supp(θ̃)| ≤ Cξmax(
ZTZ

n
)(s∗ + g∗), (3.9)

with probability going to one, where C > 0 is some constant.

The condition (3.7) is slightly different from that commonly used in Lasso

analysis. It is involved in the extended matrix Z not in X. For more details, see

Nguyen and Tran (2013). The bounds (3.8) and (3.9) correspond to the orders

an,1 and an,2 of Condition 3 and 4, respectively. However, the term ξmax(ZTZ/n)

is troublesome since it may diverge as n or p increases. To exclude it, after θ̃ is
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obtained with λθ, we consider the threshold version of (3.6) with an additional

tuning parameter τθ > 0 as

θ̃thj = θ̃jI(|θ̃j | > τθλθ), j = 1, . . . , n+ p. (3.10)

Now, let θ̃th = (θ̃th1 , . . . , θ̃
th
n+p)

T and an,1 = {(s∗+g∗) log max(n, p)/n)}1/2. Under

(3.3), in which C̃ is replaced by 2C̃, we have |θ̃j | > C̃an,1 for any j ∈ supp(θ∗).

Thus, if we select τθ such that τθλθ ≤ C̃an,1, then θ̃thj = θ̃j for any j ∈ supp(θ∗).

Hence, the threshold version also satisfies (3.8) with the same order as the origi-

nal. Meanwhile, note that

|supp(θ̃th)\supp(θ∗)| =
∑

j∈supp(θ̃th)\supp(θ∗)

1 ≤
∑

j 6∈supp(θ∗)

θ̃2j
τ2θ λ

2
θ

≤ ‖θ̃ − θ
∗‖22

τ2θ λ
2
θ

≤ C(s∗ + g∗),

if we select τθ ≥ Cτ for sufficiently small Cτ > 0, which implies that |supp(θ̃th)| ≤
(1 + C)(s∗ + g∗). Here, the term ξmax(ZTZ/n) is excluded. The conditions

τθλθ ≤ C̃an,1 and τθ ≥ Cτ are compatible since the order of λθ is smaller than

or equal to that of an,1.

If we further assume the mutual incoherence in Nguyen and Tran (2013),

the support recovery for (3.6) and (3.10) can be obtained. However, we do not

require it when we use them as preliminary estimators for the proposed method.

We only need the convergence rate and the upper bound of the support size.

Moreover, we can show the support recovery of the proposed method without

the mutual incoherence as seen in Theorem 2.

4. Numerical Performance

We examined numerical performances of our procedure based on 100 Monte

Carlo simulations. The tuning parameters λβ, λγ , λθ, and τθ were selected by

the Bayesian information criteria (BIC; Schwarz (1978)). For instance, consider

the selection of (λβ, λγ) by BIC. Let β̂(λβ, λγ) and γ̂(λβ, λγ) be the outputs

of Algorithm 1 with the tuning parameters (λβ, λγ). Then, the optimal tuning

parameters (λ̂β, λ̂γ) are given by

(λ̂β, λ̂γ) = argmin
λβ>0;λγ>0

1

2n
‖y −Xβ̂(λβ, λγ)−

√
nγ̂(λβ, λγ)‖22

+
log n

n

{
|supp(β̂(λβ, λγ))|+ |supp(γ̂(λβ, λγ))|

}
.

Practically, since it is impossible to search all possible tuning parameters, we
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Figure 1. The support size (left) and the coverage probability (right) for the two pre-
liminary estimators. “Lasso” means (3.6) and “Th Lasso” means (3.10). Each point on
the curve shows the mean based on 100 Monte Carlo simulations.

searched them over some candidate values which were generated as in Friedman,

Hastie and Tibshirani (2010).

The first simulations were designed to see the impact of the number of

outliers. The scenarios (n, p, s∗) = (200, 200, 10) (moderate dimension) and

(n, p, s∗) = (200, 400, 20) (high dimension) with various g∗ were considered. The

covariates xi’s were independently drawn from Np(0,Σ) with (Σ)ij = 0.3|i−j|,

the true coefficients were given by β∗j = sgn(uj), and the true outliers were

given by
√
nγ∗i = 8. The positions of the non-zero coefficients and outliers were

uniformly drawn from {1, . . . , p} and {1, . . . , n}, respectively. The εi’s and uj ’s

were independently drawn from N(0, 1). We used Rw = 100 in (2.3) and the

preliminary estimator for βinit in Algorithm 1. The algorithm stopped when

‖βk − βk−1‖1/s̃ ≤ 10−3 was satisfied at the iteration k.

Figure 1 shows the support size s̃ + g̃ (left) and the coverage probability

P(S∗ ⊂ S̃, G∗ ⊂ G̃) (right) for the two preliminary estimators (3.6) and (3.10)

when the percentage of outliers increased from 1% to 35%. It can be seen that

the two preliminary estimators performed well if the percentage of outliers was

lower than around 20%. The threshold version (3.10) had a smaller support

size than (3.6), but its coverage probability was worse. We also notice that the

coverage probability tended to be low as the percentage of outliers increased. It

would come from the violation of the condition (3.3). As the number of outliers

increases, the order an,1 increases.
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Figure 2. The squared `2-error (left) and the false positive rate divided by the true posi-
tive rate (right) for the proposed estimator with (3.6) and P (·) = | · |. The performances
of (3.6) are provided for comparison.

Figure 2 shows the performance of the proposed method with the preliminary

estimator (3.6) and the `1 penalty P (x;λ) = λ|x| as the number of outliers

increases. We omitted the other cases from the figure since they had similar

behaviors. Their concrete values for more precise investigation were reported

in Tables 1–4. The left figure shows the squared `2-error ‖β̂ − β∗‖22 and the

right shows the false positive rate divided by the true positive rate (FPR/TPR)

given by (|{j|β∗j = 0, β̂j 6= 0}|/|{j|β∗j = 0}|)/(|{j|β∗j 6= 0, β̂j 6= 0}|/{j|β∗j 6= 0}).
This index is in [0, 1] and 0 is the best. In Tables 1–4, we show the squared

`2-error, the number of the false positives |{j|β∗j = 0, β̂j 6= 0}| (FP), and the

number of the true positives |{j|β∗j 6= 0, β̂j 6= 0}| (TP) for various penalties

for outlier parameters. We reported the performance with the “Soft”, “Hard”,

“SCAD”, and “Garotte” thresholding functions. Only the Soft does not have

the redescending property. The Garrote has a different behavior from the Hard

and the SCAD, in fact, its ψ(z;λ) function never vanishes if z is finite. For

comparison, we also investigated the performances of the standard “Lasso” and

its “Oracle” version where the true outliers are excluded in advance. The symbol

“-” means that the standard Lasso does not depend on preliminary estimators

and its oracle version does not so on outliers.

From Figure 2 and Tables 1–2, for moderate dimensions, our procedure pro-

vided quite good estimates and recovered the true support well, although the

performance at 30% and more outliers was marginal. Interestingly, the perfor-
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Table 1. Numerical performances of the proposed procedure for various outlier percent-
ages when (n, p, s∗) = (200, 200, 10) and (3.6) is used for the preliminary estimators.
Each value shows the mean (standard deviation) based on 100 Monte Carlo simulations.

Outlier Criterion Soft Hard SCAD Garrote Lasso Oracle
5% `2-error 0.1036 0.1008 0.1026 0.1021 1.7400 0.3514

(0.0504) (0.0471) (0.0483) (0.0491) (0.7256) (0.1198)
FP 1.08 0.88 0.97 0.95 66.86 5.17

(1.55) (1.50) (1.58) (1.54) (18.58) (2.74)
TP 10.00 10.00 10.00 10.00 10.00 10.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
10% `2-error 0.1059 0.1058 0.0992 0.1014 9.4954 -

(0.0456) (0.0480) (0.0417) (0.0424) (3.9652)
FP 1.27 1.09 1.07 1.11 124.53 -

(1.50) (1.39) (1.24) (1.26) (20.47)
TP 10.00 10.00 10.00 10.00 9.97 -

(0.00) (0.00) (0.00) (0.00) (0.17)
20% `2-error 0.1828 0.1436 0.1377 0.1485 32.0149 -

(0.1192) (0.0752) (0.0693) (0.0807) (6.5770)
FP 3.26 2.38 2.62 2.74 153.42 -

(1.50) (1.39) (1.24) (1.26) (20.47)
TP 10.00 10.00 10.00 10.00 9.76 -

(0.00) (0.00) (0.00) (0.00) (0.45)
30% `2-error 0.6788 0.4886 0.4683 0.5107 52.2651 -

(0.8848) (0.7465) (0.7398) (0.7833) (9.1842)
FP 6.77 5.04 5.33 5.68 157.06 -

(7.07) (6.12) (6.38) (6.36) (5.84)
TP 9.87 9.89 9.89 9.89 9.53 -

(0.39) (0.35) (0.35) (0.35) (0.69)

mance was better than the Oracle. This would be because the error ε can yield

extreme values in simulations and the Oracle is not robust against these values.

As seen in Figure 2 and Tables 3–4, however, for high dimensions and large outlier

percentages, our procedure did poorly. For high-dimensional data, our procedure

would perform well only when the outlier percentage is low (up to 15% in this

case). In particular, Figure 2 shows that, for p = 400, the proposed method was

poor at around 20% outliers, and at around 30% for p = 200. As the number

of outliers increases, the value of s∗ + g∗ increases. This result would come from

violating the conditions in Section 3 relating to s∗ + g∗. Comparing preliminary

estimators, (3.10) performed better than (3.6) for the true support recovery, but

the opposite was true for the `2-error. The Soft performed worse than the other

thresholding functions. This would be explained by the redescending property.

The final simulations were designed to investigate the impact of the magni-
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Table 2. The same simulations as those of Table 1 when (3.10) is used for the preliminary
estimators. The results of the standard Lasso and its oracle version are omitted since
they are equivalent to Table 1.

Pre. Outlier Criterion Soft Hard SCAD Garrote
(3.10) 5% `2-error 0.1067 0.1060 0.1059 0.1061

(0.0473) (0.0474) (0.0474) (0.0477)
FP 1.05 1.07 1.07 1.07

(1.26) (1.26) (1.26) (1.26)
TP 10.00 10.00 10.00 10.00

(0.00) (0.00) (0.00) (0.00)
10% `2-error 0.1097 0.1080 0.1084 0.1083

(0.0466) (0.0476) (0.0451) (0.0447)
FP 1.18 1.09 1.10 1.10

(1.37) (1.33) (1.36) (1.36)
TP 10.00 10.00 10.00 10.00

(0.00) (0.00) (0.00) (0.00)
20% `2-error 0.1654 0.1501 0.1487 0.1541

(0.0800) (0.0675) (0.0646) (0.0721)
FP 1.14 1.11 1.06 1.11

(1.40) (1.66) (1.47) (1.57)
TP 10.00 10.00 10.00 10.00

(0.00) (0.00) (0.00) (0.00)
30% `2-error 0.6583 0.5377 0.5502 0.5788

(0.9306) (0.8802) (0.9146) (0.9216)
FP 3.66 2.91 2.87 3.20

(5.21) (4.39) (4.38) (4.83)
TP 9.84 9.84 9.84 9.84

(0.42) (0.42) (0.42) (0.42)

tude of outliers. We used (n, p, s∗) = (200, 400, 20) with g∗ = 20 (10% outliers)

and various magnitudes of
√
nγ∗. We considered the situations

√
nγ∗ = γ∗1n

with γ∗ ∈ {2, 4, 6, . . . , 14}. The Monte Carlo samples were generated as before.

In Figure 3, only the performances of the Soft and Hard are shown. The SCAD

and Garotte performed similarly to the Hard. The true positives are also omitted

since they were around 20 for all the cases considered. Our procedure performed

well with low and high magnitudes, but it did not do so with a moderate mag-

nitude. This also would be come from the violation of the condition (3.3). For

a low magnitude, the outliers would be hidden by the random errors. When ε

is drawn from Nn(0, In), the maximum magnitude of εi’s is less than
√

2 log n

(it is around 3.3 in this case). We also note that the performances tended to be

stable as the magnitude increased.
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Table 3. Numerical performances of the proposed procedure for various outlier percent-
ages when (n, p, s∗) = (200, 400, 20) and (3.6) is used for the preliminary estimators.
Each value shows the mean (standard deviation) based on 100 Monte Carlo simulations.

Outlier Criterion Soft Hard SCAD Garrote Lasso Oracle
5% `2-error 0.2287 0.2139 0.2041 0.2087 3.8340 1.0337

(0.1129) (0.0874) (0.0870) (0.0944) (0.8725) (0.3036)
FP 2.32 2.05 2.04 2.09 97.95 21.69

(2.82) (2.81) (2.82) (2.76) (16.26) (8.09)
TP 20.00 20.00 20.00 20.00 19.98 20.00

(0.00) (0.00) (0.00) (0.00) (0.14) (0.00)
10% `2-error 0.3987 0.3096 0.3039 0.3218 8.5953 -

(0.3029) (0.1970) (0.1978) (0.2071) (1.5790)
FP 6.03 5.02 5.33 5.30 134.80 -

(7.61) (7.06) (7.14) (7.20) (13.70)
TP 20.00 20.00 20.00 20.00 19.87 -

(0.00) (0.00) (0.00) (0.00) (0.34)
20% `2-error 3.9041 3.5611 3.5540 3.6990 19.5640 -

(3.4908) (3.5130) (3.5647) (3.5669) (2.9656)
FP 21.51 18.74 19.77 20.44 158.11 -

(13.56) (13.69) (14.38) (14.60) (11.62)
TP 19.01 18.99 19.00 19.09 18.79 -

(1.31) (1.37) (1.35) (1.22) (1.01)
30% `2-error 13.7451 13.0448 13.7788 13.9348 30.6065 -

(3.9886) (3.6637) (4.1995) (3.9989) (4.2319)
FP 43.13 40.86 42.78 43.41 169.16 -

(11.82) (10.72) (11.44) (11.00) (11.72)
TP 15.85 15.81 15.90 15.82 17.52 -

(1.94) (1.98) (1.95) (1.96) (1.31)

5. Proofs

5.1. Proof of Proposition 1

Let (β̂, γ̂) be the output of Algorithm 1. Then, from (2.4), we have for

j = 1, . . . , p,

1

n

n∑
i=1

xij(yi − xTi β̂ −
√
nγ̂i) + λβ,j∂|β̂j | = 0.

Since ψ(z;λ) = z −Θ(z;λ), it follows from (2.5) that

1

n

n∑
i=1

xij(yi − xTi β̂ −
√
nγ̂i) =

1

n

n∑
i=1

xij(yi − xTi β̂ −Θ(yi − xTi β̂;λγwγ,i))

=
1

n

n∑
i=1

xijψ(yi − xTi β̂;λγwγ,i),
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Table 4. The same simulations as those of Table 3 when (3.10) is used for the preliminary
estimators. The results of the standard Lasso and its oracle version are omitted since
they are equivalent to Table 3.

Outlier Criterion Soft Hard SCAD Garrote
5% `2-error 0.2502 0.2280 0.2232 0.2293

(0.1184) (0.1079) (0.1027) (0.1061)
FP 2.17 2.06 1.98 2.10

(2.21) (2.26) (2.26) (2.33)
TP 20.00 20.00 20.00 20.00

(0.00) (0.00) (0.00) (0.00)
10% `2-error 0.4013 0.3253 0.3137 0.3345

(0.3243) (0.2805) (0.2741) (0.2899)
FP 2.91 2.43 2.57 2.56

(3.28) (2.72) (2.81) (2.96)
TP 19.99 19.99 19.99 19.99

(0.10) (0.10) (0.10) (0.10)
20% `2-error 4.1649 4.0372 3.9793 4.0969

(3.6045) (3.7870) (3.7536) (3.7765)
FP 19.78 19.04 18.81 19.04

(13.83) (14.01) (13.69) (13.58)
TP 18.99 19.01 19.00 19.00

(1.33) (1.28) (1.33) (1.23)
30% `2-error 13.2793 13.9873 13.7711 14.3158

(3.6615) (3.8248) (3.8830) (3.7659)
FP 41.10 41.02 41.00 41.39

(7.71) (7.99) (7.47) (7.37)
TP 16.02 16.03 15.99 16.00

(1.89) (1.90) (1.88) (1.92)

which concludes the proof.

5.2. Proof of Theorem 1

To prove the theorem we need a lemma. The proof is omitted since it is now

standard in Lasso analysis. See, e.g., Negahban et al. (2012).

Lemma 1. Let Z1, . . . , Zn be independently identically distributed as a zero mean

sub-Gaussian distribution with a parameter σ > 0. Then, for any vector a ∈ Rn

and any t ≥ 0,

P
(∣∣∣∣ n∑

i=1

aiZi

∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2σ2‖a‖22

)
.

Since we consider the adaptive Lasso type estimator and the screening prop-

erty that S∗ ⊂ S̃ and G∗ ⊂ G̃ is satisfied under Condition 3 and (3.3), it suffices
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Figure 3. The squared `2-error (left) and the false positives (right) for various magni-
tudes of outliers. Each point on the curve shows the mean based on 100 Monte Carlo
simulations.

to focus only on the covariates selected by the preliminary estimator β̃, the sub-

matrix XS̃ = {xij | 1 ≤ i ≤ n; j ∈ S̃}. Going forward we omit the subscript S̃ for

simplicity, keeping in mind that X, βk, and β∗ have dimension s̃.

We will show the bound (3.4) on the event that Condition 3 is satisfied and

on

E =

{∥∥∥∥ 1

n
XT

(G̃c)
εG̃c

∥∥∥∥
∞
≤ C

√
σ2 log p

n

}
, (5.1)

both of which have probabilities going to one, whereX(G̃c) = {xij | i ∈ G̃c, j ∈ S̃},
εG̃c = {εi| i ∈ G̃c}, and C >

√
2. In fact, from Lemma 1 and Condition 1, we

have for given preliminary estimators β̃ and γ̃,

P(E) = 1− P(Ec) = 1− P
{∥∥∥∥ 1

n
XT

(G̃c)
εG̃c

∥∥∥∥
∞
> C

√
σ2 log p

n

}
≥ 1−

∑
j∈S̃

P
(∣∣∣∣ 1n ∑

i∈G̃c
xijεi

∣∣∣∣ > C

√
σ2 log p

n

)
≥ 1− 2

∑
j∈S̃

exp(−2−1C2 log p)

≥ 1− 2 exp(log p− 2−1C2 log p) = 1− o(1).

The lower bound here does not depend on the preliminary estimators, and hence

the probability of E goes to one.
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Since βk = argminβL(β,γk−1), it follows that L(βk,γk−1) ≤ L(β∗,γk−1).

Hence, we have

1

2n
‖X∆k‖22 ≤

1

n
〈XT (y −Xβ∗ −

√
nγk−1),∆k〉+ λβ

∑
j∈S̃

wβ,j(|β∗j | − |βkj |)

= A1 +A2, say,

where ∆k = βk − β∗. First, we evaluate the term A1. Since
√
nγk−1i = Θ(yi −

xTi β
k−1;λγwγ,i) and

√
nγk−1i = 0 when i ∈ G̃c, the j-th element of XT (y −

Xβ∗ −
√
nγk−1) is given by∑

i∈G̃

xij{yi − xTi β∗ −Θ(yi − xTi βk−1;λγwγ,i)}+
∑
i∈G̃c

xij(yi − xTi β∗)

=
∑
i∈G̃

xij
{
xTi ∆k−1 + (yi − xTi βk−1)−Θ(yi − xTi βk−1;λγwγ,i)

}
+
∑
i∈G̃c

xij(yi − xTi β∗).

Thus, we obtain

A1 =
1

n
(X(G̃)∆

k−1)T (X(G̃)∆
k)

+
1

n

∑
j∈S̃

∆k
j

∑
i∈G̃

xij{(yi − xTi βk−1)−Θ(yi − xTi βk−1;λγwγ,i)}

+
1

n

∑
j∈S̃

∆k
j

∑
i∈G̃c

xij(yi − xTi β∗) = A11 +A12 +A13, say.

Since ‖∆k‖0 ≤ s̃ for any k ≥ 1, the definition of the (doubly) restricted largest

eigenvalue in (3.2) implies that

|A11| ≤
1

n
‖X(G̃)∆

k−1‖2‖X(G̃)∆
k‖2 ≤ δmax(s̃, g̃)‖∆k−1‖2‖∆k‖2. (5.2)

Note that |Θ(x;λ)− x| ≤ λ under Condition 2. Then,

|A12| ≤
Rwλγ
n
‖X(G̃)‖`1‖∆

k‖1 ≤ C
√
σ2 log p

n
‖∆k‖1, (5.3)

where Rw > 0 is defined in (2.3). Since G∗ ⊂ G̃, we have γ∗i = 0 for i ∈ G̃c.

Then, from (5.1), we have

|A13| ≤
1

n
‖X(G̃c)εG̃c‖∞‖∆

k‖1 ≤ C
√
σ2 log p

n
‖∆k‖1. (5.4)

For the term A2, since S∗ ⊂ S̃,
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A2 ≤ λβ
∑
j∈S∗

wβ,j |β∗j | − λβ
∑
j∈S∗

wβ,j |β∗j + ∆k
j | − λβ

∑
j∈S∗c

wβ,j |β∗j + ∆k
j |

≤ λβ
∑
j∈S∗

wβ,j |∆k
j | − λβ

∑
j∈S∗c

wβ,j |∆k
j |

≤ λβ max
j∈S∗

wβ,j‖∆k
S∗‖1 −

λβ
Rw
‖∆k

S∗c‖1.

Combined with (5.2)–(5.4), it follows from ‖∆k‖1 = ‖∆k
S∗‖1 + ‖∆k

S∗c‖1 that

1

2n
‖X∆k‖22 ≤ δmax(s̃, g̃)‖∆k−1‖2‖∆k‖2 + 2C

√
σ2 log p

n
‖∆k‖1

+ λβ max
j∈S∗

wβ,j‖∆k
S∗‖1 −

λβ
Rw
‖∆k

S∗c‖1

= δmax(s̃, g̃)‖∆k−1‖2‖∆k‖2 +

(
λβ max

j∈S∗
wβ,j + 2C

√
σ2 log p

n

)
‖∆k

S∗‖1

+

(
2C

√
σ2 log p

n
−
λβ
Rw

)
‖∆k

S∗c‖1

≤ δmax(s̃, g̃)‖∆k−1‖2‖∆k‖2 + λβ
(
R−1w + max

j∈S∗
wβ,j

)√
s∗‖∆k‖2.

From Condition 3 and (3.1), we have (1/n)‖X∆k‖22 ≥ κ‖∆k‖22. Thus, for k ≥ 1,

‖∆k‖2 ≤ ρ‖∆k−1‖2 + 2κ−1
√
s∗λβ

(
R−1w + max

j∈S∗
wβ,j

)
.

Let ∆0 = βinit − β∗. Then, the bound (3.4) is derived by solving the above

recurrence relation for k = 1, 2, . . . , which concludes the proof.

5.3. Proof of Theorem 2

We denote positive constants by Ci (i ≥ 1) which may be different from each

other. Suppose that for some ` ∈ S̃ ∩S∗c , βk` 6= 0. Without loss of generality, we

can assume βk` > 0. Then, from the first order condition for βk, the value

1

n

∑
j∈S̃

n∑
i=1

xijxi`β
k
j −

1

n

n∑
i=1

xi`

{
yi −Θ

(
yi −

∑
j∈S̃

xijβ
k−1
j ;λγwγ,i

)}
+ λβwβ,`

(5.5)

should be zero. But, if we can show the first two terms are dominated by the

third term λβwβ,` for any ` ∈ S̃ ∩ S∗c , we have a contradiction.

First, we evaluate the middle term of (5.5). From the definition, the inside

of Θ is represented as
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yi −
∑
j∈S̃

xijβ
k−1
j =

{√
nγ∗i + εi −

∑
j∈S̃ xij(β

k−1
j − β∗j ), i ∈ G∗ ∩ G̃ = G∗,

εi −
∑

j∈S̃ xij(β
k−1
j − β∗j ), i ∈ G∗c ∩ G̃.

By Lemma 1, we can show that max1≤i≤n |εi| ≤ C1
√

log n with probability go-

ing to one. Let λβ = C2{(log p)/n}1/2, then it follows from Corollary 1 and

an,2s
∗ log p = o(n log n) that

max
1≤i≤n

∣∣∣∣εi −∑
j∈S̃

xij(β
k−1
j − β∗j )

∣∣∣∣ ≤ max
1≤i≤n

|εi|+ C3

√
s̃‖βk−1 − β∗‖2

≤ C4

√
log n(1 + o(1)),

which implies that if λγ mini∈G∗c∩G̃wγ,i ≥ C4
√

log n, then yi−
∑

j∈S̃ xijβ
k−1
j = 0

for i ∈ G∗c ∩ G̃. Note that mini∈G∗c∩G̃wγ,i = Rw for sufficiently large n since

mini∈G∗c∩G̃(1/|γ̃i|) ≥ 1/(Can,1) → ∞. Hence it suffices to put λγ = C5
√

log n

for a sufficiently large C5 > 0. Such a λγ satisfying the condition of Corollary 1

can be selected since a2n,2 = o(n). Meanwhile, since
√

log n = o(
√
nmini∈G∗ |γ∗i |),

we have yi −
∑

j∈S̃ xijβ
k−1
j =

√
nγ∗i (1 + o(1)) for i ∈ G∗. Thus, for sufficiently

large n, it holds that mini∈G∗ |yi −
∑

j∈S̃ xijβ
k−1
j | ≥ λγRw ≥ λγ maxi∈G∗ wγ,i.

Therefore, under Condition 2,

Θ
(
yi −

∑
j∈S̃

xijβ
k−1
j ;λγwγ,i

)
=

{
yi −

∑
j∈S̃ xijβ

k−1
j +O(

√
log n), i ∈ G∗,

0, i ∈ G∗c ∩ G̃.

Then, it follows that
n∑
i=1

xi`

{
yi −Θ

(
yi −

∑
j∈S̃

xijβ
k−1
j ;λγwγ,i

)}

=
∑
i∈G̃

xi`

{
yi −Θ

(
yi −

∑
j∈S̃

xijβ
k−1
j ;λγwγ,i

)}
+
∑
i∈G̃c

xi`yi

=
∑
i∈G∗

xi`
∑
j∈S̃

xijβ
k−1
j +O(

√
log n)

∑
i∈G∗

xi` +
∑

i∈G∗c∩G̃

xi`yi +
∑
i∈G̃c

xi`yi

=
∑
i∈G∗

xi`
∑
j∈S̃

xij
{
β∗j + (βk−1j − β∗j )

}
+
∑
i∈G∗c

xi`yi +O(g∗
√

log n)

=

n∑
i=1

∑
j∈S̃

xi`xijβ
∗
j +

∑
i∈G∗

∑
j∈S̃

xi`xij(β
k−1
j − β∗j ) +

∑
i∈G∗c

xi`εi +O(g∗
√

log n).

Thus, (5.5) can be written as
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1

n

n∑
i=1

∑
j∈S̃

xijxi`(β
k
j − β∗j )− 1

n

∑
i∈G∗

∑
j∈S̃

xijxi`(β
k−1
j − β∗j )

− 1

n

∑
i∈G∗c

xi`εi +O

(
g∗

n

√
log p

)
+ λβwβ,`.

Clearly the fist and second terms have the order
√
an,2s∗λβ. From the proof of

Theorem 1, the third term is of order {(log p)/n}1/2. By an,1 max
(√

an,2s∗, g
∗/√

n
)

= o(1), the first four terms of (5.5) are dominated by λβ minj∈S̃∩S∗c wβ,j
since minj∈S̃∩S∗c wβ,j ≥ 1/(Can,1).
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