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S1 Proof of Proposition 1

Proof of Property 1. First observe that

g(x/θ)

g(x)
=

d(x/θ)

θγ+1d(x)
.

Because of the third condition in the definition of the MPT family, g(x/θ)/g(x)

is a strictly increasing function for x > 0 if θ > 1. Also notice that

g(x/θ)/g(x) → 1 as x → ∞. Combining the two, we get g(x/θ)/g(x) < 1.

Therefore, for any x1 > x2 > 0,

g(x2)

g(x1)
=
g(x1/(x1/x2))

g(x1)
< 1.

Proof Property 2. h′(x) = −d(x)xγ + γxγ−1{1 −D(x)}. To show h is a

strictly increasing function, it is sufficient to show h′(x) > 0, or equivalently,

{1−D(x)}/d(x) > x/γ.

1−D(x)

d(x)
=

∫∞
x
d(y)dy

d(x)
=

∫ ∞
x

d(y)yγ+1

d(x)xγ+1

xγ+1

yγ+1
dy >

∫ ∞
x

xγ+1

yγ+1
dy = x/γ.
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Proof of Property 3. Let ψ(x) = θ−1d(x/θ)/d(x). For x1 > x2 > 0,

1−D(x2/θ)

1−D(x2)
=

∫ x1
x2
d(x)ψ(x)dx+

∫∞
x1
d(x)ψ(x)dx∫ x1

x2
d(x)dx+

∫∞
x1
d(x)dx

<

∫∞
x1
d(x)ψ(x)dx∫∞
x1
d(x)dx

=
1−D(x1/θ)

1−D(x1)
,

since by the monotonicity of ψ(x),∫ x1
x2
d(x)ψ(x)dx∫ x1
x2
d(x)dx

< ψ(x1) and

∫∞
x1
d(x)ψ(x)dx∫∞
x1
d(x)dx

> ψ(x1).

Proof of Property 4.

f ′(x) = 2d(x)/γ + 2xd′(x)/γ + 2d(x) = 2d(x)(1 + 1/γ)

(
1 +

xd′(x)

(1 + γ)d(x)

)
.

By Property 1, log(xγ+1d(x)) is a strictly increasing function in x for x > 0,

so {
log(xγ+1d(x))

}′
=
γ + 1

x
+
d′(x)

d(x)
=
γ + 1

x

(
1 +

xd′(x)

(1 + γ)d(x)

)
> 0.

Thus f ′(x) > 0, for x > 0.

S2 Proof of Proposition 2

Proof. Since the oracle threshold ωopt does not depend on identically dis-

tributed X1, . . . , Xm, t1i and t2i do not vary with i. Hence the Bayes risk

of the oracle Bayes rule can be simplified to

Ropt = m(1− p)t1δ0 +mpt2δA = mpδA(vt1 + t2),

and (2.7) is immediate from (2.6). The asymptotic behavior of ω2
opt and t2

in (2.6) follows immediately from (2.5). Also, since ωopt → ∞ as u → ∞
and 1−D(x) ∼ (Cd/γ)x−γ as x→∞, we have

vt1 = 2v{1−D(ωopt)} ∼ 2v(Cd/γ)ω−γopt ∼ 2vu−γ/2(Cd/γ)C−γ/2

→ 2C0(Cd/γ)C−γ/2 = C1.
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S3 Proof of Theorem 1

Proof. The equivalence of (3.1) and (3.2) is straightforward due to (2.6).

We will show that (3.2) is necessary and sufficient.

If (3.2) holds, then

ω2/(1 + u) ∼ C(v/C0)
2/γu−1 → C, v(ω2)−γ/2 → C−γ/2C0.

Similar to the proof of Proposition 2,

2D
(
ω(1 + u)−1/2

)
− 1→ 2D(

√
C)− 1, 2v{1−D(ω)} → C1.

Therefore, R/Ropt → 1, as m→∞.

Next, we will show that condition (3.2) is necessary. First, we claim

that ω2 →∞ as m→∞ is a necessary condition of a multiple testing rule

to be ABOS. In fact, if the limit of ω2 is not infinity, there is a subsequence

ω̃2 of ω2 such that ω̃2 converges to a finite constant. Let the subsequence of

risks corresponding to ω̃2 be R̃ and the corresponding subsequence of Ropt

be R̃opt. Since R̃/R̃opt →∞, R/Ropt will not converge to 1.

Suppose (3.2) does not hold. One of the following statements is true:

(a) ω2v−2/γ → C̃C
−2/γ
0 as m→∞ where C̃ 6= C is a nonnegative constant;

(b) ω2v−2/γ → ∞ as m → ∞; (c) The limit of ω2v−2/γ does not exist and

ω2v−2/γ is bounded.

The proof will be complete if we show that the multiple testing proce-

dure is not ABOS in the three cases. If (a) is true, then

R

Ropt

→ 2D(
√
C̃)− 1 + C1(C̃/C)−γ/2

2D(
√
C)− 1 + C1

=
hC(
√
C̃)

hC(
√
C)

,

where hC(x) = 2D(x) − 1 + C1(x/
√
C)−γ. Since hC reaches its global

minimum only at
√
C, so the procedure is not ABOS. If (b) is true,

R

Ropt

→ 1

2D(
√
C)− 1 + C1

6= 1.

If (c) is true, there exists a subsequence of ω2v−2/γ such that its limit is not

CC
−2/γ
0 . Then this situation goes back to case (a).
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S4 Proof of Theorem 2

Proof. To simplify notations, for any measurable set B with respect to the

σ-algerbra of the probability space of the random vector (X1, . . . , Xm), we

let

P0i(B) = P (B | si = 0) , PAi(B) = P (B | si = 1) , i = 1, . . . ,m.

Let Q denote the event
{
|ω̂ − ωopt| > εv1/γ

}
. It is easy to see that

P (Q) = (1− p)P0i(Q) + pPAi(Q), i = 1, . . . ,m,

so

P (Q) = (1− p)P̄0·(Q) + pP̄A·(Q),

where P̄0·(Q) =
∑
P0i(Q)/m and P̄A·(Q) =

∑
PAi(Q)/m. If we assume

that δ does not converge to 0, (3.5) implies (3.3) and (3.4), namely,

P̄0·(Q) = o(v−1), P̄A·(Q) = o(1).

We only need to show the sufficiency of (3.3) and (3.4).

For any random thresholding procedure,

t1i = P0i({|Xi/σ| ≥ ω̂} ∩Q) + P0i({|Xi/σ| ≥ ω̂} ∩QC),

which implies

P0i(|Xi/σ| ≥ ωopt+εv
1/γ)−P0i(Q) ≤ t1i ≤ P0i(Q)+P0i(|Xi/σ| ≥ ωopt−εv1/γ).

Then

P01(|X1/σ| ≥ ωopt + εv1/γ)− P̄0·(Q)

P01(|X1/σ| ≥ ωopt)
≤ t̄1·
t1
≤ P̄0·(Q) + P01(|X1/σ| ≥ ωopt − εv1/γ)

P01(|X1/σ| ≥ ωopt)
,

where t̄j· =
∑
tji/m (j = 1, 2). Because of (3.3) and (3.4), both sides of

the above inequality converge to 1 as m → ∞ and ε → 0. Hence, we have

t̄1·/t1 → 1. Similarly, t̄2·/t2 → 1. Therefore,

R

Ropt

=
vt1

vt1 + t2

t̄1·
t1

+
t2

vt1 + t2

t̄2·
t2
→ 1.
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S5 Proof of Proposition 3

Proof. By Theorem 1, in order to prove that (4.4) is both necessary and

sufficient for a procedure controlling BFDR to be ABOS, we need only show

that it is equivalent to

ω2
B/(1 + u)→ C, v{1−D(ωB)} → C1/2. (S5.1)

It is straightforward to see (S5.1) implies (4.4) via (4.2). Notice that (4.4)

is equivalent to
v{1−D(ωB)}

1−D(ωB(1 + u)−1/2)
→ C1

1− C2

.

If we can show that (4.4) implies ω2
B/(1 + u) → C, then it also implies

v{1−D(ωB)} → C1/2. To see this, we first observe that (4.4) implies that

ωB →∞; otherwise there exists a subsequence of δrα whose limit is infinite

which is in conflict with (4.4). Suppose ωB →∞ but ω2
B/(1 + u) 6→ C. We

want to show that (4.4) does not hold.

One of the following three statements must be true if ω2
B/(1 + u) 6→

C: (a) ω2
B/(1 + u) → C̃ where C̃ 6= C is a nonnegative constant; (b)

ω2
B/(1 + u)→∞; (c) ω2

B/(1 + u) is bounded but its limit does not exist.

If (a) holds, then

δrα =
v{1−D(ωB)}

1−D(ωB(1 + u)−1/2)
∼ vCd(C̃u)−γ/2/γ

1−D(
√
C̃)

→ C1

2(1−D(
√
C))

g(
√
C̃)

g(
√
C)

,

where g(x) = x−γ{1−D(x)}−1. Since g is a strictly decreasing function,

g(
√
C̃)/g(

√
C) 6= 1. If (b) holds, then

δrα =
v{1−D(ωB)}

1−D(ωB(1 + u)−1/2)
∼ vω−γB Cd/γ

(ωBu−1/2)−γCd/γ
→ C0 6=

C1

2(1−D
√
C)
.

If (c) holds, there exists a subsequence of ω2
B/(1 + u) such that its limit

exists but is not C, and we are back to case (a).

By our assumptions,

1−D(ωB) ∼ ω−γB Cd/γ. (S5.2)

By (4.2),

1−D(ωB) =
rα
f
{1−D(

√
C)}(1 + o(1)). (S5.3)
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(S5.2) and (S5.3) imply (4.5).

S6 Proof of Proposition 4

Proof. Equation (4.8) is equivalent to

1−D(ωGW)

1−D(ωGW(1 + u)−1/2)
=

prα
1 + prα

=
rα′

f
, (S6.1)

where α′ = α(1−p). Comparing (S6.1) with (4.2), the result is an immediate

consequence of Theorem 1 and the fact that rα′/rα → 1.

S7 Proof of Theorem 3

The proof of Theorem 3 is based on Theorem 2 and the following lemmas.

The proofs of these lemmas are very similar to Lemmas 11.2 and 11.4 in

the supplementary material of Bogdan, Chakrabarti, Frommlet, and Ghosh

(2011), but we include the proofs for the sake of completeness.

Lemma 1. Assume there exists a constant ρ > 0 such that mp1+ρ → ∞.

Let ω1 be the GW threshold at level α1 = α(1− ξ), where ξ2 = v1+ρ/m. If

(4.4) and (4.10) hold, then

P (ωBH ≥ ω1) = o(v−1).

Also, ω1 = ωGW + o(v1/γ).

Proof. Since mp1+ρ →∞ and δ → δ∞,

ξ2 =
v1+ρ

m
∼ δ∞

1+ρ

mp1+ρ
→ 0,

which implies that rα1/rα → 1. If (4.4) holds, then according to Proposi-

tion 4, both the multiple testing rule corresponding to ωGW and the rule

corresponding to ω1 are ABOS. Therefore ω1 = ωGW + o(v1/γ). The other
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part of the theorem also holds since

P (ωBH ≥ ω1) ≤ P

(
2{1−D(ω1)}

1− F̂ (ω1)
> α

)

= P

(
1− F̂ (ω1)

1− F (ω1)
<

2{1−D(ω1)}
α{1− F (ω1)}

)

= P

(
1− F̂ (ω1)

1− F (ω1)
< 1− ξ

)
(By (4.8))

≤ exp

(
−1

4
mξ2{1− F (ω1)}

)
(By Bernstein’s inequality)

= exp

(
−1

2
mξ2{1−D(

√
C)}rα + 1

f
(1 + o(1))

)
≤ exp

(
−C1

4
vρ(1 + o(1))

)
= o(v−1).

Lemma 2. Let ω2 be the GW threshold at level α2 = α(1 + ξ) where ξ =

1/ log(m). Under the assumptions (4.4), (4.9) and (4.10),

P (ωBH < ω2) = o(v−1).

Also, ω2 = ωGW + o(v1/γ).

Proof. Since rα2/rα converges to 1 and (4.4) holds, according to Theo-

rem 4, both the multiple testing rule corresponding to ωGW and the rule

corresponding to ω2 are ABOS. Therefore ω2 = ωGW + o(v1/γ). Since

{1−D(x)}/{1− F (x)} is an decreasing function in x,

ωBH < ω2 ⇒
2{1−D(ωBH)}

1− F (ωBH)
>

2{1−D(ω2)}
1− F (ω2)

= α(1 + ξ).

By the definition of ωBH,

2{1−D(ωBH)}
1− F̂ (ωBH)

≤ α.
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Combining the above two inequalities, we have

ωBH < ω2 ⇒
1− F̂ (ωBH)

1− F (ωBH)
> 1 + ξ.

Therefore,

P (ωBH < ω2) ≤ P

(
sup

c∈[0,ω2)

1− F̂ (c)

1− F (c)
> 1 + ξ

)
= P

(
sup

t∈[0,z1)

1− Ĝ(t)

1− F (t)
> 1 + ξ

)
,

where z1 = F (ω2) = 1−C3p(1 + o(1)), C3 = 2{1−D(
√
C)}/(1−α∞), and

Ĝ is the empirical cdf of Ui = F (|Xi|/σ0) (i = 1, . . . ,m). Let ui = i/m,

k1 = dm(1− C3p)e. Notice that for t ∈ [ui, ui + 1/m),

1− Ĝ(t) ≤ 1− Ĝ(ui) and 1− t > 1− ui − 1/m.

Then for sufficiently large m,

P (ωBH < ω2) ≤ P

(
max

i∈{0,1,...,k1}

1− Ĝ(ui)

1− ui − 1/m
> 1 + ξ

)

≤
k1∑
i=0

P
(

1− Ĝ(ui) > (1 + ξ)(1− ui − 1/m)
)
.

If i = 0,

P
(

1− Ĝ(ui) > (1 + ξ)(1− ui − 1/m)
)

= P (1 > (1− 1/m)(1 + ξ)) = 0

for sufficiently large m. For i = 1, . . . , k1,

1− ui −
1

m
= (1− ui)(1− τi),

where τi = m−1(1− ui)−1. Since

1− ui ≥ 1− k1/m ≥ C3p− 1/m,

we have

τi ≤ (C3mp− 1)−1 = o(ξ).
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By Bernstein’s inequality,

P
(

1− Ĝ(ui) > (1− ui − 1/m)(1 + ξ)
)
≤ exp

[
−m(1− ui){(1 + ξ)(1− τ)− 1}2

4(1 + ξ)(1− τ)

]
= exp

{
−1

4
mξ2(1− ui)(1 + o(1))

}
≤ exp

{
−1

4
C3mpξ

2(1 + o(1))

}
.

Therefore, for sufficiently large m

P (ωBH < ω2) ≤ m exp

{
−1

4
C3mpξ

2(1− ui)(1 + o(1))

}
= o(v−1),

if p ∝ 1/log(m) or p ∝ m−κ.

Proof of Theorem 3. By Theorems 2 and 4, it is sufficient to show that

for any ε > 0,

P (|ωBH − ωGW| > εv1/γ) = o(v−1).

By Lemmas 1 and 2,

P (|ωBH − ωGW| > εv1/γ) ≤ P (ωBH > ω1) + P (ωBH < ω2) = o(v−1).
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